/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * Functions for loading a kernel from disk. * (Firmware portion) */ #include "sysincludes.h" #include "cgptlib.h" #include "cgptlib_internal.h" #include "region.h" #include "gbb_access.h" #include "gbb_header.h" #include "load_kernel_fw.h" #include "utility.h" #include "vboot_api.h" #include "vboot_common.h" #include "vboot_kernel.h" #define KBUF_SIZE 65536 /* Bytes to read at start of kernel partition */ #define LOWEST_TPM_VERSION 0xffffffff typedef enum BootMode { kBootRecovery = 0, /* Recovery firmware, any dev switch position */ kBootNormal = 1, /* Normal boot - kernel must be verified */ kBootDev = 2 /* Developer boot - self-signed kernel ok */ } BootMode; /** * Allocate and read GPT data from the drive. * * The sector_bytes and drive_sectors fields should be filled on input. The * primary and secondary header and entries are filled on output. * * Returns 0 if successful, 1 if error. */ int AllocAndReadGptData(VbExDiskHandle_t disk_handle, GptData *gptdata) { uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes; /* No data to be written yet */ gptdata->modified = 0; /* Allocate all buffers */ gptdata->primary_header = (uint8_t *)VbExMalloc(gptdata->sector_bytes); gptdata->secondary_header = (uint8_t *)VbExMalloc(gptdata->sector_bytes); gptdata->primary_entries = (uint8_t *)VbExMalloc(TOTAL_ENTRIES_SIZE); gptdata->secondary_entries = (uint8_t *)VbExMalloc(TOTAL_ENTRIES_SIZE); if (gptdata->primary_header == NULL || gptdata->secondary_header == NULL || gptdata->primary_entries == NULL || gptdata->secondary_entries == NULL) return 1; /* Read data from the drive, skipping the protective MBR */ if (0 != VbExDiskRead(disk_handle, 1, 1, gptdata->primary_header)) return 1; GptHeader* primary_header = (GptHeader*)gptdata->primary_header; if (0 != VbExDiskRead(disk_handle, primary_header->entries_lba, entries_sectors, gptdata->primary_entries)) return 1; if (0 != VbExDiskRead(disk_handle, gptdata->drive_sectors - 1, 1, gptdata->secondary_header)) return 1; GptHeader* secondary_header = (GptHeader*)gptdata->secondary_header; if (0 != VbExDiskRead(disk_handle, secondary_header->entries_lba, entries_sectors, gptdata->secondary_entries)) return 1; return 0; } /** * Write any changes for the GPT data back to the drive, then free the buffers. * * Returns 0 if successful, 1 if error. */ int WriteAndFreeGptData(VbExDiskHandle_t disk_handle, GptData *gptdata) { int legacy = 0; uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes; int ret = 1; /* * TODO(namnguyen): Preserve padding between primary GPT header and * its entries. */ uint64_t entries_lba = GPT_PMBR_SECTORS + GPT_HEADER_SECTORS; if (gptdata->primary_header) { GptHeader *h = (GptHeader *)(gptdata->primary_header); entries_lba = h->entries_lba; /* * Avoid even looking at this data if we don't need to. We * may in fact not have read it from disk if the read failed, * and this avoids a valgrind complaint. */ if (gptdata->modified) { legacy = !Memcmp(h->signature, GPT_HEADER_SIGNATURE2, GPT_HEADER_SIGNATURE_SIZE); } if (gptdata->modified & GPT_MODIFIED_HEADER1) { if (legacy) { VBDEBUG(("Not updating GPT header 1: " "legacy mode is enabled.\n")); } else { VBDEBUG(("Updating GPT header 1\n")); if (0 != VbExDiskWrite(disk_handle, 1, 1, gptdata->primary_header)) goto fail; } } } if (gptdata->primary_entries) { if (gptdata->modified & GPT_MODIFIED_ENTRIES1) { if (legacy) { VBDEBUG(("Not updating GPT entries 1: " "legacy mode is enabled.\n")); } else { VBDEBUG(("Updating GPT entries 1\n")); if (0 != VbExDiskWrite(disk_handle, entries_lba, entries_sectors, gptdata->primary_entries)) goto fail; } } } entries_lba = (gptdata->drive_sectors - entries_sectors - GPT_HEADER_SECTORS); if (gptdata->secondary_header) { GptHeader *h = (GptHeader *)(gptdata->secondary_header); entries_lba = h->entries_lba; if (gptdata->modified & GPT_MODIFIED_HEADER2) { VBDEBUG(("Updating GPT entries 2\n")); if (0 != VbExDiskWrite(disk_handle, gptdata->drive_sectors - 1, 1, gptdata->secondary_header)) goto fail; } } if (gptdata->secondary_entries) { if (gptdata->modified & GPT_MODIFIED_ENTRIES2) { VBDEBUG(("Updating GPT header 2\n")); if (0 != VbExDiskWrite(disk_handle, entries_lba, entries_sectors, gptdata->secondary_entries)) goto fail; } } ret = 0; fail: /* Avoid leaking memory on disk write failure */ if (gptdata->primary_header) VbExFree(gptdata->primary_header); if (gptdata->primary_entries) VbExFree(gptdata->primary_entries); if (gptdata->secondary_entries) VbExFree(gptdata->secondary_entries); if (gptdata->secondary_header) VbExFree(gptdata->secondary_header); /* Success */ return ret; } VbError_t LoadKernel(LoadKernelParams *params, VbCommonParams *cparams) { VbSharedDataHeader *shared = (VbSharedDataHeader *)params->shared_data_blob; VbSharedDataKernelCall *shcall = NULL; VbNvContext* vnc = params->nv_context; VbPublicKey* kernel_subkey = NULL; int free_kernel_subkey = 0; GptData gpt; uint64_t part_start, part_size; uint64_t blba; uint64_t kbuf_sectors; uint8_t* kbuf = NULL; int found_partitions = 0; int good_partition = -1; int good_partition_key_block_valid = 0; uint32_t lowest_version = LOWEST_TPM_VERSION; int rec_switch, dev_switch; BootMode boot_mode; uint32_t require_official_os = 0; VbError_t retval = VBERROR_UNKNOWN; int recovery = VBNV_RECOVERY_LK_UNSPECIFIED; /* Sanity Checks */ if (!params->bytes_per_lba || !params->ending_lba) { VBDEBUG(("LoadKernel() called with invalid params\n")); retval = VBERROR_INVALID_PARAMETER; goto LoadKernelExit; } /* Clear output params in case we fail */ params->partition_number = 0; params->bootloader_address = 0; params->bootloader_size = 0; /* Calculate switch positions and boot mode */ rec_switch = (BOOT_FLAG_RECOVERY & params->boot_flags ? 1 : 0); dev_switch = (BOOT_FLAG_DEVELOPER & params->boot_flags ? 1 : 0); if (rec_switch) { boot_mode = kBootRecovery; } else if (dev_switch) { boot_mode = kBootDev; VbNvGet(vnc, VBNV_DEV_BOOT_SIGNED_ONLY, &require_official_os); } else { boot_mode = kBootNormal; } /* * Set up tracking for this call. This wraps around if called many * times, so we need to initialize the call entry each time. */ shcall = shared->lk_calls + (shared->lk_call_count & (VBSD_MAX_KERNEL_CALLS - 1)); Memset(shcall, 0, sizeof(VbSharedDataKernelCall)); shcall->boot_flags = (uint32_t)params->boot_flags; shcall->boot_mode = boot_mode; shcall->sector_size = (uint32_t)params->bytes_per_lba; shcall->sector_count = params->ending_lba + 1; shared->lk_call_count++; /* Initialization */ blba = params->bytes_per_lba; kbuf_sectors = KBUF_SIZE / blba; if (0 == kbuf_sectors) { VBDEBUG(("LoadKernel() called with sector size > KBUF_SIZE\n")); retval = VBERROR_INVALID_PARAMETER; goto LoadKernelExit; } if (kBootRecovery == boot_mode) { /* Use the recovery key to verify the kernel */ retval = VbGbbReadRecoveryKey(cparams, &kernel_subkey); if (VBERROR_SUCCESS != retval) goto LoadKernelExit; free_kernel_subkey = 1; } else { /* Use the kernel subkey passed from LoadFirmware(). */ kernel_subkey = &shared->kernel_subkey; } /* Read GPT data */ gpt.sector_bytes = (uint32_t)blba; gpt.drive_sectors = params->ending_lba + 1; if (0 != AllocAndReadGptData(params->disk_handle, &gpt)) { VBDEBUG(("Unable to read GPT data\n")); shcall->check_result = VBSD_LKC_CHECK_GPT_READ_ERROR; goto bad_gpt; } /* Initialize GPT library */ if (GPT_SUCCESS != GptInit(&gpt)) { VBDEBUG(("Error parsing GPT\n")); shcall->check_result = VBSD_LKC_CHECK_GPT_PARSE_ERROR; goto bad_gpt; } /* Allocate kernel header buffers */ kbuf = (uint8_t*)VbExMalloc(KBUF_SIZE); if (!kbuf) goto bad_gpt; /* Loop over candidate kernel partitions */ while (GPT_SUCCESS == GptNextKernelEntry(&gpt, &part_start, &part_size)) { VbSharedDataKernelPart *shpart = NULL; VbKeyBlockHeader *key_block; VbKernelPreambleHeader *preamble; RSAPublicKey *data_key = NULL; uint64_t key_version; uint32_t combined_version; uint64_t body_offset; uint64_t body_offset_sectors; uint64_t body_sectors; int key_block_valid = 1; VBDEBUG(("Found kernel entry at %" PRIu64 " size %" PRIu64 "\n", part_start, part_size)); /* * Set up tracking for this partition. This wraps around if * called many times, so initialize the partition entry each * time. */ shpart = shcall->parts + (shcall->kernel_parts_found & (VBSD_MAX_KERNEL_PARTS - 1)); Memset(shpart, 0, sizeof(VbSharedDataKernelPart)); shpart->sector_start = part_start; shpart->sector_count = part_size; /* * TODO: GPT partitions start at 1, but cgptlib starts them at * 0. Adjust here, until cgptlib is fixed. */ shpart->gpt_index = (uint8_t)(gpt.current_kernel + 1); shcall->kernel_parts_found++; /* Found at least one kernel partition. */ found_partitions++; /* Read the first part of the kernel partition. */ if (part_size < kbuf_sectors) { VBDEBUG(("Partition too small to hold kernel.\n")); shpart->check_result = VBSD_LKP_CHECK_TOO_SMALL; goto bad_kernel; } if (0 != VbExDiskRead(params->disk_handle, part_start, kbuf_sectors, kbuf)) { VBDEBUG(("Unable to read start of partition.\n")); shpart->check_result = VBSD_LKP_CHECK_READ_START; goto bad_kernel; } /* Verify the key block. */ key_block = (VbKeyBlockHeader*)kbuf; if (0 != KeyBlockVerify(key_block, KBUF_SIZE, kernel_subkey, 0)) { VBDEBUG(("Verifying key block signature failed.\n")); shpart->check_result = VBSD_LKP_CHECK_KEY_BLOCK_SIG; key_block_valid = 0; /* If not in developer mode, this kernel is bad. */ if (kBootDev != boot_mode) goto bad_kernel; /* * In developer mode, we can explictly disallow * self-signed kernels */ if (require_official_os) { VBDEBUG(("Self-signed kernels not enabled.\n")); shpart->check_result = VBSD_LKP_CHECK_SELF_SIGNED; goto bad_kernel; } /* * Allow the kernel if the SHA-512 hash of the key * block is valid. */ if (0 != KeyBlockVerify(key_block, KBUF_SIZE, kernel_subkey, 1)) { VBDEBUG(("Verifying key block hash failed.\n")); shpart->check_result = VBSD_LKP_CHECK_KEY_BLOCK_HASH; goto bad_kernel; } } /* Check the key block flags against the current boot mode. */ if (!(key_block->key_block_flags & (dev_switch ? KEY_BLOCK_FLAG_DEVELOPER_1 : KEY_BLOCK_FLAG_DEVELOPER_0))) { VBDEBUG(("Key block developer flag mismatch.\n")); shpart->check_result = VBSD_LKP_CHECK_DEV_MISMATCH; key_block_valid = 0; } if (!(key_block->key_block_flags & (rec_switch ? KEY_BLOCK_FLAG_RECOVERY_1 : KEY_BLOCK_FLAG_RECOVERY_0))) { VBDEBUG(("Key block recovery flag mismatch.\n")); shpart->check_result = VBSD_LKP_CHECK_REC_MISMATCH; key_block_valid = 0; } /* Check for rollback of key version except in recovery mode. */ key_version = key_block->data_key.key_version; if (kBootRecovery != boot_mode) { if (key_version < (shared->kernel_version_tpm >> 16)) { VBDEBUG(("Key version too old.\n")); shpart->check_result = VBSD_LKP_CHECK_KEY_ROLLBACK; key_block_valid = 0; } if (key_version > 0xFFFF) { /* * Key version is stored in 16 bits in the TPM, * so key versions greater than 0xFFFF can't be * stored properly. */ VBDEBUG(("Key version > 0xFFFF.\n")); shpart->check_result = VBSD_LKP_CHECK_KEY_ROLLBACK; key_block_valid = 0; } } /* If not in developer mode, key block required to be valid. */ if (kBootDev != boot_mode && !key_block_valid) { VBDEBUG(("Key block is invalid.\n")); goto bad_kernel; } /* Get key for preamble/data verification from the key block. */ data_key = PublicKeyToRSA(&key_block->data_key); if (!data_key) { VBDEBUG(("Data key bad.\n")); shpart->check_result = VBSD_LKP_CHECK_DATA_KEY_PARSE; goto bad_kernel; } /* Verify the preamble, which follows the key block */ preamble = (VbKernelPreambleHeader *) (kbuf + key_block->key_block_size); if ((0 != VerifyKernelPreamble( preamble, KBUF_SIZE - key_block->key_block_size, data_key))) { VBDEBUG(("Preamble verification failed.\n")); shpart->check_result = VBSD_LKP_CHECK_VERIFY_PREAMBLE; goto bad_kernel; } /* * If the key block is valid and we're not in recovery mode, * check for rollback of the kernel version. */ combined_version = (uint32_t)( (key_version << 16) | (preamble->kernel_version & 0xFFFF)); shpart->combined_version = combined_version; if (key_block_valid && kBootRecovery != boot_mode) { if (combined_version < shared->kernel_version_tpm) { VBDEBUG(("Kernel version too low.\n")); shpart->check_result = VBSD_LKP_CHECK_KERNEL_ROLLBACK; /* * If not in developer mode, kernel version * must be valid. */ if (kBootDev != boot_mode) goto bad_kernel; } } VBDEBUG(("Kernel preamble is good.\n")); shpart->check_result = VBSD_LKP_CHECK_PREAMBLE_VALID; /* Check for lowest version from a valid header. */ if (key_block_valid && lowest_version > combined_version) lowest_version = combined_version; else { VBDEBUG(("Key block valid: %d\n", key_block_valid)); VBDEBUG(("Combined version: %u\n", (unsigned) combined_version)); } /* * If we already have a good kernel, no need to read another * one; we only needed to look at the versions to check for * rollback. So skip to the next kernel preamble. */ if (-1 != good_partition) continue; /* Verify kernel body starts at multiple of sector size. */ body_offset = key_block->key_block_size + preamble->preamble_size; if (0 != body_offset % blba) { VBDEBUG(("Kernel body not at multiple of " "sector size.\n")); shpart->check_result = VBSD_LKP_CHECK_BODY_OFFSET; goto bad_kernel; } body_offset_sectors = body_offset / blba; body_sectors = (preamble->body_signature.data_size + blba - 1) / blba; if (!params->kernel_buffer) { /* Get kernel load address and size from the header. */ params->kernel_buffer = (void *)((long)preamble->body_load_address); params->kernel_buffer_size = body_sectors * blba; } else { /* Verify kernel body fits in the buffer */ if (body_sectors * blba > params->kernel_buffer_size) { VBDEBUG(("Kernel body doesn't " "fit in memory.\n")); shpart->check_result = VBSD_LKP_CHECK_BODY_EXCEEDS_MEM; goto bad_kernel; } } /* Verify kernel body fits in the partition */ if (body_offset_sectors + body_sectors > part_size) { VBDEBUG(("Kernel body doesn't fit in partition.\n")); shpart->check_result = VBSD_LKP_CHECK_BODY_EXCEEDS_PART; goto bad_kernel; } /* Read the kernel data */ if (0 != VbExDiskRead(params->disk_handle, part_start + body_offset_sectors, body_sectors, params->kernel_buffer)) { VBDEBUG(("Unable to read kernel data.\n")); shpart->check_result = VBSD_LKP_CHECK_READ_DATA; goto bad_kernel; } /* Verify kernel data */ if (0 != VerifyData((const uint8_t *)params->kernel_buffer, params->kernel_buffer_size, &preamble->body_signature, data_key)) { VBDEBUG(("Kernel data verification failed.\n")); shpart->check_result = VBSD_LKP_CHECK_VERIFY_DATA; goto bad_kernel; } /* Done with the kernel signing key, so can free it now */ RSAPublicKeyFree(data_key); data_key = NULL; /* * If we're still here, the kernel is valid. Save the first * good partition we find; that's the one we'll boot. */ VBDEBUG(("Partition is good.\n")); shpart->check_result = VBSD_LKP_CHECK_KERNEL_GOOD; if (key_block_valid) shpart->flags |= VBSD_LKP_FLAG_KEY_BLOCK_VALID; good_partition_key_block_valid = key_block_valid; /* * TODO: GPT partitions start at 1, but cgptlib starts them at * 0. Adjust here, until cgptlib is fixed. */ good_partition = gpt.current_kernel + 1; params->partition_number = gpt.current_kernel + 1; GetCurrentKernelUniqueGuid(&gpt, ¶ms->partition_guid); /* * TODO: GetCurrentKernelUniqueGuid() should take a destination * size, or the dest should be a struct, so we know it's big * enough. */ params->bootloader_address = preamble->bootloader_address; params->bootloader_size = preamble->bootloader_size; /* Update GPT to note this is the kernel we're trying */ GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_TRY); /* * If we're in recovery mode or we're about to boot a * dev-signed kernel, there's no rollback protection, so we can * stop at the first valid kernel. */ if (kBootRecovery == boot_mode || !key_block_valid) { VBDEBUG(("In recovery mode or dev-signed kernel\n")); break; } /* * Otherwise, we do care about the key index in the TPM. If * the good partition's key version is the same as the tpm, * then the TPM doesn't need updating; we can stop now. * Otherwise, we'll check all the other headers to see if they * contain a newer key. */ if (combined_version == shared->kernel_version_tpm) { VBDEBUG(("Same kernel version\n")); break; } /* Continue, so that we skip the error handling code below */ continue; bad_kernel: /* Handle errors parsing this kernel */ if (NULL != data_key) RSAPublicKeyFree(data_key); VBDEBUG(("Marking kernel as invalid.\n")); GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_BAD); } /* while(GptNextKernelEntry) */ bad_gpt: /* Free kernel buffer */ if (kbuf) VbExFree(kbuf); /* Write and free GPT data */ WriteAndFreeGptData(params->disk_handle, &gpt); /* Handle finding a good partition */ if (good_partition >= 0) { VBDEBUG(("Good_partition >= 0\n")); shcall->check_result = VBSD_LKC_CHECK_GOOD_PARTITION; shared->kernel_version_lowest = lowest_version; /* * Sanity check - only store a new TPM version if we found one. * If lowest_version is still at its initial value, we didn't * find one; for example, we're in developer mode and just * didn't look. */ if (lowest_version != LOWEST_TPM_VERSION && lowest_version > shared->kernel_version_tpm) shared->kernel_version_tpm = lowest_version; /* Success! */ retval = VBERROR_SUCCESS; } else if (found_partitions > 0) { shcall->check_result = VBSD_LKC_CHECK_INVALID_PARTITIONS; recovery = VBNV_RECOVERY_RW_INVALID_OS; retval = VBERROR_INVALID_KERNEL_FOUND; } else { shcall->check_result = VBSD_LKC_CHECK_NO_PARTITIONS; recovery = VBNV_RECOVERY_RW_NO_OS; retval = VBERROR_NO_KERNEL_FOUND; } LoadKernelExit: /* Store recovery request, if any */ VbNvSet(vnc, VBNV_RECOVERY_REQUEST, VBERROR_SUCCESS != retval ? recovery : VBNV_RECOVERY_NOT_REQUESTED); /* * If LoadKernel() was called with bad parameters, shcall may not be * initialized. */ if (shcall) shcall->return_code = (uint8_t)retval; /* Save whether the good partition's key block was fully verified */ if (good_partition_key_block_valid) shared->flags |= VBSD_KERNEL_KEY_VERIFIED; /* Store how much shared data we used, if any */ params->shared_data_size = shared->data_used; if (free_kernel_subkey) VbExFree(kernel_subkey); return retval; }