/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* * Implementation of RSA signature verification which uses a pre-processed key * for computation. The code extends Android's RSA verification code to support * multiple RSA key lengths and hash digest algorithms. */ #include "2sysincludes.h" #include "2common.h" #include "2rsa.h" #include "2sha.h" #include "vboot_test.h" /** * a[] -= mod */ static void subM(const struct vb2_public_key *key, uint32_t *a) { int64_t A = 0; uint32_t i; for (i = 0; i < key->arrsize; ++i) { A += (uint64_t)a[i] - key->n[i]; a[i] = (uint32_t)A; A >>= 32; } } /** * Return a[] >= mod */ int vb2_mont_ge(const struct vb2_public_key *key, uint32_t *a) { uint32_t i; for (i = key->arrsize; i;) { --i; if (a[i] < key->n[i]) return 0; if (a[i] > key->n[i]) return 1; } return 1; /* equal */ } /** * Montgomery c[] += a * b[] / R % mod */ static void montMulAdd(const struct vb2_public_key *key, uint32_t *c, const uint32_t a, const uint32_t *b) { uint64_t A = (uint64_t)a * b[0] + c[0]; uint32_t d0 = (uint32_t)A * key->n0inv; uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A; uint32_t i; for (i = 1; i < key->arrsize; ++i) { A = (A >> 32) + (uint64_t)a * b[i] + c[i]; B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A; c[i - 1] = (uint32_t)B; } A = (A >> 32) + (B >> 32); c[i - 1] = (uint32_t)A; if (A >> 32) { subM(key, c); } } /** * Montgomery c[] += 0 * b[] / R % mod */ static void montMulAdd0(const struct vb2_public_key *key, uint32_t *c, const uint32_t *b) { uint32_t d0 = c[0] * key->n0inv; uint64_t B = (uint64_t)d0 * key->n[0] + c[0]; uint32_t i; for (i = 1; i < key->arrsize; ++i) { B = (B >> 32) + (uint64_t)d0 * key->n[i] + c[i]; c[i - 1] = (uint32_t)B; } c[i - 1] = B >> 32; } /** * Montgomery c[] = a[] * b[] / R % mod */ static void montMul(const struct vb2_public_key *key, uint32_t *c, const uint32_t *a, const uint32_t *b) { uint32_t i; for (i = 0; i < key->arrsize; ++i) { c[i] = 0; } for (i = 0; i < key->arrsize; ++i) { montMulAdd(key, c, a[i], b); } } /* Montgomery c[] = a[] * 1 / R % key. */ static void montMul1(const struct vb2_public_key *key, uint32_t *c, const uint32_t *a) { int i; for (i = 0; i < key->arrsize; ++i) c[i] = 0; montMulAdd(key, c, 1, a); for (i = 1; i < key->arrsize; ++i) montMulAdd0(key, c, a); } /** * In-place public exponentiation. * * @param key Key to use in signing * @param inout Input and output big-endian byte array * @param workbuf32 Work buffer; caller must verify this is * (3 * key->arrsize) elements long. * @param exp RSA public exponent: either 65537 (F4) or 3 */ static void modpow(const struct vb2_public_key *key, uint8_t *inout, uint32_t *workbuf32, int exp) { uint32_t *a = workbuf32; uint32_t *aR = a + key->arrsize; uint32_t *aaR = aR + key->arrsize; uint32_t *aaa = aaR; /* Re-use location. */ int i; /* Convert from big endian byte array to little endian word array. */ for (i = 0; i < (int)key->arrsize; ++i) { uint32_t tmp = (inout[((key->arrsize - 1 - i) * 4) + 0] << 24) | (inout[((key->arrsize - 1 - i) * 4) + 1] << 16) | (inout[((key->arrsize - 1 - i) * 4) + 2] << 8) | (inout[((key->arrsize - 1 - i) * 4) + 3] << 0); a[i] = tmp; } montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */ if (exp == 3) { montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */ montMul(key, a, aaR, aR); /* a = aaR * aR / R mod M */ montMul1(key, aaa, a); /* aaa = a * 1 / R mod M */ } else { /* Exponent 65537 */ for (i = 0; i < 16; i+=2) { montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */ montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */ } montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */ } /* Make sure aaa < mod; aaa is at most 1x mod too large. */ if (vb2_mont_ge(key, aaa)) { subM(key, aaa); } /* Convert to bigendian byte array */ for (i = (int)key->arrsize - 1; i >= 0; --i) { uint32_t tmp = aaa[i]; *inout++ = (uint8_t)(tmp >> 24); *inout++ = (uint8_t)(tmp >> 16); *inout++ = (uint8_t)(tmp >> 8); *inout++ = (uint8_t)(tmp >> 0); } } static const uint8_t crypto_to_sig[] = { VB2_SIG_RSA1024, VB2_SIG_RSA1024, VB2_SIG_RSA1024, VB2_SIG_RSA2048, VB2_SIG_RSA2048, VB2_SIG_RSA2048, VB2_SIG_RSA4096, VB2_SIG_RSA4096, VB2_SIG_RSA4096, VB2_SIG_RSA8192, VB2_SIG_RSA8192, VB2_SIG_RSA8192, VB2_SIG_RSA2048_EXP3, VB2_SIG_RSA2048_EXP3, VB2_SIG_RSA2048_EXP3, VB2_SIG_RSA3072_EXP3, VB2_SIG_RSA3072_EXP3, VB2_SIG_RSA3072_EXP3, }; /** * Convert vb2_crypto_algorithm to vb2_signature_algorithm. * * @param algorithm Crypto algorithm (vb2_crypto_algorithm) * * @return The signature algorithm for that crypto algorithm, or * VB2_SIG_INVALID if the crypto algorithm or its corresponding signature * algorithm is invalid or not supported. */ enum vb2_signature_algorithm vb2_crypto_to_signature(uint32_t algorithm) { if (algorithm < ARRAY_SIZE(crypto_to_sig)) return crypto_to_sig[algorithm]; else return VB2_SIG_INVALID; } uint32_t vb2_rsa_sig_size(enum vb2_signature_algorithm sig_alg) { switch (sig_alg) { case VB2_SIG_RSA1024: return 1024 / 8; case VB2_SIG_RSA2048: case VB2_SIG_RSA2048_EXP3: return 2048 / 8; case VB2_SIG_RSA3072_EXP3: return 3072 / 8; case VB2_SIG_RSA4096: return 4096 / 8; case VB2_SIG_RSA8192: return 8192 / 8; default: return 0; } } /** * Return the exponent used by an RSA algorithm * * @param sig_alg Signature algorithm * @return The exponent to use (3 or 65537(F4)), or 0 if error. */ static uint32_t vb2_rsa_exponent(enum vb2_signature_algorithm sig_alg) { switch (sig_alg) { case VB2_SIG_RSA1024: case VB2_SIG_RSA2048: case VB2_SIG_RSA4096: case VB2_SIG_RSA8192: return 65537; case VB2_SIG_RSA2048_EXP3: case VB2_SIG_RSA3072_EXP3: return 3; default: return 0; } } uint32_t vb2_packed_key_size(enum vb2_signature_algorithm sig_alg) { uint32_t sig_size = vb2_rsa_sig_size(sig_alg); if (!sig_size) return 0; /* * Total size needed by a RSAPublicKey buffer is = * 2 * key_len bytes for the n and rr arrays * + sizeof len + sizeof n0inv. */ return 2 * sig_size + 2 * sizeof(uint32_t); } /* * PKCS 1.5 padding (from the RSA PKCS#1 v2.1 standard) * * Depending on the RSA key size and hash function, the padding is calculated * as follows: * * 0x00 || 0x01 || PS || 0x00 || T * * T: DER Encoded DigestInfo value which depends on the hash function used. * * SHA-1: (0x)30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H. * SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 || H. * SHA-512: (0x)30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05 00 04 40 || H. * * Length(T) = 35 octets for SHA-1 * Length(T) = 51 octets for SHA-256 * Length(T) = 83 octets for SHA-512 * * PS: octet string consisting of {Length(RSA Key) - Length(T) - 3} 0xFF */ static const uint8_t sha1_tail[] = { 0x00,0x30,0x21,0x30,0x09,0x06,0x05,0x2b, 0x0e,0x03,0x02,0x1a,0x05,0x00,0x04,0x14 }; static const uint8_t sha256_tail[] = { 0x00,0x30,0x31,0x30,0x0d,0x06,0x09,0x60, 0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x01, 0x05,0x00,0x04,0x20 }; static const uint8_t sha512_tail[] = { 0x00,0x30,0x51,0x30,0x0d,0x06,0x09,0x60, 0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x03, 0x05,0x00,0x04,0x40 }; /** * Check pkcs 1.5 padding bytes * * @param sig Signature to verify * @param key Key to take signature and hash algorithms from * @return VB2_SUCCESS, or non-zero if error. */ vb2_error_t vb2_check_padding(const uint8_t *sig, const struct vb2_public_key *key) { /* Determine padding to use depending on the signature type */ uint32_t sig_size = vb2_rsa_sig_size(key->sig_alg); uint32_t hash_size = vb2_digest_size(key->hash_alg); uint32_t pad_size = sig_size - hash_size; const uint8_t *tail; uint32_t tail_size; int result = 0; int i; if (!sig_size || !hash_size || hash_size > sig_size) return VB2_ERROR_RSA_PADDING_SIZE; switch (key->hash_alg) { case VB2_HASH_SHA1: tail = sha1_tail; tail_size = sizeof(sha1_tail); break; case VB2_HASH_SHA256: tail = sha256_tail; tail_size = sizeof(sha256_tail); break; case VB2_HASH_SHA512: tail = sha512_tail; tail_size = sizeof(sha512_tail); break; default: return VB2_ERROR_RSA_PADDING_ALGORITHM; } /* First 2 bytes are always 0x00 0x01 */ result |= *sig++ ^ 0x00; result |= *sig++ ^ 0x01; /* Then 0xff bytes until the tail */ for (i = 0; i < pad_size - tail_size - 2; i++) result |= *sig++ ^ 0xff; /* * Then the tail. Even though there are probably no timing issues * here, we use vb2_safe_memcmp() just to be on the safe side. */ result |= vb2_safe_memcmp(sig, tail, tail_size); return result ? VB2_ERROR_RSA_PADDING : VB2_SUCCESS; } vb2_error_t vb2_rsa_verify_digest(const struct vb2_public_key *key, uint8_t *sig, const uint8_t *digest, const struct vb2_workbuf *wb) { struct vb2_workbuf wblocal = *wb; uint32_t *workbuf32; uint32_t key_bytes; int sig_size; int pad_size; int exp; vb2_error_t rv; if (!key || !sig || !digest) return VB2_ERROR_RSA_VERIFY_PARAM; sig_size = vb2_rsa_sig_size(key->sig_alg); exp = vb2_rsa_exponent(key->sig_alg); if (!sig_size || !exp) { VB2_DEBUG("Invalid signature type!\n"); return VB2_ERROR_RSA_VERIFY_ALGORITHM; } /* Signature length should be same as key length */ key_bytes = key->arrsize * sizeof(uint32_t); if (key_bytes != sig_size) { VB2_DEBUG("Signature is of incorrect length!\n"); return VB2_ERROR_RSA_VERIFY_SIG_LEN; } workbuf32 = vb2_workbuf_alloc(&wblocal, 3 * key_bytes); if (!workbuf32) { VB2_DEBUG("ERROR - vboot2 work buffer too small!\n"); return VB2_ERROR_RSA_VERIFY_WORKBUF; } modpow(key, sig, workbuf32, exp); vb2_workbuf_free(&wblocal, 3 * key_bytes); /* * Check padding. Only fail immediately if the padding size is bad. * Otherwise, continue on to check the digest to reduce the risk of * timing based attacks. */ rv = vb2_check_padding(sig, key); if (rv == VB2_ERROR_RSA_PADDING_SIZE) return rv; /* * Check digest. Even though there are probably no timing issues here, * use vb2_safe_memcmp() just to be on the safe side. (That's also why * we don't return before this check if the padding check failed.) */ pad_size = sig_size - vb2_digest_size(key->hash_alg); if (vb2_safe_memcmp(sig + pad_size, digest, key_bytes - pad_size)) { VB2_DEBUG("Digest check failed!\n"); if (!rv) rv = VB2_ERROR_RSA_VERIFY_DIGEST; } return rv; }