/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * Utility for ChromeOS-specific GPT partitions, Please see corresponding .c * files for more details. */ #include #include #include #ifndef HAVE_MACOS #include #include #endif #include #include #include #include #include #include #include #include #include #include #include "cgpt.h" #include "cgptlib_internal.h" #include "crc32.h" #include "vboot_host.h" static const char kErrorTag[] = "ERROR"; static const char kWarningTag[] = "WARNING"; static void LogToStderr(const char *tag, const char *format, va_list ap) { fprintf(stderr, "%s: ", tag); vfprintf(stderr, format, ap); } void Error(const char *format, ...) { va_list ap; va_start(ap, format); LogToStderr(kErrorTag, format, ap); va_end(ap); } void Warning(const char *format, ...) { va_list ap; va_start(ap, format); LogToStderr(kWarningTag, format, ap); va_end(ap); } int check_int_parse(char option, const char *buf) { if (!*optarg || (buf && *buf)) { Error("invalid argument to -%c: \"%s\"\n", option, optarg); return 1; } return 0; } int check_int_limit(char option, int val, int low, int high) { if (val < low || val > high) { Error("value for -%c must be between %d and %d", option, low, high); return 1; } return 0; } int CheckValid(const struct drive *drive) { if ((drive->gpt.valid_headers != MASK_BOTH) || (drive->gpt.valid_entries != MASK_BOTH)) { Warning("One of the GPT headers/entries is invalid\n\n"); return CGPT_FAILED; } return CGPT_OK; } int Load(struct drive *drive, uint8_t **buf, const uint64_t sector, const uint64_t sector_bytes, const uint64_t sector_count) { int count; /* byte count to read */ int nread; require(buf); if (!sector_count || !sector_bytes) { Error("%s() failed at line %d: sector_count=%" PRIu64 ", sector_bytes=%" PRIu64 "\n", __FUNCTION__, __LINE__, sector_count, sector_bytes); return CGPT_FAILED; } /* Make sure that sector_bytes * sector_count doesn't roll over. */ if (sector_bytes > (UINT64_MAX / sector_count)) { Error("%s() failed at line %d: sector_count=%" PRIu64 ", sector_bytes=%" PRIu64 "\n", __FUNCTION__, __LINE__, sector_count, sector_bytes); return CGPT_FAILED; } count = sector_bytes * sector_count; *buf = malloc(count); require(*buf); if (-1 == lseek(drive->fd, sector * sector_bytes, SEEK_SET)) { Error("Can't seek: %s\n", strerror(errno)); goto error_free; } nread = read(drive->fd, *buf, count); if (nread < count) { Error("Can't read enough: %d, not %d\n", nread, count); goto error_free; } return CGPT_OK; error_free: free(*buf); *buf = 0; return CGPT_FAILED; } int ReadPMBR(struct drive *drive) { if (-1 == lseek(drive->fd, 0, SEEK_SET)) return CGPT_FAILED; int nread = read(drive->fd, &drive->pmbr, sizeof(struct pmbr)); if (nread != sizeof(struct pmbr)) return CGPT_FAILED; return CGPT_OK; } int WritePMBR(struct drive *drive) { if (-1 == lseek(drive->fd, 0, SEEK_SET)) return CGPT_FAILED; int nwrote = write(drive->fd, &drive->pmbr, sizeof(struct pmbr)); if (nwrote != sizeof(struct pmbr)) return CGPT_FAILED; return CGPT_OK; } int Save(struct drive *drive, const uint8_t *buf, const uint64_t sector, const uint64_t sector_bytes, const uint64_t sector_count) { int count; /* byte count to write */ int nwrote; require(buf); count = sector_bytes * sector_count; if (-1 == lseek(drive->fd, sector * sector_bytes, SEEK_SET)) return CGPT_FAILED; nwrote = write(drive->fd, buf, count); if (nwrote < count) return CGPT_FAILED; return CGPT_OK; } static int GptLoad(struct drive *drive, uint32_t sector_bytes) { drive->gpt.sector_bytes = sector_bytes; if (drive->size % drive->gpt.sector_bytes) { Error("Media size (%llu) is not a multiple of sector size(%d)\n", (long long unsigned int)drive->size, drive->gpt.sector_bytes); return -1; } drive->gpt.streaming_drive_sectors = drive->size / drive->gpt.sector_bytes; /* TODO(namnguyen): Remove this and totally trust gpt_drive_sectors. */ if (!(drive->gpt.flags & GPT_FLAG_EXTERNAL)) { drive->gpt.gpt_drive_sectors = drive->gpt.streaming_drive_sectors; } /* Else, we trust gpt.gpt_drive_sectors. */ // Read the data. if (CGPT_OK != Load(drive, &drive->gpt.primary_header, GPT_PMBR_SECTORS, drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) { Error("Cannot read primary GPT header\n"); return -1; } if (CGPT_OK != Load(drive, &drive->gpt.secondary_header, drive->gpt.gpt_drive_sectors - GPT_PMBR_SECTORS, drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) { Error("Cannot read secondary GPT header\n"); return -1; } GptHeader* primary_header = (GptHeader*)drive->gpt.primary_header; if (CheckHeader(primary_header, 0, drive->gpt.streaming_drive_sectors, drive->gpt.gpt_drive_sectors, drive->gpt.flags, drive->gpt.sector_bytes) == 0) { if (CGPT_OK != Load(drive, &drive->gpt.primary_entries, primary_header->entries_lba, drive->gpt.sector_bytes, CalculateEntriesSectors(primary_header, drive->gpt.sector_bytes))) { Error("Cannot read primary partition entry array\n"); return -1; } } else { Warning("Primary GPT header is %s\n", memcmp(primary_header->signature, GPT_HEADER_SIGNATURE_IGNORED, GPT_HEADER_SIGNATURE_SIZE) ? "invalid" : "being ignored"); drive->gpt.primary_entries = calloc(MAX_NUMBER_OF_ENTRIES, sizeof(GptEntry)); } GptHeader* secondary_header = (GptHeader*)drive->gpt.secondary_header; if (CheckHeader(secondary_header, 1, drive->gpt.streaming_drive_sectors, drive->gpt.gpt_drive_sectors, drive->gpt.flags, drive->gpt.sector_bytes) == 0) { if (CGPT_OK != Load(drive, &drive->gpt.secondary_entries, secondary_header->entries_lba, drive->gpt.sector_bytes, CalculateEntriesSectors(secondary_header, drive->gpt.sector_bytes))) { Error("Cannot read secondary partition entry array\n"); return -1; } } else { Warning("Secondary GPT header is %s\n", memcmp(primary_header->signature, GPT_HEADER_SIGNATURE_IGNORED, GPT_HEADER_SIGNATURE_SIZE) ? "invalid" : "being ignored"); drive->gpt.secondary_entries = calloc(MAX_NUMBER_OF_ENTRIES, sizeof(GptEntry)); } return 0; } static int GptSave(struct drive *drive) { int errors = 0; if (!(drive->gpt.ignored & MASK_PRIMARY)) { if (drive->gpt.modified & GPT_MODIFIED_HEADER1) { if (CGPT_OK != Save(drive, drive->gpt.primary_header, GPT_PMBR_SECTORS, drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) { errors++; Error("Cannot write primary header: %s\n", strerror(errno)); } } GptHeader* primary_header = (GptHeader*)drive->gpt.primary_header; if (drive->gpt.modified & GPT_MODIFIED_ENTRIES1) { if (CGPT_OK != Save(drive, drive->gpt.primary_entries, primary_header->entries_lba, drive->gpt.sector_bytes, CalculateEntriesSectors(primary_header, drive->gpt.sector_bytes))) { errors++; Error("Cannot write primary entries: %s\n", strerror(errno)); } } // Sync primary GPT before touching secondary so one is always valid. if (drive->gpt.modified & (GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1)) if (fsync(drive->fd) < 0 && errno == EIO) { errors++; Error("I/O error when trying to write primary GPT\n"); } } // Only start writing secondary GPT if primary was written correctly. if (!errors && !(drive->gpt.ignored & MASK_SECONDARY)) { if (drive->gpt.modified & GPT_MODIFIED_HEADER2) { if(CGPT_OK != Save(drive, drive->gpt.secondary_header, drive->gpt.gpt_drive_sectors - GPT_PMBR_SECTORS, drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) { errors++; Error("Cannot write secondary header: %s\n", strerror(errno)); } } GptHeader* secondary_header = (GptHeader*)drive->gpt.secondary_header; if (drive->gpt.modified & GPT_MODIFIED_ENTRIES2) { if (CGPT_OK != Save(drive, drive->gpt.secondary_entries, secondary_header->entries_lba, drive->gpt.sector_bytes, CalculateEntriesSectors(secondary_header, drive->gpt.sector_bytes))) { errors++; Error("Cannot write secondary entries: %s\n", strerror(errno)); } } } return errors ? -1 : 0; } /* * Query drive size and bytes per sector. Return zero on success. On error, * -1 is returned and errno is set appropriately. */ static int ObtainDriveSize(int fd, uint64_t* size, uint32_t* sector_bytes) { struct stat stat; if (fstat(fd, &stat) == -1) { return -1; } #ifndef HAVE_MACOS if ((stat.st_mode & S_IFMT) != S_IFREG) { if (ioctl(fd, BLKGETSIZE64, size) < 0) { return -1; } if (ioctl(fd, BLKSSZGET, sector_bytes) < 0) { return -1; } } else { *sector_bytes = 512; /* bytes */ *size = stat.st_size; } #else *sector_bytes = 512; /* bytes */ *size = stat.st_size; #endif return 0; } int DriveOpen(const char *drive_path, struct drive *drive, int mode, uint64_t drive_size) { uint32_t sector_bytes; require(drive_path); require(drive); // Clear struct for proper error handling. memset(drive, 0, sizeof(struct drive)); drive->fd = open(drive_path, mode | #ifndef HAVE_MACOS O_LARGEFILE | #endif O_NOFOLLOW); if (drive->fd == -1) { Error("Can't open %s: %s\n", drive_path, strerror(errno)); return CGPT_FAILED; } uint64_t gpt_drive_size; if (ObtainDriveSize(drive->fd, &gpt_drive_size, §or_bytes) != 0) { Error("Can't get drive size and bytes per sector for %s: %s\n", drive_path, strerror(errno)); goto error_close; } drive->gpt.gpt_drive_sectors = gpt_drive_size / sector_bytes; if (drive_size == 0) { drive->size = gpt_drive_size; drive->gpt.flags = 0; } else { drive->size = drive_size; drive->gpt.flags = GPT_FLAG_EXTERNAL; } if (GptLoad(drive, sector_bytes)) { goto error_close; } // We just load the data. Caller must validate it. return CGPT_OK; error_close: (void) DriveClose(drive, 0); return CGPT_FAILED; } int DriveClose(struct drive *drive, int update_as_needed) { int errors = 0; if (update_as_needed) { if (GptSave(drive)) { errors++; } } free(drive->gpt.primary_header); drive->gpt.primary_header = NULL; free(drive->gpt.primary_entries); drive->gpt.primary_entries = NULL; free(drive->gpt.secondary_header); drive->gpt.secondary_header = NULL; free(drive->gpt.secondary_entries); drive->gpt.secondary_entries = NULL; // Sync early! Only sync file descriptor here, and leave the whole system sync // outside cgpt because whole system sync would trigger tons of disk accesses // and timeout tests. fsync(drive->fd); close(drive->fd); return errors ? CGPT_FAILED : CGPT_OK; } /* GUID conversion functions. Accepted format: * * "C12A7328-F81F-11D2-BA4B-00A0C93EC93B" * * Returns CGPT_OK if parsing is successful; otherwise CGPT_FAILED. */ int StrToGuid(const char *str, Guid *guid) { uint32_t time_low; uint16_t time_mid; uint16_t time_high_and_version; unsigned int chunk[11]; if (11 != sscanf(str, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X", chunk+0, chunk+1, chunk+2, chunk+3, chunk+4, chunk+5, chunk+6, chunk+7, chunk+8, chunk+9, chunk+10)) { printf("FAILED\n"); return CGPT_FAILED; } time_low = chunk[0] & 0xffffffff; time_mid = chunk[1] & 0xffff; time_high_and_version = chunk[2] & 0xffff; guid->u.Uuid.time_low = htole32(time_low); guid->u.Uuid.time_mid = htole16(time_mid); guid->u.Uuid.time_high_and_version = htole16(time_high_and_version); guid->u.Uuid.clock_seq_high_and_reserved = chunk[3] & 0xff; guid->u.Uuid.clock_seq_low = chunk[4] & 0xff; guid->u.Uuid.node[0] = chunk[5] & 0xff; guid->u.Uuid.node[1] = chunk[6] & 0xff; guid->u.Uuid.node[2] = chunk[7] & 0xff; guid->u.Uuid.node[3] = chunk[8] & 0xff; guid->u.Uuid.node[4] = chunk[9] & 0xff; guid->u.Uuid.node[5] = chunk[10] & 0xff; return CGPT_OK; } void GuidToStr(const Guid *guid, char *str, unsigned int buflen) { require(buflen >= GUID_STRLEN); require(snprintf(str, buflen, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X", le32toh(guid->u.Uuid.time_low), le16toh(guid->u.Uuid.time_mid), le16toh(guid->u.Uuid.time_high_and_version), guid->u.Uuid.clock_seq_high_and_reserved, guid->u.Uuid.clock_seq_low, guid->u.Uuid.node[0], guid->u.Uuid.node[1], guid->u.Uuid.node[2], guid->u.Uuid.node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1); } /* Convert possibly unterminated UTF16 string to UTF8. * Caller must prepare enough space for UTF8, which could be up to * twice the byte length of UTF16 string plus the terminating '\0'. * See the following table for encoding lengths. * * Code point UTF16 UTF8 * 0x0000-0x007F 2 bytes 1 byte * 0x0080-0x07FF 2 bytes 2 bytes * 0x0800-0xFFFF 2 bytes 3 bytes * 0x10000-0x10FFFF 4 bytes 4 bytes * * This function uses a simple state meachine to convert UTF-16 char(s) to * a code point. Once a code point is parsed out, the state machine throws * out sequencial UTF-8 chars in one time. * * Return: CGPT_OK --- all character are converted successfully. * CGPT_FAILED --- convert error, i.e. output buffer is too short. */ int UTF16ToUTF8(const uint16_t *utf16, unsigned int maxinput, uint8_t *utf8, unsigned int maxoutput) { size_t s16idx, s8idx; uint32_t code_point = 0; int code_point_ready = 1; // code point is ready to output. int retval = CGPT_OK; if (!utf16 || !maxinput || !utf8 || !maxoutput) return CGPT_FAILED; maxoutput--; /* plan for termination now */ for (s16idx = s8idx = 0; s16idx < maxinput && utf16[s16idx] && maxoutput; s16idx++) { uint16_t codeunit = le16toh(utf16[s16idx]); if (code_point_ready) { if (codeunit >= 0xD800 && codeunit <= 0xDBFF) { /* high surrogate, need the low surrogate. */ code_point_ready = 0; code_point = (codeunit & 0x03FF) + 0x0040; } else { /* BMP char, output it. */ code_point = codeunit; } } else { /* expect the low surrogate */ if (codeunit >= 0xDC00 && codeunit <= 0xDFFF) { code_point = (code_point << 10) | (codeunit & 0x03FF); code_point_ready = 1; } else { /* the second code unit is NOT the low surrogate. Unexpected. */ code_point_ready = 0; retval = CGPT_FAILED; break; } } /* If UTF code point is ready, output it. */ if (code_point_ready) { require(code_point <= 0x10FFFF); if (code_point <= 0x7F && maxoutput >= 1) { maxoutput -= 1; utf8[s8idx++] = code_point & 0x7F; } else if (code_point <= 0x7FF && maxoutput >= 2) { maxoutput -= 2; utf8[s8idx++] = 0xC0 | (code_point >> 6); utf8[s8idx++] = 0x80 | (code_point & 0x3F); } else if (code_point <= 0xFFFF && maxoutput >= 3) { maxoutput -= 3; utf8[s8idx++] = 0xE0 | (code_point >> 12); utf8[s8idx++] = 0x80 | ((code_point >> 6) & 0x3F); utf8[s8idx++] = 0x80 | (code_point & 0x3F); } else if (code_point <= 0x10FFFF && maxoutput >= 4) { maxoutput -= 4; utf8[s8idx++] = 0xF0 | (code_point >> 18); utf8[s8idx++] = 0x80 | ((code_point >> 12) & 0x3F); utf8[s8idx++] = 0x80 | ((code_point >> 6) & 0x3F); utf8[s8idx++] = 0x80 | (code_point & 0x3F); } else { /* buffer underrun */ retval = CGPT_FAILED; break; } } } utf8[s8idx++] = 0; return retval; } /* Convert UTF8 string to UTF16. The UTF8 string must be null-terminated. * Caller must prepare enough space for UTF16, including a terminating 0x0000. * See the following table for encoding lengths. In any case, the caller * just needs to prepare the byte length of UTF8 plus the terminating 0x0000. * * Code point UTF16 UTF8 * 0x0000-0x007F 2 bytes 1 byte * 0x0080-0x07FF 2 bytes 2 bytes * 0x0800-0xFFFF 2 bytes 3 bytes * 0x10000-0x10FFFF 4 bytes 4 bytes * * This function converts UTF8 chars to a code point first. Then, convrts it * to UTF16 code unit(s). * * Return: CGPT_OK --- all character are converted successfully. * CGPT_FAILED --- convert error, i.e. output buffer is too short. */ int UTF8ToUTF16(const uint8_t *utf8, uint16_t *utf16, unsigned int maxoutput) { size_t s16idx, s8idx; uint32_t code_point = 0; unsigned int expected_units = 1; unsigned int decoded_units = 1; int retval = CGPT_OK; if (!utf8 || !utf16 || !maxoutput) return CGPT_FAILED; maxoutput--; /* plan for termination */ for (s8idx = s16idx = 0; utf8[s8idx] && maxoutput; s8idx++) { uint8_t code_unit; code_unit = utf8[s8idx]; if (expected_units != decoded_units) { /* Trailing bytes of multi-byte character */ if ((code_unit & 0xC0) == 0x80) { code_point = (code_point << 6) | (code_unit & 0x3F); ++decoded_units; } else { /* Unexpected code unit. */ retval = CGPT_FAILED; break; } } else { /* parsing a new code point. */ decoded_units = 1; if (code_unit <= 0x7F) { code_point = code_unit; expected_units = 1; } else if (code_unit <= 0xBF) { /* 0x80-0xBF must NOT be the heading byte unit of a new code point. */ retval = CGPT_FAILED; break; } else if (code_unit >= 0xC2 && code_unit <= 0xDF) { code_point = code_unit & 0x1F; expected_units = 2; } else if (code_unit >= 0xE0 && code_unit <= 0xEF) { code_point = code_unit & 0x0F; expected_units = 3; } else if (code_unit >= 0xF0 && code_unit <= 0xF4) { code_point = code_unit & 0x07; expected_units = 4; } else { /* illegal code unit: 0xC0-0xC1, 0xF5-0xFF */ retval = CGPT_FAILED; break; } } /* If no more unit is needed, output the UTF16 unit(s). */ if ((retval == CGPT_OK) && (expected_units == decoded_units)) { /* Check if the encoding is the shortest possible UTF-8 sequence. */ switch (expected_units) { case 2: if (code_point <= 0x7F) retval = CGPT_FAILED; break; case 3: if (code_point <= 0x7FF) retval = CGPT_FAILED; break; case 4: if (code_point <= 0xFFFF) retval = CGPT_FAILED; break; } if (retval == CGPT_FAILED) break; /* leave immediately */ if ((code_point <= 0xD7FF) || (code_point >= 0xE000 && code_point <= 0xFFFF)) { utf16[s16idx++] = code_point; maxoutput -= 1; } else if (code_point >= 0x10000 && code_point <= 0x10FFFF && maxoutput >= 2) { utf16[s16idx++] = 0xD800 | ((code_point >> 10) - 0x0040); utf16[s16idx++] = 0xDC00 | (code_point & 0x03FF); maxoutput -= 2; } else { /* Three possibilities fall into here. Both are failure cases. * a. surrogate pair (non-BMP characters; 0xD800~0xDFFF) * b. invalid code point > 0x10FFFF * c. buffer underrun */ retval = CGPT_FAILED; break; } } } /* A null-terminator shows up before the UTF8 sequence ends. */ if (expected_units != decoded_units) { retval = CGPT_FAILED; } utf16[s16idx++] = 0; return retval; } /* global types to compare against */ const Guid guid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; const Guid guid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; const Guid guid_chromeos_rootfs = GPT_ENT_TYPE_CHROMEOS_ROOTFS; const Guid guid_linux_data = GPT_ENT_TYPE_LINUX_DATA; const Guid guid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; const Guid guid_efi = GPT_ENT_TYPE_EFI; const Guid guid_unused = GPT_ENT_TYPE_UNUSED; const static struct { const Guid *type; const char *name; const char *description; } supported_types[] = { {&guid_chromeos_firmware, "firmware", "ChromeOS firmware"}, {&guid_chromeos_kernel, "kernel", "ChromeOS kernel"}, {&guid_chromeos_rootfs, "rootfs", "ChromeOS rootfs"}, {&guid_linux_data, "data", "Linux data"}, {&guid_chromeos_reserved, "reserved", "ChromeOS reserved"}, {&guid_efi, "efi", "EFI System Partition"}, {&guid_unused, "unused", "Unused (nonexistent) partition"}, }; /* Resolves human-readable GPT type. * Returns CGPT_OK if found. * Returns CGPT_FAILED if no known type found. */ int ResolveType(const Guid *type, char *buf) { int i; for (i = 0; i < ARRAY_COUNT(supported_types); ++i) { if (!memcmp(type, supported_types[i].type, sizeof(Guid))) { strcpy(buf, supported_types[i].description); return CGPT_OK; } } return CGPT_FAILED; } int SupportedType(const char *name, Guid *type) { int i; for (i = 0; i < ARRAY_COUNT(supported_types); ++i) { if (!strcmp(name, supported_types[i].name)) { memcpy(type, supported_types[i].type, sizeof(Guid)); return CGPT_OK; } } return CGPT_FAILED; } void PrintTypes(void) { int i; printf("The partition type may also be given as one of these aliases:\n\n"); for (i = 0; i < ARRAY_COUNT(supported_types); ++i) { printf(" %-10s %s\n", supported_types[i].name, supported_types[i].description); } printf("\n"); } static GptHeader* GetGptHeader(const GptData *gpt) { if (gpt->valid_headers & MASK_PRIMARY) return (GptHeader*)gpt->primary_header; else if (gpt->valid_headers & MASK_SECONDARY) return (GptHeader*)gpt->secondary_header; else return 0; } uint32_t GetNumberOfEntries(const struct drive *drive) { GptHeader *header = GetGptHeader(&drive->gpt); if (!header) return 0; return header->number_of_entries; } GptEntry *GetEntry(GptData *gpt, int secondary, uint32_t entry_index) { GptHeader *header = GetGptHeader(gpt); uint8_t *entries; uint32_t stride = header->size_of_entry; require(stride); require(entry_index < header->number_of_entries); if (secondary == PRIMARY) { entries = gpt->primary_entries; } else if (secondary == SECONDARY) { entries = gpt->secondary_entries; } else { /* ANY_VALID */ require(secondary == ANY_VALID); if (gpt->valid_entries & MASK_PRIMARY) { entries = gpt->primary_entries; } else { require(gpt->valid_entries & MASK_SECONDARY); entries = gpt->secondary_entries; } } return (GptEntry*)(&entries[stride * entry_index]); } void SetRequired(struct drive *drive, int secondary, uint32_t entry_index, int required) { require(required >= 0 && required <= CGPT_ATTRIBUTE_MAX_REQUIRED); GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, entry_index); SetEntryRequired(entry, required); } int GetRequired(struct drive *drive, int secondary, uint32_t entry_index) { GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, entry_index); return GetEntryRequired(entry); } void SetLegacyBoot(struct drive *drive, int secondary, uint32_t entry_index, int legacy_boot) { require(legacy_boot >= 0 && legacy_boot <= CGPT_ATTRIBUTE_MAX_LEGACY_BOOT); GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, entry_index); SetEntryLegacyBoot(entry, legacy_boot); } int GetLegacyBoot(struct drive *drive, int secondary, uint32_t entry_index) { GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, entry_index); return GetEntryLegacyBoot(entry); } void SetPriority(struct drive *drive, int secondary, uint32_t entry_index, int priority) { require(priority >= 0 && priority <= CGPT_ATTRIBUTE_MAX_PRIORITY); GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, entry_index); SetEntryPriority(entry, priority); } int GetPriority(struct drive *drive, int secondary, uint32_t entry_index) { GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, entry_index); return GetEntryPriority(entry); } void SetTries(struct drive *drive, int secondary, uint32_t entry_index, int tries) { require(tries >= 0 && tries <= CGPT_ATTRIBUTE_MAX_TRIES); GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, entry_index); SetEntryTries(entry, tries); } int GetTries(struct drive *drive, int secondary, uint32_t entry_index) { GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, entry_index); return GetEntryTries(entry); } void SetSuccessful(struct drive *drive, int secondary, uint32_t entry_index, int success) { require(success >= 0 && success <= CGPT_ATTRIBUTE_MAX_SUCCESSFUL); GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, entry_index); SetEntrySuccessful(entry, success); } int GetSuccessful(struct drive *drive, int secondary, uint32_t entry_index) { GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, entry_index); return GetEntrySuccessful(entry); } void SetRaw(struct drive *drive, int secondary, uint32_t entry_index, uint32_t raw) { GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, entry_index); entry->attrs.fields.gpt_att = (uint16_t)raw; } void UpdateAllEntries(struct drive *drive) { RepairEntries(&drive->gpt, MASK_PRIMARY); RepairHeader(&drive->gpt, MASK_PRIMARY); drive->gpt.modified |= (GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1 | GPT_MODIFIED_HEADER2 | GPT_MODIFIED_ENTRIES2); UpdateCrc(&drive->gpt); } int IsUnused(struct drive *drive, int secondary, uint32_t index) { GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, index); return GuidIsZero(&entry->type); } int IsKernel(struct drive *drive, int secondary, uint32_t index) { GptEntry *entry; entry = GetEntry(&drive->gpt, secondary, index); return GuidEqual(&entry->type, &guid_chromeos_kernel); } #define TOSTRING(A) #A const char *GptError(int errnum) { const char *error_string[] = { TOSTRING(GPT_SUCCESS), TOSTRING(GPT_ERROR_NO_VALID_KERNEL), TOSTRING(GPT_ERROR_INVALID_HEADERS), TOSTRING(GPT_ERROR_INVALID_ENTRIES), TOSTRING(GPT_ERROR_INVALID_SECTOR_SIZE), TOSTRING(GPT_ERROR_INVALID_SECTOR_NUMBER), TOSTRING(GPT_ERROR_INVALID_UPDATE_TYPE) }; if (errnum < 0 || errnum >= ARRAY_COUNT(error_string)) return ""; return error_string[errnum]; } /* Update CRC value if necessary. */ void UpdateCrc(GptData *gpt) { GptHeader *primary_header, *secondary_header; primary_header = (GptHeader*)gpt->primary_header; secondary_header = (GptHeader*)gpt->secondary_header; if (gpt->modified & GPT_MODIFIED_ENTRIES1 && memcmp(primary_header, GPT_HEADER_SIGNATURE2, GPT_HEADER_SIGNATURE_SIZE)) { size_t entries_size = primary_header->size_of_entry * primary_header->number_of_entries; primary_header->entries_crc32 = Crc32(gpt->primary_entries, entries_size); } if (gpt->modified & GPT_MODIFIED_ENTRIES2) { size_t entries_size = secondary_header->size_of_entry * secondary_header->number_of_entries; secondary_header->entries_crc32 = Crc32(gpt->secondary_entries, entries_size); } if (gpt->modified & GPT_MODIFIED_HEADER1) { primary_header->header_crc32 = 0; primary_header->header_crc32 = Crc32( (const uint8_t *)primary_header, sizeof(GptHeader)); } if (gpt->modified & GPT_MODIFIED_HEADER2) { secondary_header->header_crc32 = 0; secondary_header->header_crc32 = Crc32( (const uint8_t *)secondary_header, sizeof(GptHeader)); } } /* Two headers are NOT bitwise identical. For example, my_lba pointers to header * itself so that my_lba in primary and secondary is definitely different. * Only the following fields should be identical. * * first_usable_lba * last_usable_lba * number_of_entries * size_of_entry * disk_uuid * * If any of above field are not matched, overwrite secondary with primary since * we always trust primary. * If any one of header is invalid, copy from another. */ int IsSynonymous(const GptHeader* a, const GptHeader* b) { if ((a->first_usable_lba == b->first_usable_lba) && (a->last_usable_lba == b->last_usable_lba) && (a->number_of_entries == b->number_of_entries) && (a->size_of_entry == b->size_of_entry) && (!memcmp(&a->disk_uuid, &b->disk_uuid, sizeof(Guid)))) return 1; return 0; } /* Primary entries and secondary entries should be bitwise identical. * If two entries tables are valid, compare them. If not the same, * overwrites secondary with primary (primary always has higher priority), * and marks secondary as modified. * If only one is valid, overwrites invalid one. * If all are invalid, does nothing. * This function returns bit masks for GptData.modified field. * Note that CRC is NOT re-computed in this function. */ uint8_t RepairEntries(GptData *gpt, const uint32_t valid_entries) { /* If we have an alternate GPT header signature, don't overwrite * the secondary GPT with the primary one as that might wipe the * partition table. Also don't overwrite the primary one with the * secondary one as that will stop Windows from booting. */ GptHeader* h = (GptHeader*)(gpt->primary_header); if (!memcmp(h->signature, GPT_HEADER_SIGNATURE2, GPT_HEADER_SIGNATURE_SIZE)) return 0; if (gpt->valid_headers & MASK_PRIMARY) { h = (GptHeader*)gpt->primary_header; } else if (gpt->valid_headers & MASK_SECONDARY) { h = (GptHeader*)gpt->secondary_header; } else { /* We cannot trust any header, don't update entries. */ return 0; } size_t entries_size = h->number_of_entries * h->size_of_entry; if (valid_entries == MASK_BOTH) { if (memcmp(gpt->primary_entries, gpt->secondary_entries, entries_size)) { memcpy(gpt->secondary_entries, gpt->primary_entries, entries_size); return GPT_MODIFIED_ENTRIES2; } } else if (valid_entries == MASK_PRIMARY) { memcpy(gpt->secondary_entries, gpt->primary_entries, entries_size); return GPT_MODIFIED_ENTRIES2; } else if (valid_entries == MASK_SECONDARY) { memcpy(gpt->primary_entries, gpt->secondary_entries, entries_size); return GPT_MODIFIED_ENTRIES1; } return 0; } /* The above five fields are shared between primary and secondary headers. * We can recover one header from another through copying those fields. */ static void CopySynonymousParts(GptHeader* target, const GptHeader* source) { target->first_usable_lba = source->first_usable_lba; target->last_usable_lba = source->last_usable_lba; target->number_of_entries = source->number_of_entries; target->size_of_entry = source->size_of_entry; memcpy(&target->disk_uuid, &source->disk_uuid, sizeof(Guid)); } /* This function repairs primary and secondary headers if possible. * If both headers are valid (CRC32 is correct) but * a) indicate inconsistent usable LBA ranges, * b) inconsistent partition entry size and number, * c) inconsistent disk_uuid, * we will use the primary header to overwrite secondary header. * If primary is invalid (CRC32 is wrong), then we repair it from secondary. * If secondary is invalid (CRC32 is wrong), then we repair it from primary. * This function returns the bitmasks for modified header. * Note that CRC value is NOT re-computed in this function. UpdateCrc() will * do it later. */ uint8_t RepairHeader(GptData *gpt, const uint32_t valid_headers) { GptHeader *primary_header, *secondary_header; primary_header = (GptHeader*)gpt->primary_header; secondary_header = (GptHeader*)gpt->secondary_header; if (valid_headers == MASK_BOTH) { if (!IsSynonymous(primary_header, secondary_header)) { CopySynonymousParts(secondary_header, primary_header); return GPT_MODIFIED_HEADER2; } } else if (valid_headers == MASK_PRIMARY) { memcpy(secondary_header, primary_header, sizeof(GptHeader)); secondary_header->my_lba = gpt->gpt_drive_sectors - 1; /* the last sector */ secondary_header->alternate_lba = primary_header->my_lba; secondary_header->entries_lba = secondary_header->my_lba - CalculateEntriesSectors(primary_header, gpt->sector_bytes); return GPT_MODIFIED_HEADER2; } else if (valid_headers == MASK_SECONDARY) { memcpy(primary_header, secondary_header, sizeof(GptHeader)); primary_header->my_lba = GPT_PMBR_SECTORS; /* the second sector on drive */ primary_header->alternate_lba = secondary_header->my_lba; /* TODO (namnguyen): Preserve (header, entries) padding space. */ primary_header->entries_lba = primary_header->my_lba + GPT_HEADER_SECTORS; return GPT_MODIFIED_HEADER1; } return 0; } int CgptGetNumNonEmptyPartitions(CgptShowParams *params) { struct drive drive; int gpt_retval; int retval; if (params == NULL) return CGPT_FAILED; if (CGPT_OK != DriveOpen(params->drive_name, &drive, O_RDONLY, params->drive_size)) return CGPT_FAILED; if (GPT_SUCCESS != (gpt_retval = GptSanityCheck(&drive.gpt))) { Error("GptSanityCheck() returned %d: %s\n", gpt_retval, GptError(gpt_retval)); retval = CGPT_FAILED; goto done; } params->num_partitions = 0; int numEntries = GetNumberOfEntries(&drive); int i; for(i = 0; i < numEntries; i++) { GptEntry *entry = GetEntry(&drive.gpt, ANY_VALID, i); if (GuidIsZero(&entry->type)) continue; params->num_partitions++; } retval = CGPT_OK; done: DriveClose(&drive, 0); return retval; } int GuidEqual(const Guid *guid1, const Guid *guid2) { return (0 == memcmp(guid1, guid2, sizeof(Guid))); } int GuidIsZero(const Guid *gp) { return GuidEqual(gp, &guid_unused); } void PMBRToStr(struct pmbr *pmbr, char *str, unsigned int buflen) { char buf[GUID_STRLEN]; if (GuidIsZero(&pmbr->boot_guid)) { require(snprintf(str, buflen, "PMBR") < buflen); } else { GuidToStr(&pmbr->boot_guid, buf, sizeof(buf)); require(snprintf(str, buflen, "PMBR (Boot GUID: %s)", buf) < buflen); } } /* * This is here because some CGPT functionality is provided in libvboot_host.a * for other host utilities. GenerateGuid() is implemented (in cgpt.c which is * *not* linked into libvboot_host.a) by calling into libuuid. We don't want to * mandate libuuid as a dependency for every utilitity that wants to link * libvboot_host.a, since they usually don't use the functionality that needs * to generate new UUIDs anyway (just other functionality implemented in the * same files). */ #ifndef HAVE_MACOS __attribute__((weak)) int GenerateGuid(Guid *newguid) { return CGPT_FAILED; }; #endif