/* Copyright 2016 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef __CROS_EC_NVMEM_UTILS_H #define __CROS_EC_NVMEM_UTILS_H #include "crypto_api.h" /* * In order to provide maximum robustness for NvMem operations, the NvMem space * is divided into two equal sized partitions. A partition contains a tag * and a buffer for each NvMem user. * * NvMem Partiion * ------------------------------------------------------------------------ * |36 byte tag | User Buffer 0 | User Buffer 1 | .... | User Buffer N-1 | * ------------------------------------------------------------------------ * * Physical Block Tag details * ------------------------------------------------------------------------ * | sha | padding | version | generation | reserved | * ------------------------------------------------------------------------- * sha -> 16 bytes of sha1 digest * padding -> 16 bytes for future extensions * version -> nvmem layout version, currently at 0 * generation -> 1 byte generation number (0 - 0xfe) * reserved -> 2 bytes * * At initialization time, each partition is scanned to see if it has a good sha * entry. One of the two partitions being valid is a supported condition. If * neither partiion is valid a new partition is created with generation set to * zero. * * Note that the NvMem partitions can be placed anywhere in flash space, but * must be equal in total size. A table is used by the NvMem module to get the * correct base address for each partition. * * A generation number is used to distinguish between two valid partitions with * the newsest generation number (in a circular sense) marking the correct * partition to use. The parition number 0/1 is tracked via a static * variable. When the NvMem contents need to be updated, the flash erase/write * of the updated partition will use the inactive partition space in NvMem. This * way if there is a critical failure (i.e. loss of power) during the erase or * write operation, then the contents of the active partition prior the most * recent writes will still be preserved. * * The following CONFIG_FLASH_NVMEM_ defines are required for this module: * CONFIG_FLASH_NVMEM -> enable/disable the module * CONFIG_FLASH_NVMEM_OFFSET_(A|B) -> offset to start of each partition * CONFIG_FLASH_NVMEM_BASE_(A|B) -> address of start of each partition * * The board.h file must define a macro or enum named NVMEM_NUM_USERS. * The board.c file must implement: * nvmem_user_sizes[] -> array of user buffer lengths * The chip must provide * app_compute_hash() -> function used to compute 16 byte sha (or equivalent) * * Note that total length of user buffers must satisfy the following: * sum(user sizes) <= (NVMEM_PARTITION_SIZE) - sizeof(struct nvmem_tag) */ /* NvMem user buffer length table */ extern uint32_t nvmem_user_sizes[NVMEM_NUM_USERS]; #define NVMEM_NUM_PARTITIONS 2 #define NVMEM_SHA_SIZE CIPHER_SALT_SIZE #define NVMEM_GENERATION_BITS 8 #define NVMEM_GENERATION_MASK ((1 << NVMEM_GENERATION_BITS) - 1) #define NVMEM_PADDING_SIZE 16 #define NVMEM_LAYOUT_VERSION 0 /* Struct for NV block tag */ struct nvmem_tag { uint8_t sha[NVMEM_SHA_SIZE]; uint8_t padding[NVMEM_PADDING_SIZE]; uint8_t layout_version; uint8_t generation; uint8_t reserved[2]; }; /* Structure MvMem Partition */ struct nvmem_partition { struct nvmem_tag tag; uint8_t buffer[NVMEM_PARTITION_SIZE - sizeof(struct nvmem_tag)]; }; /** * Initialize NVMem translation table and state variables * * @return EC_SUCCESS if a valid translation table is constructed, else * error code. */ int nvmem_init(void); /** * Get Nvmem internal error state * * @return nvmem_error_state variable. */ int nvmem_get_error_state(void); /** * Compare 'size' amount of bytes in NvMem * * @param offset: Offset (in bytes) into NVmem logical space * @param size: Number of bytes to compare * @param data: Pointer to data to be compared with * @param user: Data section within NvMem space * @return 0 if the data is same, non-zero if data is different */ int nvmem_is_different(uint32_t offset, uint32_t size, void *data, enum nvmem_users user); /** * Read 'size' amount of bytes from NvMem * * @param startOffset: Offset (in bytes) into NVmem logical space * @param size: Number of bytes to read * @param data: Pointer to destination buffer * @param user: Data section within NvMem space * @return EC_ERROR_OVERFLOW (non-zero) if the read operation would exceed the * buffer length of the given user, otherwise EC_SUCCESS. */ int nvmem_read(uint32_t startOffset, uint32_t size, void *data, enum nvmem_users user); /** * Write 'size' amount of bytes to NvMem * * Calling this function will wait for the mutex, then lock it until * nvmem_commit() is invoked. * * @param startOffset: Offset (in bytes) into NVmem logical space * @param size: Number of bytes to write * @param data: Pointer to source buffer * @param user: Data section within NvMem space * @return EC_ERROR_OVERFLOW if write exceeds buffer length * EC_ERROR_TIMEOUT if nvmem cache buffer is not available * EC_SUCCESS if no errors. */ int nvmem_write(uint32_t startOffset, uint32_t size, void *data, enum nvmem_users user); /** * Move 'size' amount of bytes within NvMem * * Calling this function will wait for the mutex, then lock it until * nvmem_commit() is invoked. * * @param src_offset: source offset within NvMem logical space * @param dest_offset: destination offset within NvMem logical space * @param size: Number of bytes to move * @param user: Data section within NvMem space * @return EC_ERROR_OVERFLOW if write exceeds buffer length * EC_ERROR_TIMEOUT if nvmem cache buffer is not available * EC_SUCCESS if no errors. */ int nvmem_move(uint32_t src_offset, uint32_t dest_offset, uint32_t size, enum nvmem_users user); /** * Commit all previous NvMem writes to flash * * @return EC_SUCCESS if flash erase/operations are successful. * EC_ERROR_OVERFLOW in case the mutex is not locked when this * function is called * EC_ERROR_INVAL if task trying to commit is not the one * holding the mutex * EC_ERROR_UNKNOWN in other error cases */ int nvmem_commit(void); /* * Clear out a user's data across all partitions. * * @param user: The user who's data should be cleared. * @return EC_SUCCESS if the user's data across all partitions was * cleared. Error othrwise. */ int nvmem_erase_user_data(enum nvmem_users user); /* * Temporarily stopping NVMEM commits could be beneficial. One use case is * when TPM operations need to be sped up. * * Calling this function will wait for the mutex, then lock it until * nvmem_commit() is invoked. * * Both below functions should be called from the same task. */ void nvmem_disable_commits(void); /* * Only the task holding the mutex is allowed to enable commits. * * @return error if this task does not hold the lock or commit * fails, EC_SUCCESS otherwise. */ int nvmem_enable_commits(void); #endif /* __CROS_EC_NVMEM_UTILS_H */