/* Copyright 2018 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "atomic.h" #include "board.h" #include "common.h" #include "console.h" #include "gpio.h" #include "hwtimer.h" #include "hooks.h" #include "i2c.h" #include "registers.h" #include "spi.h" #include "task.h" #include "timer.h" #include "touchpad.h" #include "touchpad_st.h" #include "update_fw.h" #include "usb_hid_touchpad.h" #include "util.h" /* Console output macros */ #define CC_TOUCHPAD CC_USB #define CPUTS(outstr) cputs(CC_TOUCHPAD, outstr) #define CPRINTF(format, args...) cprintf(CC_TOUCHPAD, format, ## args) #define CPRINTS(format, args...) cprints(CC_TOUCHPAD, format, ## args) #define SPI (&(spi_devices[SPI_ST_TP_DEVICE_ID])) BUILD_ASSERT(sizeof(struct st_tp_event_t) == 8); static struct st_tp_system_info_t system_info; static int st_tp_read_all_events(void); static int st_tp_send_ack(void); static int st_tp_start_scan(void); static int st_tp_stop_scan(void); static int st_tp_read_host_buffer_header(void); /* * Current system state, meaning of each bit is defined below. */ static int system_state; #define SYSTEM_STATE_DEBUG_MODE (1 << 0) #define SYSTEM_STATE_ENABLE_HEAT_MAP (1 << 1) #define SYSTEM_STATE_ENABLE_DOME_SWITCH (1 << 2) #define SYSTEM_STATE_ACTIVE_MODE (1 << 3) #define SYSTEM_STATE_DOME_SWITCH_LEVEL (1 << 4) /* * Timestamp of last interrupt (32 bits are enough as we divide the value by 100 * and then put it in a 16-bit field). */ static uint32_t irq_ts; static struct { #if ST_TP_DUMMY_BYTE == 1 uint8_t dummy; #endif union { uint8_t bytes[512]; struct st_tp_host_buffer_header_t buffer_header; struct st_tp_host_buffer_heat_map_t heat_map; struct st_tp_host_data_header_t data_header; struct st_tp_event_t events[32]; } /* anonymous */; } __packed rx_buf; static void set_bits(int *lvalue, int rvalue, int mask) { *lvalue &= ~mask; *lvalue |= rvalue & mask; } /* * Parse a finger report from ST event and save it to (report)->finger. * * @param report: pointer to a USB HID touchpad report. * @param event: a pointer event from ST. * @param i: array index for next finger. * * @return array index of next finger (i.e. (i + 1) if a finger is added). */ static int st_tp_parse_finger(struct usb_hid_touchpad_report *report, struct st_tp_event_t *event, int i) { /* We cannot report more fingers */ if (i >= ARRAY_SIZE(report->finger)) return i; /* This is not a finger */ if (event->finger.touch_type == ST_TP_TOUCH_TYPE_INVALID) return i; switch (event->evt_id) { case ST_TP_EVENT_ID_ENTER_POINTER: case ST_TP_EVENT_ID_MOTION_POINTER: report->finger[i].tip = 1; report->finger[i].inrange = 1; report->finger[i].id = event->finger.touch_id; report->finger[i].pressure = event->finger.z; report->finger[i].width = (event->finger.minor | (event->minor_high << 4)); report->finger[i].height = (event->finger.major | (event->major_high << 4)); report->finger[i].x = (CONFIG_USB_HID_TOUCHPAD_LOGICAL_MAX_X - event->finger.x); report->finger[i].y = (CONFIG_USB_HID_TOUCHPAD_LOGICAL_MAX_Y - event->finger.y); break; case ST_TP_EVENT_ID_LEAVE_POINTER: report->finger[i].id = event->finger.touch_id; break; } return i + 1; } static int st_tp_write_hid_report(void) { int ret, i, num_finger; struct usb_hid_touchpad_report report; struct st_tp_event_t *event; ret = st_tp_read_host_buffer_header(); if (ret) return ret; if (rx_buf.buffer_header.flags & ST_TP_BUFFER_HEADER_DOMESWITCH_CHG) { /* * dome_switch_level from device is inverted. * That is, 0 => pressed, 1 => released. */ set_bits(&system_state, (rx_buf.buffer_header.dome_switch_level ? 0 : SYSTEM_STATE_DOME_SWITCH_LEVEL), SYSTEM_STATE_DOME_SWITCH_LEVEL); } ret = st_tp_read_all_events(); if (ret) return ret; memset(&report, 0, sizeof(report)); report.id = 0x1; num_finger = 0; for (i = 0; i < ARRAY_SIZE(rx_buf.events); i++) { event = &rx_buf.events[i]; /* * this is not a valid event, and assume all following * events are invalid too */ if (event->magic != 0x3) break; switch (event->evt_id) { case ST_TP_EVENT_ID_ENTER_POINTER: case ST_TP_EVENT_ID_MOTION_POINTER: case ST_TP_EVENT_ID_LEAVE_POINTER: num_finger = st_tp_parse_finger(&report, event, num_finger); break; default: break; } } report.button = !!(system_state & SYSTEM_STATE_DOME_SWITCH_LEVEL); report.count = num_finger; report.timestamp = irq_ts / USB_HID_TOUCHPAD_TIMESTAMP_UNIT; set_touchpad_report(&report); return ret; } static int st_tp_read_report(void) { if (system_state & SYSTEM_STATE_ENABLE_HEAT_MAP) { /* TODO(stimim): implement this */ } else { st_tp_write_hid_report(); } return st_tp_send_ack(); } static int st_tp_read_host_buffer_header(void) { const uint8_t tx_buf[] = { ST_TP_CMD_READ_SPI_HOST_BUFFER, 0x00, 0x00 }; int rx_len = ST_TP_DUMMY_BYTE + sizeof(rx_buf.buffer_header); return spi_transaction(SPI, tx_buf, sizeof(tx_buf), (uint8_t *)&rx_buf, rx_len); } static int st_tp_send_ack(void) { uint8_t tx_buf[] = { ST_TP_CMD_SPI_HOST_BUFFER_ACK }; return spi_transaction(SPI, tx_buf, sizeof(tx_buf), NULL, 0); } static int st_tp_update_system_state(int new_state, int mask) { int ret = EC_SUCCESS; /* copy reserved bits */ set_bits(&new_state, system_state, ~mask); mask = SYSTEM_STATE_DEBUG_MODE; if ((new_state & mask) != (system_state & mask)) set_bits(&system_state, new_state, mask); mask = SYSTEM_STATE_ENABLE_HEAT_MAP | SYSTEM_STATE_ENABLE_DOME_SWITCH; if ((new_state & mask) != (system_state & mask)) { uint8_t tx_buf[] = { ST_TP_CMD_WRITE_FEATURE_SELECT, 0x05, 0 }; if (new_state & SYSTEM_STATE_ENABLE_HEAT_MAP) tx_buf[2] |= 1 << 0; if (new_state & SYSTEM_STATE_ENABLE_DOME_SWITCH) tx_buf[2] |= 1 << 1; ret = spi_transaction(SPI, tx_buf, sizeof(tx_buf), NULL, 0); if (ret) return ret; set_bits(&system_state, new_state, mask); } mask = SYSTEM_STATE_ACTIVE_MODE; if ((new_state & mask) != (system_state & mask)) { uint8_t tx_buf[] = { ST_TP_CMD_WRITE_SCAN_MODE_SELECT, ST_TP_SCAN_MODE_ACTIVE, !!(new_state & SYSTEM_STATE_ACTIVE_MODE), }; CPRINTS("Enable Multi-Touch: %d", tx_buf[2]); ret = spi_transaction(SPI, tx_buf, sizeof(tx_buf), NULL, 0); if (ret) return ret; set_bits(&system_state, new_state, mask); } return ret; } static void st_tp_enable_interrupt(int enable) { uint8_t tx_buf[] = { ST_TP_CMD_WRITE_SYSTEM_COMMAND, 0x01, enable ? 1 : 0}; if (enable) gpio_enable_interrupt(GPIO_TOUCHPAD_INT); spi_transaction(SPI, tx_buf, sizeof(tx_buf), NULL, 0); if (!enable) gpio_disable_interrupt(GPIO_TOUCHPAD_INT); } static int st_tp_start_scan(void) { int new_state = (SYSTEM_STATE_ACTIVE_MODE | SYSTEM_STATE_ENABLE_DOME_SWITCH); int mask = new_state; int ret; ret = st_tp_update_system_state(new_state, mask); if (ret) return ret; st_tp_send_ack(); st_tp_enable_interrupt(1); return ret; } static int st_tp_read_host_data_memory(uint16_t addr, void *rx_buf, int len) { uint8_t tx_buf[] = { ST_TP_CMD_READ_HOST_DATA_MEMORY, addr >> 8, addr & 0xFF }; return spi_transaction(SPI, tx_buf, sizeof(tx_buf), rx_buf, len); } static int st_tp_stop_scan(void) { int new_state = 0; int mask = SYSTEM_STATE_ACTIVE_MODE; int ret; ret = st_tp_update_system_state(new_state, mask); st_tp_enable_interrupt(0); return ret; } static int st_tp_load_host_data(uint8_t mem_id) { uint8_t tx_buf[] = { ST_TP_CMD_WRITE_SYSTEM_COMMAND, 0x06, mem_id }; int retry, ret; uint16_t count; struct st_tp_host_data_header_t *header = &rx_buf.data_header; int rx_len = sizeof(*header) + ST_TP_DUMMY_BYTE; st_tp_read_host_data_memory(0x0000, &rx_buf, rx_len); if (header->host_data_mem_id == mem_id) return EC_SUCCESS; /* already loaded no need to reload */ count = header->count; ret = spi_transaction(SPI, tx_buf, sizeof(tx_buf), NULL, 0); if (ret) return ret; ret = EC_ERROR_TIMEOUT; retry = 5; while (retry--) { st_tp_read_host_data_memory(0x0000, &rx_buf, rx_len); if (header->magic == ST_TP_HEADER_MAGIC && header->host_data_mem_id == mem_id && header->count != count) { ret = EC_SUCCESS; break; } usleep(10 * MSEC); } return ret; } /* * Read System Info from Host Data Memory. * * @param reload: true to force reloading system info into host data memory * before reading. */ static int st_tp_read_system_info(int reload) { int ret = EC_SUCCESS; int rx_len = ST_TP_DUMMY_BYTE + ST_TP_SYSTEM_INFO_LEN; uint8_t *ptr = rx_buf.bytes; if (reload) ret = st_tp_load_host_data(ST_TP_MEM_ID_SYSTEM_INFO); if (ret) return ret; ret = st_tp_read_host_data_memory(0x0000, &rx_buf, rx_len); if (ret) return ret; /* Parse the content */ memcpy(&system_info, ptr, ST_TP_SYSTEM_INFO_PART_1_SIZE); /* Check header */ if (system_info.header.magic != ST_TP_HEADER_MAGIC || system_info.header.host_data_mem_id != ST_TP_MEM_ID_SYSTEM_INFO) return EC_ERROR_UNKNOWN; ptr += ST_TP_SYSTEM_INFO_PART_1_SIZE; ptr += ST_TP_SYSTEM_INFO_PART_1_RESERVED; memcpy(&system_info.scr_res_x, ptr, ST_TP_SYSTEM_INFO_PART_2_SIZE); #define ST_TP_SHOW(attr) CPRINTS(#attr ": %04x", system_info.attr) ST_TP_SHOW(chip0_id[0]); ST_TP_SHOW(chip0_id[1]); ST_TP_SHOW(chip0_ver); ST_TP_SHOW(scr_tx_len); ST_TP_SHOW(scr_rx_len); ST_TP_SHOW(release_info); #undef ST_TP_SHOW return ret; } static int st_tp_read_all_events(void) { uint8_t cmd = ST_TP_CMD_READ_ALL_EVENTS; int rx_len = sizeof(rx_buf.events) + ST_TP_DUMMY_BYTE; return spi_transaction(SPI, &cmd, 1, (uint8_t *)&rx_buf, rx_len); } static int st_tp_reset(void) { board_touchpad_reset(); return st_tp_read_all_events(); } /* Initialize the controller ICs after reset */ static void st_tp_init(void) { st_tp_reset(); /* * On boot, ST firmware will load system info to host data memory, * So we don't need to reload it. */ st_tp_read_system_info(0); system_state = 0; st_tp_start_scan(); } DECLARE_DEFERRED(st_tp_init); #ifdef CONFIG_USB_UPDATE int touchpad_get_info(struct touchpad_info *tp) { if (st_tp_read_system_info(1)) { tp->status = EC_RES_SUCCESS; tp->vendor = ST_VENDOR_ID; /* * failed to get system info, FW corrupted, return some default * values. */ tp->st.id = 0x3936; tp->st.fw_version = 0; tp->st.fw_checksum = 0; return sizeof(*tp); } tp->status = EC_RES_SUCCESS; tp->vendor = ST_VENDOR_ID; tp->st.id = (system_info.chip0_id[0] << 8) | system_info.chip0_id[1]; tp->st.fw_version = system_info.release_info; tp->st.fw_checksum = system_info.fw_crc; return sizeof(*tp); } /* * Helper functions for firmware update * * There is no documentation about ST_TP_CMD_WRITE_HW_REG (0xFA). * All implementations below are based on sample code from ST. */ static int write_hwreg_cmd32(uint32_t address, uint32_t data) { uint8_t tx_buf[] = { ST_TP_CMD_WRITE_HW_REG, (address >> 24) & 0xFF, (address >> 16) & 0xFF, (address >> 8) & 0xFF, (address >> 0) & 0xFF, (data >> 24) & 0xFF, (data >> 16) & 0xFF, (data >> 8) & 0xFF, (data >> 0) & 0xFF, }; return spi_transaction(SPI, tx_buf, sizeof(tx_buf), NULL, 0); } static int write_hwreg_cmd8(uint32_t address, uint8_t data) { uint8_t tx_buf[] = { ST_TP_CMD_WRITE_HW_REG, (address >> 24) & 0xFF, (address >> 16) & 0xFF, (address >> 8) & 0xFF, (address >> 0) & 0xFF, data, }; return spi_transaction(SPI, tx_buf, sizeof(tx_buf), NULL, 0); } static int wait_for_flash_ready(uint8_t type) { uint8_t tx_buf[] = { ST_TP_CMD_READ_HW_REG, 0x20, 0x00, 0x00, type, }; int ret = EC_SUCCESS, retry = 200; while (retry--) { ret = spi_transaction(SPI, tx_buf, sizeof(tx_buf), (uint8_t *)&rx_buf, 2); if (ret == EC_SUCCESS && !(rx_buf.bytes[0] & 0x80)) break; usleep(50 * MSEC); } return retry >= 0 ? ret : EC_ERROR_TIMEOUT; } static int erase_flash(void) { int ret; /* Erase everything, except CX */ ret = write_hwreg_cmd32(0x20000128, 0xFFFFFF83); if (ret) return ret; ret = write_hwreg_cmd8(0x2000006B, 0x00); if (ret) return ret; ret = write_hwreg_cmd8(0x2000006A, 0xA0); if (ret) return ret; return wait_for_flash_ready(0x6A); } static int st_tp_prepare_for_update(void) { /* hold m3 */ write_hwreg_cmd8(0x20000024, 0x01); /* unlock flash */ write_hwreg_cmd8(0x20000025, 0x20); /* unlock flash erase */ write_hwreg_cmd8(0x200000DE, 0x03); erase_flash(); return EC_SUCCESS; } static int st_tp_start_flash_dma(void) { int ret; ret = write_hwreg_cmd8(0x20000071, 0xC0); if (ret) return ret; ret = wait_for_flash_ready(0x71); return ret; } static int st_tp_write_one_chunk(const uint8_t *head, uint32_t addr, uint32_t chunk_size) { uint8_t tx_buf[ST_TP_DMA_CHUNK_SIZE + 5]; uint32_t index = 0; int ret; index = 0; tx_buf[index++] = ST_TP_CMD_WRITE_HW_REG; tx_buf[index++] = (addr >> 24) & 0xFF; tx_buf[index++] = (addr >> 16) & 0xFF; tx_buf[index++] = (addr >> 8) & 0xFF; tx_buf[index++] = (addr >> 0) & 0xFF; memcpy(tx_buf + index, head, chunk_size); ret = spi_transaction(SPI, tx_buf, chunk_size + 5, NULL, 0); return ret; } /* * @param offset: offset in memory to copy the data (in bytes). * @param size: length of data (in bytes). * @param data: pointer to data bytes. */ static int st_tp_write_flash(int offset, int size, const uint8_t *data) { uint8_t tx_buf[12] = {0}; const uint8_t *head = data, *tail = data + size; uint32_t addr, index, chunk_size; uint32_t flash_buffer_size; int ret; offset >>= 2; /* offset should be count in words */ /* * To write to flash, the data has to be separated into several chunks. * Each chunk will be no more than `ST_TP_DMA_CHUNK_SIZE` bytes. * The chunks will first be saved into a buffer, the buffer can only * holds `ST_TP_FLASH_BUFFER_SIZE` bytes. We have to flush the buffer * when the capacity is reached. */ while (head < tail) { addr = 0x00100000; flash_buffer_size = 0; while (flash_buffer_size < ST_TP_FLASH_BUFFER_SIZE) { chunk_size = MIN(ST_TP_DMA_CHUNK_SIZE, tail - head); ret = st_tp_write_one_chunk(head, addr, chunk_size); if (ret) return ret; flash_buffer_size += chunk_size; addr += chunk_size; head += chunk_size; if (head >= tail) break; } /* configuring the DMA */ flash_buffer_size = flash_buffer_size / 4 - 1; index = 0; tx_buf[index++] = ST_TP_CMD_WRITE_HW_REG; tx_buf[index++] = 0x20; tx_buf[index++] = 0x00; tx_buf[index++] = 0x00; tx_buf[index++] = 0x72; /* flash DMA config */ tx_buf[index++] = 0x00; tx_buf[index++] = 0x00; tx_buf[index++] = offset & 0xFF; tx_buf[index++] = (offset >> 8) & 0xFF; tx_buf[index++] = flash_buffer_size & 0xFF; tx_buf[index++] = (flash_buffer_size >> 8) & 0xFF; tx_buf[index++] = 0x00; ret = spi_transaction(SPI, tx_buf, index, NULL, 0); if (ret) return ret; ret = st_tp_start_flash_dma(); if (ret) return ret; offset += ST_TP_FLASH_BUFFER_SIZE / 4; } return EC_SUCCESS; } /* * @param offset: should be address between 0 to 1M, aligned with * ST_TP_DMA_CHUNK_SIZE. * @param size: length of `data` array. * @param data: content of new touchpad firmware. */ int touchpad_update_write(int offset, int size, const uint8_t *data) { int ret; uint8_t tx_buf[] = { ST_TP_CMD_WRITE_SYSTEM_COMMAND, 0x00, 0x03 }; CPRINTS("%s %08x %d", __func__, offset, size); if (offset == 0) { /* stop scanning, interrupt, etc... */ st_tp_stop_scan(); ret = st_tp_prepare_for_update(); if (ret) return ret; } if (offset % ST_TP_DMA_CHUNK_SIZE) return EC_ERROR_INVAL; if (offset >= ST_TP_FLASH_OFFSET_CX && offset < ST_TP_FLASH_OFFSET_CONFIG) /* don't update CX section */ return EC_SUCCESS; ret = st_tp_write_flash(offset, size, data); if (ret) return ret; if (offset + size == CONFIG_TOUCHPAD_VIRTUAL_SIZE) { CPRINTS("%s: End update, wait for reset.", __func__); board_touchpad_reset(); /* Full panel initialization */ spi_transaction(SPI, tx_buf, sizeof(tx_buf), NULL, 0); hook_call_deferred(&st_tp_init_data, 10 * MSEC); } return EC_SUCCESS; } int touchpad_debug(const uint8_t *param, unsigned int param_size, uint8_t **data, unsigned int *data_size) { return EC_RES_INVALID_COMMAND; } #endif void touchpad_interrupt(enum gpio_signal signal) { irq_ts = __hw_clock_source_read(); task_wake(TASK_ID_TOUCHPAD); } void touchpad_task(void *u) { st_tp_init(); while (1) { task_wait_event(-1); while (!gpio_get_level(GPIO_TOUCHPAD_INT)) st_tp_read_report(); } } /* Debugging commands */ static int command_touchpad_st(int argc, char **argv) { if (argc != 2) return EC_ERROR_PARAM_COUNT; if (strcasecmp(argv[1], "enable") == 0) { return EC_ERROR_NOT_HANDLED; } else if (strcasecmp(argv[1], "disable") == 0) { return EC_ERROR_NOT_HANDLED; } else if (strcasecmp(argv[1], "version") == 0) { st_tp_read_system_info(1); return 0; } else { return EC_ERROR_PARAM1; } } DECLARE_CONSOLE_COMMAND(touchpad_st, command_touchpad_st, "", "Read write spi. id is spi_devices array index");