/* Copyright 2020 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /** * ICM-426xx accelerometer and gyroscope module for Chrome EC * 3D digital accelerometer & 3D digital gyroscope */ #include "accelgyro.h" #include "console.h" #include "driver/accelgyro_icm_common.h" #include "driver/accelgyro_icm426xx.h" #include "hwtimer.h" #include "i2c.h" #include "math_util.h" #include "motion_sense.h" #include "spi.h" #include "task.h" #include "timer.h" #include "util.h" #define CPUTS(outstr) cputs(CC_ACCEL, outstr) #define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ## args) #define CPRINTS(format, args...) cprints(CC_ACCEL, format, ## args) #ifdef CONFIG_ACCEL_FIFO volatile uint32_t last_interrupt_timestamp; #endif /* CONFIG_ACCEL_FIFO */ static int icm426xx_normalize(const struct motion_sensor_t *s, intv3_t v, const uint8_t *raw) { /* sensor data is configured as little-endian */ v[X] = (int16_t)UINT16_FROM_BYTE_ARRAY_LE(raw, 0); v[Y] = (int16_t)UINT16_FROM_BYTE_ARRAY_LE(raw, 2); v[Z] = (int16_t)UINT16_FROM_BYTE_ARRAY_LE(raw, 4); /* check if data is valid */ if (v[X] == ICM426XX_INVALID_DATA && v[Y] == ICM426XX_INVALID_DATA && v[Z] == ICM426XX_INVALID_DATA) { return EC_ERROR_INVAL; } rotate(v, *s->rot_standard_ref, v); return EC_SUCCESS; } static int icm426xx_check_sensor_stabilized(const struct motion_sensor_t *s, uint32_t ts) { int32_t rem; rem = icm_get_sensor_stabilized(s, ts); if (rem == 0) return EC_SUCCESS; if (rem > 0) return EC_ERROR_BUSY; /* rem < 0: reset check since ts has passed stabilize_ts */ icm_reset_stabilize_ts(s); return EC_SUCCESS; } /* use FIFO threshold interrupt on INT1 */ #define ICM426XX_FIFO_INT_EN ICM426XX_FIFO_THS_INT1_EN #define ICM426XX_FIFO_INT_STATUS ICM426XX_FIFO_THS_INT static int __maybe_unused icm426xx_enable_fifo(const struct motion_sensor_t *s, int enable) { int val, ret; if (enable) { /* enable FIFO interrupts */ ret = icm_field_update8(s, ICM426XX_REG_INT_SOURCE0, ICM426XX_FIFO_INT_EN, ICM426XX_FIFO_INT_EN); if (ret != EC_SUCCESS) return ret; /* flush FIFO data */ ret = icm_write8(s, ICM426XX_REG_SIGNAL_PATH_RESET, ICM426XX_FIFO_FLUSH); if (ret != EC_SUCCESS) return ret; /* set FIFO in streaming mode */ ret = icm_write8(s, ICM426XX_REG_FIFO_CONFIG, ICM426XX_FIFO_MODE_STREAM); if (ret != EC_SUCCESS) return ret; /* workaround: first read of FIFO count is always 0 */ ret = icm_read16(s, ICM426XX_REG_FIFO_COUNT, &val); if (ret != EC_SUCCESS) return ret; } else { /* set FIFO in bypass mode */ ret = icm_write8(s, ICM426XX_REG_FIFO_CONFIG, ICM426XX_FIFO_MODE_BYPASS); if (ret != EC_SUCCESS) return ret; /* flush FIFO data */ ret = icm_write8(s, ICM426XX_REG_SIGNAL_PATH_RESET, ICM426XX_FIFO_FLUSH); if (ret != EC_SUCCESS) return ret; /* disable FIFO interrupts */ ret = icm_field_update8(s, ICM426XX_REG_INT_SOURCE0, ICM426XX_FIFO_INT_EN, 0); if (ret != EC_SUCCESS) return ret; } return EC_SUCCESS; } static int __maybe_unused icm426xx_config_fifo(const struct motion_sensor_t *s, int enable) { struct icm_drv_data_t *st = ICM_GET_DATA(s); int mask, val; uint8_t old_fifo_en; int ret; switch (s->type) { case MOTIONSENSE_TYPE_ACCEL: mask = ICM426XX_FIFO_ACCEL_EN; break; case MOTIONSENSE_TYPE_GYRO: mask = ICM426XX_FIFO_GYRO_EN; break; default: return EC_ERROR_INVAL; } /* temperature data has to be always present in the FIFO */ mask |= ICM426XX_FIFO_TEMP_EN; val = enable ? mask : 0; mutex_lock(s->mutex); ret = icm_field_update8(s, ICM426XX_REG_FIFO_CONFIG1, mask, val); if (ret != EC_SUCCESS) goto out_unlock; old_fifo_en = st->fifo_en; if (enable) st->fifo_en |= BIT(s->type); else st->fifo_en &= ~BIT(s->type); if (!old_fifo_en && st->fifo_en) { /* 1st sensor enabled => turn FIFO on */ ret = icm426xx_enable_fifo(s, 1); if (ret != EC_SUCCESS) goto out_unlock; } else if (old_fifo_en && !st->fifo_en) { /* last sensor disabled => turn FIFO off */ ret = icm426xx_enable_fifo(s, 0); if (ret != EC_SUCCESS) goto out_unlock; } out_unlock: mutex_unlock(s->mutex); return ret; } static void __maybe_unused icm426xx_push_fifo_data(struct motion_sensor_t *s, const uint8_t *raw, uint32_t ts) { intv3_t v; struct ec_response_motion_sensor_data vect; int ret; if (s == NULL) return; ret = icm426xx_normalize(s, v, raw); if (ret == EC_SUCCESS) { vect.data[X] = v[X]; vect.data[Y] = v[Y]; vect.data[Z] = v[Z]; vect.flags = 0; vect.sensor_num = s - motion_sensors; motion_sense_fifo_add_data(&vect, s, 3, ts); } } /* division that round to the nearest integer */ static int round_divide(int64_t dividend, int divisor) { return (dividend > 0) ^ (divisor > 0) ? (dividend - divisor / 2) / divisor : (dividend + divisor / 2) / divisor; } static int __maybe_unused icm426xx_load_fifo(struct motion_sensor_t *s, uint32_t ts) { struct icm_drv_data_t *st = ICM_GET_DATA(s); int count, i, size; const uint8_t *accel, *gyro; int ret; ret = icm_read16(s, ICM426XX_REG_FIFO_COUNT, &count); if (ret != EC_SUCCESS) return ret; if (count <= 0) return EC_ERROR_INVAL; /* flush FIFO if buffer is not large enough */ if (count > ICM_FIFO_BUFFER) { CPRINTS("It should not happen, the EC is too slow for the ODR"); ret = icm_write8(s, ICM426XX_REG_SIGNAL_PATH_RESET, ICM426XX_FIFO_FLUSH); if (ret != EC_SUCCESS) return ret; return EC_ERROR_OVERFLOW; } ret = icm_read_n(s, ICM426XX_REG_FIFO_DATA, st->fifo_buffer, count); if (ret != EC_SUCCESS) return ret; for (i = 0; i < count; i += size) { size = icm_fifo_decode_packet(&st->fifo_buffer[i], &accel, &gyro); /* exit if error or FIFO is empty */ if (size <= 0) return -size; if (accel != NULL) { ret = icm426xx_check_sensor_stabilized(st->accel, ts); if (ret == EC_SUCCESS) icm426xx_push_fifo_data(st->accel, accel, ts); } if (gyro != NULL) { ret = icm426xx_check_sensor_stabilized(st->gyro, ts); if (ret == EC_SUCCESS) icm426xx_push_fifo_data(st->gyro, gyro, ts); } } return EC_SUCCESS; } #ifdef CONFIG_ACCEL_INTERRUPTS /** * icm426xx_interrupt - called when the sensor activates the interrupt line. * * This is a "top half" interrupt handler, it just asks motion sense ask * to schedule the "bottom half", ->icm426xx_irq_handler(). */ void icm426xx_interrupt(enum gpio_signal signal) { #ifdef CONFIG_ACCEL_FIFO last_interrupt_timestamp = __hw_clock_source_read(); #endif /* CONFIG_ACCEL_FIFO */ task_set_event(TASK_ID_MOTIONSENSE, CONFIG_ACCELGYRO_ICM426XX_INT_EVENT, 0); } /** * icm426xx_irq_handler - bottom half of the interrupt stack. * Ran from the motion_sense task, finds the events that raised the interrupt. */ static int icm426xx_irq_handler(struct motion_sensor_t *s, uint32_t *event) { int status; int ret; if ((s->type != MOTIONSENSE_TYPE_ACCEL) || (!(*event & CONFIG_ACCELGYRO_ICM426XX_INT_EVENT))) return EC_ERROR_NOT_HANDLED; mutex_lock(s->mutex); /* read and clear interrupt status */ ret = icm_read8(s, ICM426XX_REG_INT_STATUS, &status); if (ret != EC_SUCCESS) goto out_unlock; #ifdef CONFIG_ACCEL_FIFO if (status & ICM426XX_FIFO_INT_STATUS) ret = icm426xx_load_fifo(s, last_interrupt_timestamp); #endif /* CONFIG_ACCEL_FIFO */ out_unlock: mutex_unlock(s->mutex); return ret; } static int icm426xx_config_interrupt(const struct motion_sensor_t *s) { struct icm_drv_data_t *st = ICM_GET_DATA(s); int val, ret; /* configure INT1 pin */ val = ICM426XX_INT1_PUSH_PULL | ICM426XX_INT1_ACTIVE_HIGH; ret = icm_write8(s, ICM426XX_REG_INT_CONFIG, val); if (ret != EC_SUCCESS) return ret; /* deassert async reset for proper INT pin operation */ ret = icm_field_update8(s, ICM426XX_REG_INT_CONFIG1, ICM426XX_INT_ASYNC_RESET, 0); if (ret != EC_SUCCESS) return ret; #ifdef CONFIG_ACCEL_FIFO /* * configure FIFO: * - enable FIFO partial read * - enable continuous watermark interrupt * - disable all FIFO en bits */ val = ICM426XX_FIFO_PARTIAL_READ | ICM426XX_FIFO_WM_GT_TH; ret = icm_field_update8(s, ICM426XX_REG_FIFO_CONFIG1, GENMASK(6, 5) | ICM426XX_FIFO_EN_MASK, val); if (ret != EC_SUCCESS) return ret; /* clear internal FIFO enable bits tracking */ st->fifo_en = 0; /* set FIFO watermark to 1 data packet (8 bytes) */ ret = icm_write16(s, ICM426XX_REG_FIFO_WATERMARK, 8); if (ret != EC_SUCCESS) return ret; #endif /* CONFIG_ACCEL_FIFO */ return ret; } #endif /* CONFIG_ACCEL_INTERRUPTS */ static int icm426xx_enable_sensor(const struct motion_sensor_t *s, int enable) { uint32_t delay, stop_delay; int32_t rem; uint8_t mask, val; int ret; switch (s->type) { case MOTIONSENSE_TYPE_ACCEL: mask = ICM426XX_ACCEL_MODE_MASK; if (enable) { delay = ICM426XX_ACCEL_START_TIME; stop_delay = ICM426XX_ACCEL_STOP_TIME; val = ICM426XX_ACCEL_MODE(ICM426XX_MODE_LOW_POWER); } else { delay = ICM426XX_ACCEL_STOP_TIME; val = ICM426XX_ACCEL_MODE(ICM426XX_MODE_OFF); } break; case MOTIONSENSE_TYPE_GYRO: mask = ICM426XX_GYRO_MODE_MASK; if (enable) { delay = ICM426XX_GYRO_START_TIME; stop_delay = ICM426XX_GYRO_STOP_TIME; val = ICM426XX_GYRO_MODE(ICM426XX_MODE_LOW_NOISE); } else { delay = ICM426XX_GYRO_STOP_TIME; val = ICM426XX_GYRO_MODE(ICM426XX_MODE_OFF); } break; default: return EC_ERROR_INVAL; } /* check stop delay and sleep if required */ if (enable) { rem = icm_get_sensor_stabilized(s, __hw_clock_source_read()); /* rem > stop_delay means counter rollover */ if (rem > 0 && rem <= stop_delay) usleep(rem); } mutex_lock(s->mutex); ret = icm_field_update8(s, ICM426XX_REG_PWR_MGMT0, mask, val); if (ret == EC_SUCCESS) { icm_set_stabilize_ts(s, delay); /* when turning sensor on block any register write for 200 us */ if (enable) usleep(200); } mutex_unlock(s->mutex); return ret; } static int icm426xx_set_data_rate(const struct motion_sensor_t *s, int rate, int rnd) { struct accelgyro_saved_data_t *data = ICM_GET_SAVED_DATA(s); int reg, ret, reg_val; int normalized_rate; int max_rate, min_rate; switch (s->type) { case MOTIONSENSE_TYPE_ACCEL: reg = ICM426XX_REG_ACCEL_CONFIG0; min_rate = ICM426XX_ACCEL_MIN_FREQ; max_rate = ICM426XX_ACCEL_MAX_FREQ; break; case MOTIONSENSE_TYPE_GYRO: reg = ICM426XX_REG_GYRO_CONFIG0; min_rate = ICM426XX_GYRO_MIN_FREQ; max_rate = ICM426XX_GYRO_MAX_FREQ; break; default: return EC_RES_INVALID_PARAM; } /* normalize the rate */ reg_val = ICM426XX_ODR_TO_REG(rate); normalized_rate = ICM426XX_REG_TO_ODR(reg_val); /* round up the rate */ if (rnd && (normalized_rate < rate)) { reg_val = ICM426XX_ODR_REG_UP(reg_val); normalized_rate = ICM426XX_REG_TO_ODR(reg_val); } if (rate > 0) { if ((normalized_rate < min_rate) || (normalized_rate > max_rate)) return EC_RES_INVALID_PARAM; } if (rate == 0) { #ifdef CONFIG_ACCEL_FIFO /* disable data in FIFO */ icm426xx_config_fifo(s, 0); #endif /* CONFIG_ACCEL_FIFO */ /* disable sensor */ ret = icm426xx_enable_sensor(s, 0); data->odr = 0; return ret; } mutex_lock(s->mutex); ret = icm_field_update8(s, reg, ICM426XX_ODR_MASK, ICM426XX_ODR(reg_val)); if (ret != EC_SUCCESS) goto out_unlock; mutex_unlock(s->mutex); if (data->odr == 0) { /* enable sensor */ ret = icm426xx_enable_sensor(s, 1); if (ret) return ret; #ifdef CONFIG_ACCEL_FIFO /* enable data in FIFO */ icm426xx_config_fifo(s, 1); #endif /* CONFIG_ACCEL_FIFO */ } data->odr = normalized_rate; return EC_SUCCESS; out_unlock: mutex_unlock(s->mutex); return ret; } static int icm426xx_set_range(const struct motion_sensor_t *s, int range, int rnd) { struct accelgyro_saved_data_t *data = ICM_GET_SAVED_DATA(s); int reg, ret, reg_val; int newrange; switch (s->type) { case MOTIONSENSE_TYPE_ACCEL: reg = ICM426XX_REG_ACCEL_CONFIG0; reg_val = ICM426XX_ACCEL_FS_TO_REG(range); newrange = ICM426XX_ACCEL_REG_TO_FS(reg_val); if (rnd && (newrange < range) && (reg_val > 0)) { reg_val--; newrange = ICM426XX_ACCEL_REG_TO_FS(reg_val); } if (newrange > ICM426XX_ACCEL_FS_MAX_VAL) { newrange = ICM426XX_ACCEL_FS_MAX_VAL; reg_val = ICM426XX_ACCEL_FS_TO_REG(range); } break; case MOTIONSENSE_TYPE_GYRO: reg = ICM426XX_REG_GYRO_CONFIG0; reg_val = ICM426XX_GYRO_FS_TO_REG(range); newrange = ICM426XX_GYRO_REG_TO_FS(reg_val); if (rnd && (newrange < range) && (reg_val > 0)) { reg_val--; newrange = ICM426XX_GYRO_REG_TO_FS(reg_val); } if (newrange > ICM426XX_GYRO_FS_MAX_VAL) { newrange = ICM426XX_GYRO_FS_MAX_VAL; reg_val = ICM426XX_GYRO_FS_TO_REG(newrange); } break; default: return EC_RES_INVALID_PARAM; } mutex_lock(s->mutex); ret = icm_field_update8(s, reg, ICM426XX_FS_MASK, ICM426XX_FS_SEL(reg_val)); if (ret == EC_SUCCESS) data->range = newrange; mutex_unlock(s->mutex); return ret; } static int icm426xx_get_hw_offset(const struct motion_sensor_t *s, intv3_t offset) { uint8_t raw[5]; int i, ret; switch (s->type) { case MOTIONSENSE_TYPE_ACCEL: mutex_lock(s->mutex); ret = icm_read_n(s, ICM426XX_REG_OFFSET_USER4, raw, sizeof(raw)); mutex_unlock(s->mutex); if (ret != EC_SUCCESS) return ret; /* * raw[0]: Accel X[11:8] | gyro Z[11:8] * raw[1]: Accel X[0:7] * raw[2]: Accel Y[7:0] * raw[3]: Accel Z[11:8] | Accel Y[11:8] * raw[4]: Accel Z[7:0] */ offset[X] = (((int)raw[0] << 4) & ~GENMASK(7, 0)) | raw[1]; offset[Y] = (((int)raw[3] << 8) & ~GENMASK(7, 0)) | raw[2]; offset[Z] = (((int)raw[3] << 4) & ~GENMASK(7, 0)) | raw[4]; break; case MOTIONSENSE_TYPE_GYRO: mutex_lock(s->mutex); ret = icm_read_n(s, ICM426XX_REG_OFFSET_USER0, raw, sizeof(raw)); mutex_unlock(s->mutex); if (ret != EC_SUCCESS) return ret; /* * raw[0]: Gyro X[7:0] * raw[1]: Gyro Y[11:8] | Gyro X[11:8] * raw[2]: Gyro Y[7:0] * raw[3]: Gyro Z[7:0] * raw[4]: Accel X[11:8] | gyro Z[11:8] */ offset[X] = (((int)raw[1] << 8) & ~GENMASK(7, 0)) | raw[0]; offset[Y] = (((int)raw[1] << 4) & ~GENMASK(7, 0)) | raw[2]; offset[Z] = (((int)raw[4] << 8) & ~GENMASK(7, 0)) | raw[3]; break; default: return EC_ERROR_INVAL; } /* Extend sign-bit of 12 bits signed values */ for (i = X; i <= Z; ++i) offset[i] = sign_extend(offset[i], 11); return EC_SUCCESS; } static int icm426xx_set_hw_offset(const struct motion_sensor_t *s, intv3_t offset) { int i, val, ret; /* value is 12 bits signed maximum */ for (i = X; i <= Z; ++i) { if (offset[i] > 2047) offset[i] = 2047; else if (offset[i] < -2048) offset[i] = -2048; } mutex_lock(s->mutex); switch (s->type) { case MOTIONSENSE_TYPE_ACCEL: /* Accel X[11:8] | gyro Z[11:8] */ val = (offset[X] >> 4) & GENMASK(7, 4); ret = icm_field_update8(s, ICM426XX_REG_OFFSET_USER4, GENMASK(7, 4), val); if (ret != EC_SUCCESS) goto out_unlock; /* Accel X[7:0] */ val = offset[X] & GENMASK(7, 0); ret = icm_write8(s, ICM426XX_REG_OFFSET_USER5, val); if (ret != EC_SUCCESS) goto out_unlock; /* Accel Y[7:0] */ val = offset[Y] & GENMASK(7, 0); ret = icm_write8(s, ICM426XX_REG_OFFSET_USER6, val); if (ret != EC_SUCCESS) goto out_unlock; /* Accel Z[11:8] | Accel Y[11:8] */ val = ((offset[Z] >> 4) & GENMASK(7, 4)) | ((offset[Y] >> 8) & GENMASK(3, 0)); ret = icm_write8(s, ICM426XX_REG_OFFSET_USER7, val); if (ret != EC_SUCCESS) goto out_unlock; /* Accel Z[7:0] */ val = offset[Z] & GENMASK(7, 0); ret = icm_write8(s, ICM426XX_REG_OFFSET_USER8, val); if (ret != EC_SUCCESS) goto out_unlock; break; case MOTIONSENSE_TYPE_GYRO: /* Gyro X[7:0] */ val = offset[X] & GENMASK(7, 0); ret = icm_write8(s, ICM426XX_REG_OFFSET_USER0, val); if (ret != EC_SUCCESS) goto out_unlock; /* Gyro Y[11:8] | Gyro X[11:8] */ val = ((offset[Y] >> 4) & GENMASK(7, 4)) | ((offset[X] >> 8) & GENMASK(3, 0)); ret = icm_write8(s, ICM426XX_REG_OFFSET_USER1, val); if (ret != EC_SUCCESS) goto out_unlock; /* Gyro Y[7:0] */ val = offset[Y] & GENMASK(7, 0); ret = icm_write8(s, ICM426XX_REG_OFFSET_USER2, val); if (ret != EC_SUCCESS) goto out_unlock; /* Gyro Z[7:0] */ val = offset[Z] & GENMASK(7, 0); ret = icm_write8(s, ICM426XX_REG_OFFSET_USER3, val); if (ret != EC_SUCCESS) goto out_unlock; /* Accel X[11:8] | gyro Z[11:8] */ val = (offset[Z] >> 8) & GENMASK(3, 0); ret = icm_field_update8(s, ICM426XX_REG_OFFSET_USER4, GENMASK(3, 0), val); if (ret != EC_SUCCESS) goto out_unlock; break; default: ret = EC_ERROR_INVAL; break; } out_unlock: mutex_unlock(s->mutex); return ret; } static int icm426xx_set_offset(const struct motion_sensor_t *s, const int16_t *offset, int16_t temp) { intv3_t v = { offset[X], offset[Y], offset[Z] }; int div1, div2; int i; /* rotate back to chip frame */ rotate_inv(v, *s->rot_standard_ref, v); /* convert raw data to hardware offset units */ switch (s->type) { case MOTIONSENSE_TYPE_ACCEL: /* hardware offset is 1/2048g /LSB, EC offset 1/1024g /LSB. */ div1 = 2; div2 = 1; break; case MOTIONSENSE_TYPE_GYRO: /* hardware offset is 1/32dps /LSB, EC offset 1/1024dps /LSB. */ div1 = 1; div2 = 32; break; default: return EC_ERROR_INVAL; } for (i = X; i <= Z; ++i) v[i] = round_divide(v[i] * div1, div2); return icm426xx_set_hw_offset(s, v); } static int icm426xx_get_offset(const struct motion_sensor_t *s, int16_t *offset, int16_t *temp) { intv3_t v; int div1, div2; int i, ret; ret = icm426xx_get_hw_offset(s, v); if (ret != EC_SUCCESS) return ret; /* transform offset to raw data */ switch (s->type) { case MOTIONSENSE_TYPE_ACCEL: /* hardware offset is 1/2048g /LSB, EC offset 1/1024g /LSB. */ div1 = 1; div2 = 2; break; case MOTIONSENSE_TYPE_GYRO: /* hardware offset is 1/32dps /LSB, EC offset 1/1024dps /LSB. */ div1 = 32; div2 = 1; break; default: return EC_ERROR_INVAL; } for (i = X; i <= Z; ++i) v[i] = round_divide(v[i] * div1, div2); rotate(v, *s->rot_standard_ref, v); offset[X] = v[X]; offset[Y] = v[Y]; offset[Z] = v[Z]; *temp = EC_MOTION_SENSE_INVALID_CALIB_TEMP; return EC_SUCCESS; } static int icm426xx_read(const struct motion_sensor_t *s, intv3_t v) { uint8_t raw[6]; int reg, ret; switch (s->type) { case MOTIONSENSE_TYPE_ACCEL: reg = ICM426XX_REG_ACCEL_DATA_XYZ; break; case MOTIONSENSE_TYPE_GYRO: reg = ICM426XX_REG_GYRO_DATA_XYZ; break; default: return EC_ERROR_INVAL; } /* read data registers if sensor is stabilized */ mutex_lock(s->mutex); ret = icm426xx_check_sensor_stabilized(s, __hw_clock_source_read()); if (ret == EC_SUCCESS) ret = icm_read_n(s, reg, raw, sizeof(raw)); mutex_unlock(s->mutex); if (ret != EC_SUCCESS) return ret; ret = icm426xx_normalize(s, v, raw); /* if data is invalid return the previous read data */ if (ret != EC_SUCCESS) { if (v != s->raw_xyz) memcpy(v, s->raw_xyz, sizeof(s->raw_xyz)); } return EC_SUCCESS; } static int icm426xx_init_config(const struct motion_sensor_t *s) { uint8_t mask, val; int ret; /* * serial bus setup (i2c or spi) * * Do not check result for INTF_CONFIG6, since it can induce * interferences on the bus. */ ret = 0; #ifdef I2C_PORT_ACCEL icm_field_update8(s, ICM426XX_REG_INTF_CONFIG6, ICM426XX_INTF_CONFIG6_MASK, ICM426XX_I3C_EN); ret = icm_field_update8(s, ICM426XX_REG_INTF_CONFIG4, ICM426XX_I3C_BUS_MODE, 0); #endif if (ret) return ret; ret = 0; #ifdef I2C_PORT_ACCEL ret = icm_field_update8(s, ICM426XX_REG_DRIVE_CONFIG, ICM426XX_DRIVE_CONFIG_MASK, ICM426XX_I2C_SLEW_RATE(ICM426XX_SLEW_RATE_12NS_36NS) | ICM426XX_SPI_SLEW_RATE(ICM426XX_SLEW_RATE_12NS_36NS)); #endif if (ret) return ret; /* * Use invalid value in registers and FIFO. * Data registers in little-endian format. * Disable unused serial interface. */ mask = ICM426XX_DATA_CONF_MASK | ICM426XX_UI_SIFS_CFG_MASK; val = 0; #ifdef I2C_PORT_ACCEL val |= ICM426XX_UI_SIFS_CFG_SPI_DIS; #endif ret = icm_field_update8(s, ICM426XX_REG_INTF_CONFIG0, mask, val); if (ret) return ret; /* set accel oscillator to RC clock to avoid bad transition with PLL */ return icm_field_update8(s, ICM426XX_REG_INTF_CONFIG1, ICM426XX_ACCEL_LP_CLK_SEL, ICM426XX_ACCEL_LP_CLK_SEL); } static int icm426xx_init(const struct motion_sensor_t *s) { struct accelgyro_saved_data_t *saved_data = ICM_GET_SAVED_DATA(s); struct icm_drv_data_t *st = ICM_GET_DATA(s); int mask, val; int ret; mutex_lock(s->mutex); /* manually force register bank to 0 */ st->bank = 0; ret = icm_write8(s, ICM426XX_REG_BANK_SEL, ICM426XX_BANK_SEL(0)); if (ret) goto out_unlock; /* detect chip using whoami */ ret = icm_read8(s, ICM426XX_REG_WHO_AM_I, &val); if (ret) goto out_unlock; if (val != ICM426XX_CHIP_ICM40608 && val != ICM426XX_CHIP_ICM42605) { CPRINTS("Unknown WHO_AM_I: 0x%02x", val); ret = EC_ERROR_ACCESS_DENIED; goto out_unlock; } /* first time init done only for 1st sensor (accel) */ if (s->type == MOTIONSENSE_TYPE_ACCEL) { /* reset the chip and verify it is ready */ ret = icm_write8(s, ICM426XX_REG_DEVICE_CONFIG, ICM426XX_SOFT_RESET_CONFIG); if (ret) goto out_unlock; msleep(1); ret = icm_read8(s, ICM426XX_REG_INT_STATUS, &val); if (ret) goto out_unlock; if (!(val & ICM426XX_RESET_DONE_INT)) { ret = EC_ERROR_ACCESS_DENIED; goto out_unlock; } /* configure sensor */ ret = icm426xx_init_config(s); if (ret) goto out_unlock; #ifdef CONFIG_ACCEL_INTERRUPTS ret = icm426xx_config_interrupt(s); if (ret) goto out_unlock; #endif } saved_data->odr = 0; /* set sensor filter */ switch (s->type) { case MOTIONSENSE_TYPE_ACCEL: mask = ICM426XX_ACCEL_UI_FILT_MASK; val = ICM426XX_ACCEL_UI_FILT_BW(ICM426XX_FILTER_BW_AVG_16X); #ifdef CONFIG_ACCEL_FIFO st->accel = (struct motion_sensor_t *)s; #endif /* CONFIG_ACCEL_FIFO */ break; case MOTIONSENSE_TYPE_GYRO: mask = ICM426XX_GYRO_UI_FILT_MASK; val = ICM426XX_GYRO_UI_FILT_BW(ICM426XX_FILTER_BW_ODR_DIV_2); #ifdef CONFIG_ACCEL_FIFO st->gyro = (struct motion_sensor_t *)s; #endif /* CONFIG_ACCEL_FIFO */ break; default: ret = EC_ERROR_INVAL; goto out_unlock; } ret = icm_field_update8(s, ICM426XX_REG_GYRO_ACCEL_CONFIG0, mask, val); if (ret != EC_SUCCESS) goto out_unlock; mutex_unlock(s->mutex); return sensor_init_done(s); out_unlock: mutex_unlock(s->mutex); return ret; } const struct accelgyro_drv icm426xx_drv = { .init = icm426xx_init, .read = icm426xx_read, .set_range = icm426xx_set_range, .get_range = icm_get_range, .get_resolution = icm_get_resolution, .set_data_rate = icm426xx_set_data_rate, .get_data_rate = icm_get_data_rate, .set_offset = icm426xx_set_offset, .get_offset = icm426xx_get_offset, #ifdef CONFIG_ACCEL_INTERRUPTS .irq_handler = icm426xx_irq_handler, #endif };