/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * Event handling in MKBP keyboard protocol */ #include "atomic.h" #include "chipset.h" #include "gpio.h" #include "host_command.h" #include "hwtimer.h" #include "timer.h" #include "link_defs.h" #include "mkbp_event.h" #include "power.h" #include "util.h" #define CPUTS(outstr) cputs(CC_COMMAND, outstr) #define CPRINTS(format, args...) cprints(CC_COMMAND, format, ## args) #define CPRINTF(format, args...) cprintf(CC_COMMAND, format, ## args) /* * Tracks the current state of the MKBP interrupt send from the EC to the AP. * * The inactive state is only valid when there are no events to set to the AP. * If the AP is asleep, then some events are not worth waking the AP up, so the * interrupt could remain in an inactive in that case. * * The transition state (INTERRUPT_INACTIVE_TO_ACTIVE) is used to track the * sometimes lock transition for a "rising edge" for platforms that send the * rising edge interrupt through a host communication layer * * The active state represents that a rising edge interrupt has already been * sent to the AP, and the EC is waiting for the AP to call get next event * host command to consume all of the events (at which point the state will * move to inactive). * * The transition from ACTIVE -> INACTIVE is considerer to be simple meaning * the operation can be performed within a blocking mutex (e.g. no-op or setting * a gpio). */ enum interrupt_state { INTERRUPT_INACTIVE, INTERRUPT_INACTIVE_TO_ACTIVE, /* Transitioning */ INTERRUPT_ACTIVE, }; struct mkbp_state { struct mutex lock; uint32_t events; enum interrupt_state interrupt; /* * Tracks unique transitions to INTERRUPT_INACTIVE_TO_ACTIVE allowing * only the most recent transition to finish the transition to a final * state -- either active or inactive depending on the result of the * operation. */ uint8_t interrupt_id; /* * Tracks the number of consecutive failed attempts for the AP to poll * get_next_events in order to limit the retry logic. */ uint8_t failed_attempts; }; static struct mkbp_state state; uint32_t mkbp_last_event_time; #ifdef CONFIG_MKBP_USE_GPIO static int mkbp_set_host_active_via_gpio(int active, uint32_t *timestamp) { /* * If we want to take a timestamp, then disable interrupts temporarily * to ensure that the timestamp is as close as possible to the setting * of the GPIO pin in hardware (i.e. we aren't interrupted between * taking the timestamp and setting the gpio) */ if (timestamp) { interrupt_disable(); *timestamp = __hw_clock_source_read(); } gpio_set_level(GPIO_EC_INT_L, !active); if (timestamp) interrupt_enable(); return EC_SUCCESS; } #endif #ifdef CONFIG_MKBP_USE_HOST_EVENT static int mkbp_set_host_active_via_event(int active, uint32_t *timestamp) { /* This should be moved into host_set_single_event for more accuracy */ if (timestamp) *timestamp = __hw_clock_source_read(); if (active) host_set_single_event(EC_HOST_EVENT_MKBP); return EC_SUCCESS; } #endif /* * This communicates to the AP whether an MKBP event is currently available * for processing. * * NOTE: When active is 0 this function CANNOT de-schedule. It must be very * simple like toggling a GPIO or no-op * * @param active 1 if there is an event, 0 otherwise * @param timestamp, if non-null this variable will be written as close to the * hardware interrupt from EC->AP as possible. */ static int mkbp_set_host_active(int active, uint32_t *timestamp) { #if defined(CONFIG_MKBP_USE_CUSTOM) /* * TODO change mkbp_set_host_active_via_custom declaration. Done in * child CL to decouple changes */ if (timestamp) *timestamp = __hw_clock_source_read(); mkbp_set_host_active_via_custom(active); return EC_SUCCESS; #elif defined(CONFIG_MKBP_USE_HOST_EVENT) return mkbp_set_host_active_via_event(active, timestamp); #elif defined(CONFIG_MKBP_USE_GPIO) return mkbp_set_host_active_via_gpio(active, timestamp); #endif } #ifdef CONFIG_MKBP_WAKEUP_MASK /** * Check if the host is sleeping. Check our power state in addition to the * self-reported sleep state of host (CONFIG_POWER_TRACK_HOST_SLEEP_STATE). */ static inline int host_is_sleeping(void) { int is_sleeping = !chipset_in_state(CHIPSET_STATE_ON); #ifdef CONFIG_POWER_TRACK_HOST_SLEEP_STATE enum host_sleep_event sleep_state = power_get_host_sleep_state(); is_sleeping |= (sleep_state == HOST_SLEEP_EVENT_S3_SUSPEND || sleep_state == HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND); #endif return is_sleeping; } #endif /* CONFIG_MKBP_WAKEUP_MASK */ /* * This is the deferred function that ensures that we attempt to set the MKBP * interrupt again if there was a failure in the system (EC or AP) and the AP * never called get_next_event. */ static void force_mkbp_if_events(void); DECLARE_DEFERRED(force_mkbp_if_events); static void activate_mkbp_with_events(uint32_t events_to_add) { int interrupt_id = -1; int skip_interrupt = 0; int rv, schedule_deferred = 0; #ifdef CONFIG_MKBP_WAKEUP_MASK /* Only assert interrupt for wake events if host is sleeping */ skip_interrupt = host_is_sleeping() && !(host_get_events() & CONFIG_MKBP_WAKEUP_MASK); #endif mutex_lock(&state.lock); state.events |= events_to_add; /* To skip the interrupt, we cannot have the EC_MKBP_EVENT_KEY_MATRIX */ skip_interrupt = skip_interrupt && !(state.events & (1 << EC_MKBP_EVENT_KEY_MATRIX)); if (state.events && state.interrupt == INTERRUPT_INACTIVE && !skip_interrupt) { state.interrupt = INTERRUPT_INACTIVE_TO_ACTIVE; interrupt_id = ++state.interrupt_id; } mutex_unlock(&state.lock); /* If we don't need to send an interrupt we are done */ if (interrupt_id < 0) return; /* Send a rising edge MKBP interrupt */ rv = mkbp_set_host_active(1, &mkbp_last_event_time); /* * If this was the last interrupt to the AP, update state; * otherwise the latest interrupt should update state. */ mutex_lock(&state.lock); if (state.interrupt == INTERRUPT_INACTIVE_TO_ACTIVE && interrupt_id == state.interrupt_id) { schedule_deferred = 1; state.interrupt = rv == EC_SUCCESS ? INTERRUPT_ACTIVE : INTERRUPT_INACTIVE; } mutex_unlock(&state.lock); if (schedule_deferred) { hook_call_deferred(&force_mkbp_if_events_data, SECOND); if (rv != EC_SUCCESS) CPRINTS("Could not activate MKBP (%d). Deferring", rv); } } /* * This is the deferred function that ensures that we attempt to set the MKBP * interrupt again if there was a failure in the system (EC or AP) and the AP * never called get_next_event. */ static void force_mkbp_if_events(void) { int toggled = 0; mutex_lock(&state.lock); if (state.interrupt == INTERRUPT_ACTIVE) { if (++state.failed_attempts < 3) { state.interrupt = INTERRUPT_INACTIVE; toggled = 1; } } mutex_unlock(&state.lock); if (toggled) CPRINTS("MKBP not cleared within threshold, toggling."); activate_mkbp_with_events(0); } int mkbp_send_event(uint8_t event_type) { activate_mkbp_with_events(1 << event_type); return 1; } static int set_inactive_if_no_events(void) { int interrupt_cleared; mutex_lock(&state.lock); interrupt_cleared = !state.events; if (interrupt_cleared) { state.interrupt = INTERRUPT_INACTIVE; state.failed_attempts = 0; /* Only simple tasks (i.e. gpio set or no-op) allowed here */ mkbp_set_host_active(0, NULL); } mutex_unlock(&state.lock); /* Cancel our safety net since the events were cleared. */ if (interrupt_cleared) hook_call_deferred(&force_mkbp_if_events_data, -1); return interrupt_cleared; } /* This can only be called when the state.lock mutex is held */ static int take_event_if_set(uint8_t event_type) { int taken; taken = state.events & (1 << event_type); state.events &= ~(1 << event_type); return taken; } static int mkbp_get_next_event(struct host_cmd_handler_args *args) { static int last; int i, data_size, evt; uint8_t *resp = args->response; const struct mkbp_event_source *src; do { /* * Find the next event to service. We do this in a round-robin * way to make sure no event gets starved. */ mutex_lock(&state.lock); for (i = 0; i < EC_MKBP_EVENT_COUNT; ++i) if (take_event_if_set((last + i) % EC_MKBP_EVENT_COUNT)) break; mutex_unlock(&state.lock); if (i == EC_MKBP_EVENT_COUNT) { if (set_inactive_if_no_events()) return EC_RES_UNAVAILABLE; /* An event was set just now, restart loop. */ continue; } evt = (i + last) % EC_MKBP_EVENT_COUNT; last = evt + 1; for (src = __mkbp_evt_srcs; src < __mkbp_evt_srcs_end; ++src) if (src->event_type == evt) break; if (src == __mkbp_evt_srcs_end) return EC_RES_ERROR; resp[0] = evt; /* Event type */ /* * get_data() can return -EC_ERROR_BUSY which indicates that the * next element in the keyboard FIFO does not match what we were * called with. For example, get_data is expecting a keyboard * matrix, however the next element in the FIFO is a button * event instead. Therefore, we have to service that button * event first. */ data_size = src->get_data(resp + 1); if (data_size == -EC_ERROR_BUSY) { mutex_lock(&state.lock); state.events |= 1 << evt; mutex_unlock(&state.lock); } } while (data_size == -EC_ERROR_BUSY); /* If there are no more events and we support the "more" flag, set it */ if (!set_inactive_if_no_events() && args->version >= 2) resp[0] |= EC_MKBP_HAS_MORE_EVENTS; if (data_size < 0) return EC_RES_ERROR; args->response_size = 1 + data_size; return EC_RES_SUCCESS; } DECLARE_HOST_COMMAND(EC_CMD_GET_NEXT_EVENT, mkbp_get_next_event, EC_VER_MASK(0) | EC_VER_MASK(1) | EC_VER_MASK(2)); #ifdef CONFIG_MKBP_WAKEUP_MASK static int mkbp_get_wake_mask(struct host_cmd_handler_args *args) { struct ec_response_host_event_mask *r = args->response; r->mask = CONFIG_MKBP_WAKEUP_MASK; args->response_size = sizeof(*r); return EC_RES_SUCCESS; } DECLARE_HOST_COMMAND(EC_CMD_HOST_EVENT_GET_WAKE_MASK, mkbp_get_wake_mask, EC_VER_MASK(0)); #endif