/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * Main routine for Chrome EC */ #include "board_config.h" #include "button.h" #include "chipset.h" #include "clock.h" #include "common.h" #include "console.h" #include "cpu.h" #include "dma.h" #include "eeprom.h" #include "flash.h" #include "gpio.h" #include "hooks.h" #include "lpc.h" #include "keyboard_scan.h" #ifdef CONFIG_MPU #include "mpu.h" #endif #include "rwsig.h" #include "system.h" #include "task.h" #include "timer.h" #include "uart.h" #include "util.h" #include "vboot.h" #include "watchdog.h" /* Console output macros */ #define CPUTS(outstr) cputs(CC_SYSTEM, outstr) #define CPRINTF(format, args...) cprintf(CC_SYSTEM, format, ## args) #define CPRINTS(format, args...) cprints(CC_SYSTEM, format, ## args) test_mockable __keep int main(void) { #ifdef CONFIG_REPLACE_LOADER_WITH_BSS_SLOW /* * Now that we have started execution, we no longer need the loader. * Instead, variables placed in the .bss.slow section will use this * space. Therefore, clear out this region now. */ memset((void *)(CONFIG_PROGRAM_MEMORY_BASE + CONFIG_LOADER_MEM_OFF), 0, CONFIG_LOADER_SIZE); #endif /* defined(CONFIG_REPLACE_LOADER_WITH_BSS_SLOW) */ /* * Pre-initialization (pre-verified boot) stage. Initialization at * this level should do as little as possible, because verified boot * may need to jump to another image, which will repeat this * initialization. In particular, modules should NOT enable * interrupts. */ #ifdef CONFIG_BOARD_PRE_INIT board_config_pre_init(); #endif #ifdef CONFIG_CHIP_PRE_INIT chip_pre_init(); #endif #ifdef CONFIG_MPU mpu_pre_init(); #endif gpio_pre_init(); #ifdef CONFIG_BOARD_POST_GPIO_INIT board_config_post_gpio_init(); #endif /* * Initialize interrupts, but don't enable any of them. Note that * task scheduling is not enabled until task_start() below. */ task_pre_init(); /* * Initialize the system module. This enables the hibernate clock * source we need to calibrate the internal oscillator. */ system_pre_init(); system_common_pre_init(); #if defined(CONFIG_FLASH_PHYSICAL) /* * Initialize flash and apply write protect if necessary. Requires * the reset flags calculated by system initialization. */ flash_pre_init(); #endif /* Set the CPU clocks / PLLs. System is now running at full speed. */ clock_init(); /* * Initialize timer. Everything after this can be benchmarked. * get_time() and udelay() may now be used. usleep() requires task * scheduling, so cannot be used yet. Note that interrupts declared * via DECLARE_IRQ() call timer routines when profiling is enabled, so * timer init() must be before uart_init(). */ timer_init(); /* Main initialization stage. Modules may enable interrupts here. */ cpu_init(); #ifdef CONFIG_DMA /* Initialize DMA. Must be before UART. */ dma_init(); #endif /* Initialize UART. Console output functions may now be used. */ uart_init(); /* be less verbose if we boot for USB resume to meet spec timings */ if (!(system_get_reset_flags() & RESET_FLAG_USB_RESUME)) { if (system_jumped_to_this_image()) { CPRINTS("UART initialized after sysjump"); } else { CPUTS("\n\n--- UART initialized after reboot ---\n"); CPUTS("[Reset cause: "); system_print_reset_flags(); CPUTS("]\n"); } CPRINTF("[Image: %s, %s]\n", system_get_image_copy_string(), system_get_build_info()); } #ifdef CONFIG_BRINGUP ccprintf("\n\nWARNING: BRINGUP BUILD\n\n\n"); #endif #ifdef CONFIG_WATCHDOG /* * Initialize watchdog timer. All lengthy operations between now and * task_start() must periodically call watchdog_reload() to avoid * triggering a watchdog reboot. (This pretty much applies only to * verified boot, because all *other* lengthy operations should be done * by tasks.) */ watchdog_init(); #endif /* * Verified boot needs to read the initial keyboard state and EEPROM * contents. EEPROM must be up first, so keyboard_scan can toggle * debugging settings via keys held at boot. */ #ifdef CONFIG_EEPROM eeprom_init(); #endif /* * Keyboard scan init/Button init can set recovery events to * indicate to host entry into recovery mode. Before this is * done, lpc always report mask needs to be initialized * correctly. */ #ifdef CONFIG_HOSTCMD_X86 lpc_init_mask(); #endif #ifdef HAS_TASK_KEYSCAN keyboard_scan_init(); #endif #if defined(CONFIG_DEDICATED_RECOVERY_BUTTON) || defined(CONFIG_VOLUME_BUTTONS) button_init(); #endif /* defined(CONFIG_DEDICATED_RECOVERY_BUTTON | CONFIG_VOLUME_BUTTONS) */ #if defined(CONFIG_VBOOT_EFS) /* * Execute PMIC reset in case we're here after watchdog reset to unwedge * AP. This has to be done here because vboot_main may jump to RW. */ chipset_handle_reboot(); /* * For RO, it behaves as follows: * In recovery, it enables PD communication and returns. * In normal boot, it verifies and jumps to RW. * For RW, it returns immediately. */ vboot_main(); #elif defined(CONFIG_RWSIG) && !defined(HAS_TASK_RWSIG) /* * Check the RW firmware signature and jump to it if it is good. * * Only the Read-Only firmware needs to do the signature check. */ if (system_get_image_copy() == SYSTEM_IMAGE_RO) { #if defined(CONFIG_RWSIG_DONT_CHECK_ON_PIN_RESET) /* * If system was reset by reset-pin, do not jump and wait for * command from host */ if (system_get_reset_flags() == RESET_FLAG_RESET_PIN) { CPRINTS("Hard pin-reset detected, disable RW jump"); } else #endif { if (rwsig_check_signature()) rwsig_jump_now(); } } #endif /* !CONFIG_VBOOT_EFS && CONFIG_RWSIG && !HAS_TASK_RWSIG */ /* * Print the init time. Not completely accurate because it can't take * into account the time before timer_init(), but it'll at least catch * the majority of the time. */ CPRINTS("Inits done"); /* Launch task scheduling (never returns) */ return task_start(); }