/* Copyright 2013 The ChromiumOS Authors * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * Main routine for Chrome EC */ #include "board_config.h" #ifdef CONFIG_KEYBOARD_SCAN_ADC #include "adc.h" #endif #include "button.h" #include "chipset.h" #include "clock.h" #include "common.h" #include "console.h" #include "cpu.h" #include "cros_board_info.h" #include "dma.h" #include "eeprom.h" #include "flash.h" #include "gpio.h" #include "hooks.h" #include "i2c.h" #include "i2c_bitbang.h" #include "keyboard_scan.h" #include "link_defs.h" #include "lpc.h" #ifdef CONFIG_MPU #include "mpu.h" #endif #include "panic.h" #include "rwsig.h" #include "system.h" #include "task.h" #include "timer.h" #include "uart.h" #include "util.h" #include "vboot.h" #include "watchdog.h" /* Console output macros */ #define CPUTS(outstr) cputs(CC_SYSTEM, outstr) #define CPRINTF(format, args...) cprintf(CC_SYSTEM, format, ##args) #define CPRINTS(format, args...) cprints(CC_SYSTEM, format, ##args) test_mockable __keep int main(void) { int mpu_pre_init_rv = EC_SUCCESS; if (IS_ENABLED(CONFIG_PRESERVE_LOGS)) { /* * Initialize tx buffer head and tail. This needs to be done * before any updates of uart tx input because we need to * verify if the values remain the same after every EC reset. */ uart_init_buffer(); /* * Initialize reset logs. Needs to be done before any updates of * reset logs because we need to verify if the values remain * the same after every EC reset. */ if (IS_ENABLED(CONFIG_CMD_AP_RESET_LOG)) init_reset_log(); } /* * Pre-initialization (pre-verified boot) stage. Initialization at * this level should do as little as possible, because verified boot * may need to jump to another image, which will repeat this * initialization. In particular, modules should NOT enable * interrupts. */ #ifdef CONFIG_BOARD_PRE_INIT board_config_pre_init(); #endif #ifdef CONFIG_CHIP_PRE_INIT chip_pre_init(); #endif #ifdef CONFIG_MPU mpu_pre_init_rv = mpu_pre_init(); #endif gpio_pre_init(); #ifdef CONFIG_BOARD_POST_GPIO_INIT board_config_post_gpio_init(); #endif /* * Initialize tasks, but don't enable any of them. Note that * task scheduling is not enabled until task_start() below. */ task_pre_init(); /* * Initialize the system module. This enables the hibernate clock * source we need to calibrate the internal oscillator. */ system_pre_init(); system_common_pre_init(); #ifdef CONFIG_DRAM_BASE /* Now that DRAM is initialized, clear up DRAM .bss, copy .data over. */ memset(&__dram_bss_start, 0, (uintptr_t)(&__dram_bss_end) - (uintptr_t)(&__dram_bss_start)); memcpy(&__dram_data_start, &__dram_data_lma_start, (uintptr_t)(&__dram_data_end) - (uintptr_t)(&__dram_data_start)); #endif #if defined(CONFIG_FLASH_PHYSICAL) /* * Initialize flash and apply write protect if necessary. Requires * the reset flags calculated by system initialization. */ crec_flash_pre_init(); #endif /* Set the CPU clocks / PLLs. System is now running at full speed. */ clock_init(); /* * Initialize timer. Everything after this can be benchmarked. * get_time() and udelay() may now be used. usleep() requires task * scheduling, so cannot be used yet. Note that interrupts declared * via DECLARE_IRQ() call timer routines when profiling is enabled, so * timer init() must be before uart_init(). */ timer_init(); /* Compensate the elapsed time for the RTC. */ if (IS_ENABLED(CONFIG_HIBERNATE_PSL_COMPENSATE_RTC)) system_compensate_rtc(); /* Main initialization stage. Modules may enable interrupts here. */ cpu_init(); #ifdef CONFIG_DMA_CROS /* Initialize DMA. Must be before UART. */ dma_init(); #endif /* Initialize UART. Console output functions may now be used. */ uart_init(); /* We wait to report the failure until here where we have console. */ if (mpu_pre_init_rv != EC_SUCCESS) panic("MPU init failed"); system_print_banner(); #ifdef CONFIG_BRINGUP ccprintf("\n\nWARNING: BRINGUP BUILD\n\n\n"); #endif #ifdef CONFIG_WATCHDOG /* * Initialize watchdog timer. All lengthy operations between now and * task_start() must periodically call watchdog_reload() to avoid * triggering a watchdog reboot. (This pretty much applies only to * verified boot, because all *other* lengthy operations should be done * by tasks.) */ watchdog_init(); #endif /* * Verified boot needs to read the initial keyboard state and EEPROM * contents. EEPROM must be up first, so keyboard_scan can toggle * debugging settings via keys held at boot. */ #ifdef CONFIG_EEPROM eeprom_init(); #endif /* * If the EC has exclusive control over the CBI EEPROM WP signal, have * the EC set the WP if appropriate. Note that once the WP is set, the * EC must be reset via EC_RST_ODL in order for the WP to become unset. */ if (IS_ENABLED(CONFIG_EEPROM_CBI_WP) && system_is_locked()) cbi_latch_eeprom_wp(); /* * Keyboard scan init/Button init can set recovery events to * indicate to host entry into recovery mode. Before this is * done, LPC_HOST_EVENT_ALWAYS_REPORT mask needs to be * initialized correctly. */ #ifdef CONFIG_HOSTCMD_X86 lpc_init_mask(); #endif if (IS_ENABLED(CONFIG_I2C_CONTROLLER)) { /* * Some devices (like the I2C keyboards, CBI) need I2C access * pretty early, so let's initialize the controller now. */ i2c_init(); if (IS_ENABLED(CONFIG_I2C_BITBANG)) { /* * Enable I2C raw mode for the ports which need * pre-task i2c transactions. */ enable_i2c_raw_mode(true); /* Board level pre-task I2C peripheral initialization */ board_pre_task_i2c_peripheral_init(); } } #ifdef HAS_TASK_KEYSCAN #ifdef CONFIG_KEYBOARD_SCAN_ADC /* * Initialize adc here as we need to use it during keyboard_scan_init * to scan boot keys */ adc_init(); #endif keyboard_scan_init(); #endif /* HAS_TASK_KEYSCAN */ #if defined(CONFIG_DEDICATED_RECOVERY_BUTTON) || defined(CONFIG_VOLUME_BUTTONS) button_init(); #endif /* defined(CONFIG_DEDICATED_RECOVERY_BUTTON | CONFIG_VOLUME_BUTTONS) */ /* Make sure recovery boot won't be paused. */ if (IS_ENABLED(CONFIG_POWER_BUTTON_INIT_IDLE) && system_is_manual_recovery() && (system_get_reset_flags() & EC_RESET_FLAG_AP_IDLE)) { CPRINTS("Clear AP_IDLE for recovery mode"); system_clear_reset_flags(EC_RESET_FLAG_AP_IDLE); } #if defined(CONFIG_VBOOT_EFS) || defined(CONFIG_VBOOT_EFS2) /* * Execute PMIC reset in case we're here after watchdog reset to unwedge * AP. This has to be done here because vboot_main may jump to RW. */ if (IS_ENABLED(CONFIG_CHIPSET_HAS_PLATFORM_PMIC_RESET)) chipset_handle_reboot(); /* * For RO, it behaves as follows: * In recovery, it enables PD communication and returns. * In normal boot, it verifies and jumps to RW. * For RW, it returns immediately. */ vboot_main(); #elif defined(CONFIG_RWSIG) && !defined(HAS_TASK_RWSIG) /* * Check the RW firmware signature and jump to it if it is good. * * Only the Read-Only firmware needs to do the signature check. */ if (system_get_image_copy() == EC_IMAGE_RO) { #if defined(CONFIG_RWSIG_DONT_CHECK_ON_PIN_RESET) /* * If system was reset by reset-pin, do not jump and wait for * command from host */ if (system_get_reset_flags() == EC_RESET_FLAG_RESET_PIN) CPRINTS("Hard pin-reset detected, disable RW jump"); else #endif { if (rwsig_check_signature()) rwsig_jump_now(); } } #endif /* !CONFIG_VBOOT_EFS && CONFIG_RWSIG && !HAS_TASK_RWSIG */ /* * Disable I2C raw mode for the ports which needed pre-task i2c * transactions as the task is about to start and the I2C can resume * to event based transactions. */ if (IS_ENABLED(CONFIG_I2C_BITBANG) && IS_ENABLED(CONFIG_I2C_CONTROLLER)) enable_i2c_raw_mode(false); /* * Print the init time. Not completely accurate because it can't take * into account the time before timer_init(), but it'll at least catch * the majority of the time. */ CPRINTS("Inits done"); /* Launch task scheduling (never returns) */ return task_start(); }