/* Copyright 2015 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "common.h" #include "console.h" #include "mag_cal.h" #include "mat33.h" #include "mat44.h" #include "math.h" #include "math_util.h" #include "util.h" /* Data from sensor is in 16th of uT */ #define MAG_CAL_RAW_UT 16 #define MAX_EIGEN_RATIO FLOAT_TO_FP(25.0f) #define MAX_EIGEN_MAG FLOAT_TO_FP(80.0f * MAG_CAL_RAW_UT) #define MIN_EIGEN_MAG FLOAT_TO_FP(10.0f * MAG_CAL_RAW_UT) #define MAX_FIT_MAG MAX_EIGEN_MAG #define MIN_FIT_MAG MIN_EIGEN_MAG #define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ## args) #define PRINTF_FLOAT(x) ((int)((x) * 100.0f)) /* * eigen value magnitude and ratio test * * Using the magnetometer information, caculate the 3 eigen values/vectors * for the transformation. Check the eigen values are sane. */ static int moc_eigen_test(struct mag_cal_t *moc) { mat33_fp_t S; fpv3_t eigenvals; mat33_fp_t eigenvecs; fp_t evmax, evmin, evmag; int eigen_pass; /* covariance matrix */ S[0][0] = moc->acc[0][0] - fp_sq(moc->acc[0][3]); S[0][1] = S[1][0] = moc->acc[0][1] - fp_mul(moc->acc[0][3], moc->acc[1][3]); S[0][2] = S[2][0] = moc->acc[0][2] - fp_mul(moc->acc[0][3], moc->acc[2][3]); S[1][1] = moc->acc[1][1] - fp_sq(moc->acc[1][3]); S[1][2] = S[2][1] = moc->acc[1][2] - fp_mul(moc->acc[1][3], moc->acc[2][3]); S[2][2] = moc->acc[2][2] - fp_sq(moc->acc[2][3]); mat33_fp_get_eigenbasis(S, eigenvals, eigenvecs); evmax = (eigenvals[X] > eigenvals[Y]) ? eigenvals[X] : eigenvals[Y]; evmax = (eigenvals[Z] > evmax) ? eigenvals[Z] : evmax; evmin = (eigenvals[X] < eigenvals[Y]) ? eigenvals[X] : eigenvals[Y]; evmin = (eigenvals[Z] < evmin) ? eigenvals[Z] : evmin; evmag = fp_sqrtf(eigenvals[X] + eigenvals[Y] + eigenvals[Z]); eigen_pass = (fp_mul(evmin, MAX_EIGEN_RATIO) > evmax) && (evmag > MIN_EIGEN_MAG) && (evmag < MAX_EIGEN_MAG); #if 0 CPRINTF("mag eigenvalues: (%d %d %d), ", PRINTF_FLOAT(eigenvals[X]), PRINTF_FLOAT(eigenvals[Y]), PRINTF_FLOAT(eigenvals[Z])); CPRINTF("ratio %d, mag %d: pass %d\r\n", PRINTF_FLOAT(evmax / evmin), PRINTF_FLOAT(evmag), PRINTF_FLOAT(eigen_pass)); #endif return eigen_pass; } /* * Kasa sphere fitting with normal equation */ static int moc_fit(struct mag_cal_t *moc, fpv3_t bias, fp_t *radius) { sizev4_t pivot; fpv4_t out; int success = 0; /* * To reduce stack size, moc->acc is A, * moc->acc_w is b: we are looking for out, where: * * A * out = b * (4 x 4) (4 x 1) (4 x 1) */ /* complete the matrix: */ moc->acc[1][0] = moc->acc[0][1]; moc->acc[2][0] = moc->acc[0][2]; moc->acc[2][1] = moc->acc[1][2]; moc->acc[3][0] = moc->acc[0][3]; moc->acc[3][1] = moc->acc[1][3]; moc->acc[3][2] = moc->acc[2][3]; moc->acc[3][3] = FLOAT_TO_FP(1.0f); moc->acc_w[X] = fp_mul(moc->acc_w[X], FLOAT_TO_FP(-1)); moc->acc_w[Y] = fp_mul(moc->acc_w[Y], FLOAT_TO_FP(-1)); moc->acc_w[Z] = fp_mul(moc->acc_w[Z], FLOAT_TO_FP(-1)); moc->acc_w[W] = fp_mul(moc->acc_w[W], FLOAT_TO_FP(-1)); mat44_fp_decompose_lup(moc->acc, pivot); mat44_fp_solve(moc->acc, out, moc->acc_w, pivot); /* * spherei is defined by: * (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2 * * Where r is: * xc = -out[X] / 2, yc = -out[Y] / 2, zc = -out[Z] / 2 * r = sqrt(xc^2 + yc^2 + zc^2 - out[W]) */ memcpy(bias, out, sizeof(fpv3_t)); fpv3_scalar_mul(bias, FLOAT_TO_FP(-0.5f)); *radius = fp_sqrtf(fpv3_dot(bias, bias) - out[W]); #if 0 CPRINTF("mag cal: bias (%d, %d, %d), R %d uT\n", PRINTF_FLOAT(bias[X] / MAG_CAL_RAW_UT), PRINTF_FLOAT(bias[Y] / MAG_CAL_RAW_UT), PRINTF_FLOAT(bias[Z] / MAG_CAL_RAW_UT), PRINTF_FLOAT(*radius / MAG_CAL_RAW_UT)); #endif /* TODO (menghsuan): bound on bias as well? */ if (*radius > MIN_FIT_MAG && *radius < MAX_FIT_MAG) success = 1; return success; } void init_mag_cal(struct mag_cal_t *moc) { memset(moc->acc, 0, sizeof(moc->acc)); memset(moc->acc_w, 0, sizeof(moc->acc_w)); moc->nsamples = 0; } int mag_cal_update(struct mag_cal_t *moc, const intv3_t v) { int new_bias = 0; /* 1. run accumulators */ fp_t w = fp_sq(v[X]) + fp_sq(v[Y]) + fp_sq(v[Z]); moc->acc[0][3] += v[X]; moc->acc[1][3] += v[Y]; moc->acc[2][3] += v[Z]; moc->acc_w[W] += w; moc->acc[0][0] += fp_sq(v[X]); moc->acc[0][1] += fp_mul(v[X], v[Y]); moc->acc[0][2] += fp_mul(v[X], v[Z]); moc->acc_w[X] += fp_mul(v[X], w); moc->acc[1][1] += fp_sq(v[Y]); moc->acc[1][2] += fp_mul(v[Y], v[Z]); moc->acc_w[Y] += fp_mul(v[Y], w); moc->acc[2][2] += fp_sq(v[Z]); moc->acc_w[Z] += fp_mul(v[Z], w); if (moc->nsamples < MAG_CAL_MAX_SAMPLES) moc->nsamples++; /* 2. batch has enough samples? */ if (moc->batch_size > 0 && moc->nsamples >= moc->batch_size) { fp_t inv = fp_div_dbz(FLOAT_TO_FP(1.0f), INT_TO_FP((int)moc->nsamples)); moc->acc[0][3] = fp_mul(moc->acc[0][3], inv); moc->acc[1][3] = fp_mul(moc->acc[1][3], inv); moc->acc[2][3] = fp_mul(moc->acc[2][3], inv); moc->acc_w[W] = fp_mul(moc->acc_w[W], inv); moc->acc[0][0] = fp_mul(moc->acc[0][0], inv); moc->acc[0][1] = fp_mul(moc->acc[0][1], inv); moc->acc[0][2] = fp_mul(moc->acc[0][2], inv); moc->acc_w[X] = fp_mul(moc->acc_w[X], inv); moc->acc[1][1] = fp_mul(moc->acc[1][1], inv); moc->acc[1][2] = fp_mul(moc->acc[1][2], inv); moc->acc_w[Y] = fp_mul(moc->acc_w[Y], inv); moc->acc[2][2] = fp_mul(moc->acc[2][2], inv); moc->acc_w[Z] = fp_mul(moc->acc_w[Z], inv); /* 3. eigen test */ if (moc_eigen_test(moc)) { fpv3_t bias; fp_t radius; /* 4. Kasa sphere fitting */ if (moc_fit(moc, bias, &radius)) { moc->bias[X] = fp_mul(bias[X], FLOAT_TO_FP(-1)); moc->bias[Y] = fp_mul(bias[Y], FLOAT_TO_FP(-1)); moc->bias[Z] = fp_mul(bias[Z], FLOAT_TO_FP(-1)); moc->radius = radius; new_bias = 1; } } /* 5. reset for next batch */ init_mag_cal(moc); } return new_bias; }