/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* I2C cross-platform code for Chrome EC */ #include "battery.h" #include "clock.h" #include "charge_state.h" #include "console.h" #include "host_command.h" #include "gpio.h" #include "i2c.h" #include "system.h" #include "task.h" #include "util.h" #include "watchdog.h" /* Delay for bitbanging i2c corresponds roughly to 100kHz. */ #define I2C_BITBANG_DELAY_US 5 /* Number of attempts to unwedge each pin. */ #define UNWEDGE_SCL_ATTEMPTS 10 #define UNWEDGE_SDA_ATTEMPTS 3 #define CPUTS(outstr) cputs(CC_I2C, outstr) #define CPRINTS(format, args...) cprints(CC_I2C, format, ## args) /* Only chips with multi-port controllers will define I2C_CONTROLER_COUNT */ #ifndef I2C_CONTROLLER_COUNT #define I2C_CONTROLLER_COUNT I2C_PORT_COUNT #endif static struct mutex port_mutex[I2C_CONTROLLER_COUNT]; static uint32_t i2c_port_active_count; int i2c_xfer(int port, int slave_addr, const uint8_t *out, int out_size, uint8_t *in, int in_size, int flags) { int i; int ret = EC_SUCCESS; for (i = 0; i <= CONFIG_I2C_NACK_RETRY_COUNT; i++) { ret = chip_i2c_xfer(port, slave_addr, out, out_size, in, in_size, flags); if (ret != EC_ERROR_BUSY) break; } return ret; } void i2c_lock(int port, int lock) { #ifdef CONFIG_I2C_MULTI_PORT_CONTROLLER /* Lock the controller, not the port */ port = i2c_port_to_controller(port); ASSERT(port != -1); #endif if (lock) { mutex_lock(port_mutex + port); /* Disable interrupt during changing counter for preemption. */ interrupt_disable(); i2c_port_active_count++; /* Ec cannot enter sleep if there's any i2c port active. */ disable_sleep(SLEEP_MASK_I2C_MASTER); interrupt_enable(); } else { interrupt_disable(); i2c_port_active_count--; /* Once there is no i2c port active, enable sleep bit of i2c. */ if (!i2c_port_active_count) enable_sleep(SLEEP_MASK_I2C_MASTER); interrupt_enable(); mutex_unlock(port_mutex + port); } } void i2c_prepare_sysjump(void) { int i; /* Lock all i2c controllers */ for (i = 0; i < I2C_CONTROLLER_COUNT; ++i) mutex_lock(port_mutex + i); } int i2c_read32(int port, int slave_addr, int offset, int *data) { int rv; uint8_t reg, buf[sizeof(uint32_t)]; reg = offset & 0xff; /* I2C read 32-bit word: transmit 8-bit offset, and read 32bits */ i2c_lock(port, 1); rv = i2c_xfer(port, slave_addr, ®, 1, buf, sizeof(uint32_t), I2C_XFER_SINGLE); i2c_lock(port, 0); if (rv) return rv; if (slave_addr & I2C_FLAG_BIG_ENDIAN) *data = ((int)buf[0] << 24) | ((int)buf[1] << 16) | ((int)buf[0] << 8) | buf[1]; else *data = ((int)buf[3] << 24) | ((int)buf[2] << 16) | ((int)buf[1] << 8) | buf[0]; return EC_SUCCESS; } int i2c_write32(int port, int slave_addr, int offset, int data) { int rv; uint8_t buf[1 + sizeof(uint32_t)]; buf[0] = offset & 0xff; if (slave_addr & I2C_FLAG_BIG_ENDIAN) { buf[1] = (data >> 24) & 0xff; buf[2] = (data >> 16) & 0xff; buf[3] = (data >> 8) & 0xff; buf[4] = data & 0xff; } else { buf[1] = data & 0xff; buf[2] = (data >> 8) & 0xff; buf[3] = (data >> 16) & 0xff; buf[4] = (data >> 24) & 0xff; } i2c_lock(port, 1); rv = i2c_xfer(port, slave_addr, buf, sizeof(uint32_t) + 1, NULL, 0, I2C_XFER_SINGLE); i2c_lock(port, 0); return rv; } int i2c_read16(int port, int slave_addr, int offset, int *data) { int rv; uint8_t reg, buf[sizeof(uint16_t)]; reg = offset & 0xff; /* I2C read 16-bit word: transmit 8-bit offset, and read 16bits */ i2c_lock(port, 1); rv = i2c_xfer(port, slave_addr, ®, 1, buf, sizeof(uint16_t), I2C_XFER_SINGLE); i2c_lock(port, 0); if (rv) return rv; if (slave_addr & I2C_FLAG_BIG_ENDIAN) *data = ((int)buf[0] << 8) | buf[1]; else *data = ((int)buf[1] << 8) | buf[0]; return EC_SUCCESS; } int i2c_write16(int port, int slave_addr, int offset, int data) { int rv; uint8_t buf[1 + sizeof(uint16_t)]; buf[0] = offset & 0xff; if (slave_addr & I2C_FLAG_BIG_ENDIAN) { buf[1] = (data >> 8) & 0xff; buf[2] = data & 0xff; } else { buf[1] = data & 0xff; buf[2] = (data >> 8) & 0xff; } i2c_lock(port, 1); rv = i2c_xfer(port, slave_addr, buf, 1 + sizeof(uint16_t), NULL, 0, I2C_XFER_SINGLE); i2c_lock(port, 0); return rv; } int i2c_read8(int port, int slave_addr, int offset, int *data) { int rv; /* We use buf[1] here so it's aligned for DMA on STM32 */ uint8_t reg, buf[1]; reg = offset; i2c_lock(port, 1); rv = i2c_xfer(port, slave_addr, ®, 1, buf, 1, I2C_XFER_SINGLE); i2c_lock(port, 0); if (!rv) *data = buf[0]; return rv; } int i2c_write8(int port, int slave_addr, int offset, int data) { int rv; uint8_t buf[2]; buf[0] = offset; buf[1] = data; i2c_lock(port, 1); rv = i2c_xfer(port, slave_addr, buf, 2, 0, 0, I2C_XFER_SINGLE); i2c_lock(port, 0); return rv; } int i2c_read_string(int port, int slave_addr, int offset, uint8_t *data, int len) { int rv; uint8_t reg, block_length; i2c_lock(port, 1); reg = offset; /* * Send device reg space offset, and read back block length. Keep this * session open without a stop. */ rv = i2c_xfer(port, slave_addr, ®, 1, &block_length, 1, I2C_XFER_START); if (rv) goto exit; if (len && block_length > (len - 1)) block_length = len - 1; rv = i2c_xfer(port, slave_addr, 0, 0, data, block_length, I2C_XFER_STOP); data[block_length] = 0; exit: i2c_lock(port, 0); return rv; } int get_sda_from_i2c_port(int port, enum gpio_signal *sda) { int i; /* Find the matching port in i2c_ports[] table. */ for (i = 0; i < i2c_ports_used; i++) { if (i2c_ports[i].port == port) break; } /* Crash if the port given is not in the i2c_ports[] table. */ ASSERT(i != i2c_ports_used); /* Check if the SCL and SDA pins have been defined for this port. */ if (i2c_ports[i].scl == 0 && i2c_ports[i].sda == 0) return EC_ERROR_INVAL; *sda = i2c_ports[i].sda; return EC_SUCCESS; } int get_scl_from_i2c_port(int port, enum gpio_signal *scl) { int i; /* Find the matching port in i2c_ports[] table. */ for (i = 0; i < i2c_ports_used; i++) { if (i2c_ports[i].port == port) break; } /* Crash if the port given is not in the i2c_ports[] table. */ ASSERT(i != i2c_ports_used); /* Check if the SCL and SDA pins have been defined for this port. */ if (i2c_ports[i].scl == 0 && i2c_ports[i].sda == 0) return EC_ERROR_INVAL; *scl = i2c_ports[i].scl; return EC_SUCCESS; } void i2c_raw_set_scl(int port, int level) { enum gpio_signal g; if (get_scl_from_i2c_port(port, &g) == EC_SUCCESS) gpio_set_level(g, level); } void i2c_raw_set_sda(int port, int level) { enum gpio_signal g; if (get_sda_from_i2c_port(port, &g) == EC_SUCCESS) gpio_set_level(g, level); } int i2c_raw_mode(int port, int enable) { enum gpio_signal sda, scl; int ret_sda, ret_scl; /* Get the SDA and SCL pins for this port. If none, then return. */ if (get_sda_from_i2c_port(port, &sda) != EC_SUCCESS) return EC_ERROR_INVAL; if (get_scl_from_i2c_port(port, &scl) != EC_SUCCESS) return EC_ERROR_INVAL; if (enable) { /* * To enable raw mode, take out of alternate function mode and * set the flags to open drain output. */ ret_sda = gpio_config_pin(MODULE_I2C, sda, 0); ret_scl = gpio_config_pin(MODULE_I2C, scl, 0); gpio_set_flags(scl, GPIO_ODR_HIGH); gpio_set_flags(sda, GPIO_ODR_HIGH); } else { /* * Configure the I2C pins to exit raw mode and return * to normal mode. */ ret_sda = gpio_config_pin(MODULE_I2C, sda, 1); ret_scl = gpio_config_pin(MODULE_I2C, scl, 1); } return ret_sda == EC_SUCCESS ? ret_scl : ret_sda; } /* * Unwedge the i2c bus for the given port. * * Some devices on our i2c busses keep power even if we get a reset. That * means that they could be part way through a transaction and could be * driving the bus in a way that makes it hard for us to talk on the bus. * ...or they might listen to the next transaction and interpret it in a * weird way. * * Note that devices could be in one of several states: * - If a device got interrupted in a write transaction it will be watching * for additional data to finish its write. It will probably be looking to * ack the data (drive the data line low) after it gets everything. * - If a device got interrupted while responding to a register read, it will * be watching for clocks and will drive data out when it sees clocks. At * the moment it might be trying to send out a 1 (so both clock and data * may be high) or it might be trying to send out a 0 (so it's driving data * low). * * We attempt to unwedge the bus by doing: * - If SCL is being held low, then a slave is clock extending. The only * thing we can do is try to wait until the slave stops clock extending. * - Otherwise, we will toggle the clock until the slave releases the SDA line. * Once the SDA line is released, try to send a STOP bit. Rinse and repeat * until either the bus is normal, or we run out of attempts. * * Note this should work for most devices, but depending on the slaves i2c * state machine, it may not be possible to unwedge the bus. */ int i2c_unwedge(int port) { int i, j; int ret = EC_SUCCESS; /* Try to put port in to raw bit bang mode. */ if (i2c_raw_mode(port, 1) != EC_SUCCESS) return EC_ERROR_UNKNOWN; /* * If clock is low, wait for a while in case of clock stretched * by a slave. */ if (!i2c_raw_get_scl(port)) { for (i = 0;; i++) { if (i >= UNWEDGE_SCL_ATTEMPTS) { /* * If we get here, a slave is holding the clock * low and there is nothing we can do. */ CPRINTS("I2C unwedge failed, SCL is being held low"); ret = EC_ERROR_UNKNOWN; goto unwedge_done; } udelay(I2C_BITBANG_DELAY_US); if (i2c_raw_get_scl(port)) break; } } if (i2c_raw_get_sda(port)) goto unwedge_done; CPRINTS("I2C unwedge called with SDA held low"); /* Keep trying to unwedge the SDA line until we run out of attempts. */ for (i = 0; i < UNWEDGE_SDA_ATTEMPTS; i++) { /* Drive the clock high. */ i2c_raw_set_scl(port, 1); udelay(I2C_BITBANG_DELAY_US); /* * Clock through the problem by clocking out 9 bits. If slave * releases the SDA line, then we can stop clocking bits and * send a STOP. */ for (j = 0; j < 9; j++) { if (i2c_raw_get_sda(port)) break; i2c_raw_set_scl(port, 0); udelay(I2C_BITBANG_DELAY_US); i2c_raw_set_scl(port, 1); udelay(I2C_BITBANG_DELAY_US); } /* Take control of SDA line and issue a STOP command. */ i2c_raw_set_sda(port, 0); udelay(I2C_BITBANG_DELAY_US); i2c_raw_set_sda(port, 1); udelay(I2C_BITBANG_DELAY_US); /* Check if the bus is unwedged. */ if (i2c_raw_get_sda(port) && i2c_raw_get_scl(port)) break; } if (!i2c_raw_get_sda(port)) { CPRINTS("I2C unwedge failed, SDA still low"); ret = EC_ERROR_UNKNOWN; } if (!i2c_raw_get_scl(port)) { CPRINTS("I2C unwedge failed, SCL still low"); ret = EC_ERROR_UNKNOWN; } unwedge_done: /* Take port out of raw bit bang mode. */ i2c_raw_mode(port, 0); return ret; } /*****************************************************************************/ /* Host commands */ /* * TODO(crosbug.com/p/23570): remove separate read and write commands, as soon * as ectool supports EC_CMD_I2C_PASSTHRU. */ static int port_is_valid(int port) { int i; for (i = 0; i < i2c_ports_used; i++) if (i2c_ports[i].port == port) return 1; return 0; } static int i2c_command_read(struct host_cmd_handler_args *args) { const struct ec_params_i2c_read *p = args->params; struct ec_response_i2c_read *r = args->response; int data, rv = -1; #ifdef CONFIG_I2C_PASSTHRU_RESTRICTED if (system_is_locked()) return EC_RES_ACCESS_DENIED; #endif if (!port_is_valid(p->port)) return EC_RES_INVALID_PARAM; if (p->read_size == 16) rv = i2c_read16(p->port, p->addr, p->offset, &data); else if (p->read_size == 8) rv = i2c_read8(p->port, p->addr, p->offset, &data); if (rv) return EC_RES_ERROR; r->data = data; args->response_size = sizeof(*r); return EC_RES_SUCCESS; } DECLARE_HOST_COMMAND(EC_CMD_I2C_READ, i2c_command_read, EC_VER_MASK(0)); static int i2c_command_write(struct host_cmd_handler_args *args) { const struct ec_params_i2c_write *p = args->params; int rv = -1; #ifdef CONFIG_I2C_PASSTHRU_RESTRICTED if (system_is_locked()) return EC_RES_ACCESS_DENIED; #endif if (!port_is_valid(p->port)) return EC_RES_INVALID_PARAM; if (p->write_size == 16) rv = i2c_write16(p->port, p->addr, p->offset, p->data); else if (p->write_size == 8) rv = i2c_write8(p->port, p->addr, p->offset, p->data); if (rv) return EC_RES_ERROR; return EC_RES_SUCCESS; } DECLARE_HOST_COMMAND(EC_CMD_I2C_WRITE, i2c_command_write, EC_VER_MASK(0)); #ifdef CONFIG_I2C_DEBUG_PASSTHRU #define PTHRUPRINTF(format, args...) CPRINTS(format, ## args) #else #define PTHRUPRINTF(format, args...) #endif /** * Perform the voluminous checking required for this message * * @param args Arguments * @return 0 if OK, EC_RES_INVALID_PARAM on error */ static int check_i2c_params(const struct host_cmd_handler_args *args) { const struct ec_params_i2c_passthru *params = args->params; const struct ec_params_i2c_passthru_msg *msg; int read_len = 0, write_len = 0; unsigned int size; int msgnum; if (args->params_size < sizeof(*params)) { PTHRUPRINTF("i2c passthru no params, params_size=%d, " "need at least %d", args->params_size, sizeof(*params)); return EC_RES_INVALID_PARAM; } size = sizeof(*params) + params->num_msgs * sizeof(*msg); if (args->params_size < size) { PTHRUPRINTF("i2c passthru params_size=%d, " "need at least %d", args->params_size, size); return EC_RES_INVALID_PARAM; } if (!port_is_valid(params->port)) { PTHRUPRINTF("i2c passthru invalid port %d", params->port); return EC_RES_INVALID_PARAM; } /* Loop and process messages */; for (msgnum = 0, msg = params->msg; msgnum < params->num_msgs; msgnum++, msg++) { unsigned int addr_flags = msg->addr_flags; PTHRUPRINTF("i2c passthru port=%d, %s, addr=0x%02x, " "len=0x%02x", params->port, addr_flags & EC_I2C_FLAG_READ ? "read" : "write", addr_flags & EC_I2C_ADDR_MASK, msg->len); if (addr_flags & EC_I2C_FLAG_READ) read_len += msg->len; else write_len += msg->len; } /* Check there is room for the data */ if (args->response_max < sizeof(struct ec_response_i2c_passthru) + read_len) { PTHRUPRINTF("i2c passthru overflow1"); return EC_RES_INVALID_PARAM; } /* Must have bytes to write */ if (args->params_size < size + write_len) { PTHRUPRINTF("i2c passthru overflow2"); return EC_RES_INVALID_PARAM; } return EC_RES_SUCCESS; } static int i2c_command_passthru(struct host_cmd_handler_args *args) { const struct ec_params_i2c_passthru *params = args->params; const struct ec_params_i2c_passthru_msg *msg; struct ec_response_i2c_passthru *resp = args->response; const uint8_t *out; int in_len; int ret; #if defined(VIRTUAL_BATTERY_ADDR) && defined(I2C_PORT_VIRTUAL_BATTERY) uint8_t batt_param = 0; #endif #ifdef CONFIG_I2C_PASSTHRU_RESTRICTED if (system_is_locked()) return EC_RES_ACCESS_DENIED; #endif #ifdef CONFIG_BATTERY_CUT_OFF /* * Some batteries would wake up after cut-off if we talk to it. */ if (battery_is_cut_off()) return EC_RES_ACCESS_DENIED; #endif ret = check_i2c_params(args); if (ret) return ret; /* Loop and process messages */ resp->i2c_status = 0; out = args->params + sizeof(*params) + params->num_msgs * sizeof(*msg); in_len = 0; i2c_lock(params->port, 1); for (resp->num_msgs = 0, msg = params->msg; resp->num_msgs < params->num_msgs; resp->num_msgs++, msg++) { /* EC uses 8-bit slave address */ unsigned int addr = (msg->addr_flags & EC_I2C_ADDR_MASK) << 1; int xferflags = I2C_XFER_START; int read_len = 0, write_len = 0; int rv = 1; if (msg->addr_flags & EC_I2C_FLAG_READ) read_len = msg->len; else write_len = msg->len; /* Set stop bit for last message */ if (resp->num_msgs == params->num_msgs - 1) xferflags |= I2C_XFER_STOP; #if defined(VIRTUAL_BATTERY_ADDR) && defined(I2C_PORT_VIRTUAL_BATTERY) if (params->port == I2C_PORT_VIRTUAL_BATTERY && VIRTUAL_BATTERY_ADDR == addr) { /* get batt param from write msg */ if (*out) batt_param = *out; rv = virtual_battery_read(batt_param, &resp->data[in_len], read_len); } #endif /* Transfer next message */ PTHRUPRINTF("i2c passthru xfer port=%x, addr=%x, out=%p, " "write_len=%x, data=%p, read_len=%x, flags=%x", params->port, addr, out, write_len, &resp->data[in_len], read_len, xferflags); if (rv) rv = i2c_xfer(params->port, addr, out, write_len, &resp->data[in_len], read_len, xferflags); if (rv) { /* Driver will have sent a stop bit here */ if (rv == EC_ERROR_TIMEOUT) resp->i2c_status = EC_I2C_STATUS_TIMEOUT; else resp->i2c_status = EC_I2C_STATUS_NAK; break; } in_len += read_len; out += write_len; } args->response_size = sizeof(*resp) + in_len; /* Unlock port */ i2c_lock(params->port, 0); /* * Return success even if transfer failed so response is sent. Host * will check message status to determine the transfer result. */ return EC_RES_SUCCESS; } DECLARE_HOST_COMMAND(EC_CMD_I2C_PASSTHRU, i2c_command_passthru, EC_VER_MASK(0)); /*****************************************************************************/ /* Console commands */ #ifdef CONFIG_CMD_I2C_SCAN static void scan_bus(int port, const char *desc) { int a; uint8_t tmp; ccprintf("Scanning %d %s", port, desc); /* Don't scan a busy port, since reads will just fail / time out */ a = i2c_get_line_levels(port); if (a != I2C_LINE_IDLE) { ccprintf(": port busy (SDA=%d, SCL=%d)\n", (a & I2C_LINE_SDA_HIGH) ? 1 : 0, (a & I2C_LINE_SCL_HIGH) ? 1 : 0); return; } i2c_lock(port, 1); for (a = 0; a < 0x100; a += 2) { watchdog_reload(); /* Otherwise a full scan trips watchdog */ ccputs("."); /* Do a single read */ if (!i2c_xfer(port, a, NULL, 0, &tmp, 1, I2C_XFER_SINGLE)) ccprintf("\n 0x%02x", a); } i2c_lock(port, 0); ccputs("\n"); } static int command_scan(int argc, char **argv) { int i; for (i = 0; i < i2c_ports_used; i++) scan_bus(i2c_ports[i].port, i2c_ports[i].name); return EC_SUCCESS; } DECLARE_CONSOLE_COMMAND(i2cscan, command_scan, NULL, "Scan I2C ports for devices", NULL); #endif #ifdef CONFIG_CMD_I2C_XFER static int command_i2cxfer(int argc, char **argv) { int port, slave_addr; uint8_t offset; int v = 0; uint8_t data[32]; char *e; int rv = 0; if (argc < 5) return EC_ERROR_PARAM_COUNT; port = strtoi(argv[2], &e, 0); if (*e) return EC_ERROR_PARAM2; slave_addr = strtoi(argv[3], &e, 0); if (*e) return EC_ERROR_PARAM3; offset = strtoi(argv[4], &e, 0); if (*e) return EC_ERROR_PARAM4; if (argc >= 6) { v = strtoi(argv[5], &e, 0); if (*e) return EC_ERROR_PARAM5; } if (strcasecmp(argv[1], "r") == 0) { /* 8-bit read */ rv = i2c_read8(port, slave_addr, offset, &v); if (!rv) ccprintf("0x%02x [%d]\n", v); } else if (strcasecmp(argv[1], "r16") == 0) { /* 16-bit read */ rv = i2c_read16(port, slave_addr, offset, &v); if (!rv) ccprintf("0x%04x [%d]\n", v); } else if (strcasecmp(argv[1], "rlen") == 0) { /* Arbitrary length read; param5 = len */ if (argc < 6 || v < 0 || v > sizeof(data)) return EC_ERROR_PARAM5; i2c_lock(port, 1); rv = i2c_xfer(port, slave_addr, &offset, 1, data, v, I2C_XFER_SINGLE); i2c_lock(port, 0); if (!rv) ccprintf("Data: %.*h\n", v, data); } else if (strcasecmp(argv[1], "w") == 0) { /* 8-bit write */ if (argc < 6) return EC_ERROR_PARAM5; rv = i2c_write8(port, slave_addr, offset, v); } else if (strcasecmp(argv[1], "w16") == 0) { /* 16-bit write */ if (argc < 6) return EC_ERROR_PARAM5; rv = i2c_write16(port, slave_addr, offset, v); } else { return EC_ERROR_PARAM1; } return rv; } DECLARE_CONSOLE_COMMAND(i2cxfer, command_i2cxfer, "r/r16/rlen/w/w16 port addr offset [value | len]", "Read write I2C", NULL); #endif