/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* System module for Chrome EC : hardware specific implementation */ #include "clock.h" #include "console.h" #include "cpu.h" #include "flash.h" #include "host_command.h" #include "registers.h" #include "panic.h" #include "system.h" #include "task.h" #include "util.h" #include "version.h" #include "watchdog.h" #ifdef CONFIG_STM32_CLOCK_LSE #define BDCR_SRC BDCR_SRC_LSE #define BDCR_RDY STM32_RCC_BDCR_LSERDY #else #define BDCR_SRC BDCR_SRC_LSI #define BDCR_RDY 0 #endif #define BDCR_ENABLE_VALUE (STM32_RCC_BDCR_RTCEN | BDCR_RTCSEL(BDCR_SRC) | \ BDCR_RDY) #define BDCR_ENABLE_MASK (BDCR_ENABLE_VALUE | BDCR_RTCSEL_MASK | \ STM32_RCC_BDCR_BDRST) /* We use 16-bit BKP / BBRAM entries. */ #define STM32_BKP_ENTRIES (STM32_BKP_BYTES / 2) /* * Use 32-bit for reset flags, if we have space for it: * - 2 indexes are used unconditionally (SCRATCHPAD and SAVED_RESET_FLAGS) * - VBNV_CONTEXT requires 8 indexes, so a total of 10 (which is the total * number of entries on some STM32 variants). * - Other config options are not a problem (they only take a few entries) * * Given this, we can only add an extra entry for the top 16-bit of reset flags * if VBNV_CONTEXT is not enabled, or if we have more than 10 entries. */ #if !defined(CONFIG_HOSTCMD_VBNV_CONTEXT) || STM32_BKP_ENTRIES > 10 #define CONFIG_STM32_RESET_FLAGS_EXTENDED #endif enum bkpdata_index { BKPDATA_INDEX_SCRATCHPAD, /* General-purpose scratchpad */ BKPDATA_INDEX_SAVED_RESET_FLAGS, /* Saved reset flags */ #ifdef CONFIG_STM32_RESET_FLAGS_EXTENDED BKPDATA_INDEX_SAVED_RESET_FLAGS_2, /* Saved reset flags (cont) */ #endif #ifdef CONFIG_HOSTCMD_VBNV_CONTEXT BKPDATA_INDEX_VBNV_CONTEXT0, BKPDATA_INDEX_VBNV_CONTEXT1, BKPDATA_INDEX_VBNV_CONTEXT2, BKPDATA_INDEX_VBNV_CONTEXT3, BKPDATA_INDEX_VBNV_CONTEXT4, BKPDATA_INDEX_VBNV_CONTEXT5, BKPDATA_INDEX_VBNV_CONTEXT6, BKPDATA_INDEX_VBNV_CONTEXT7, #endif #ifdef CONFIG_SOFTWARE_PANIC BKPDATA_INDEX_SAVED_PANIC_REASON, /* Saved panic reason */ BKPDATA_INDEX_SAVED_PANIC_INFO, /* Saved panic data */ BKPDATA_INDEX_SAVED_PANIC_EXCEPTION, /* Saved panic exception code */ #endif #ifdef CONFIG_USB_PD_DUAL_ROLE BKPDATA_INDEX_PD0, /* USB-PD saved port0 state */ BKPDATA_INDEX_PD1, /* USB-PD saved port1 state */ #endif BKPDATA_COUNT }; BUILD_ASSERT(STM32_BKP_ENTRIES >= BKPDATA_COUNT); #ifdef CONFIG_USB_PD_DUAL_ROLE BUILD_ASSERT(CONFIG_USB_PD_PORT_COUNT <= 2); #endif /** * Read backup register at specified index. * * @return The value of the register or 0 if invalid index. */ static uint16_t bkpdata_read(enum bkpdata_index index) { if (index < 0 || index >= STM32_BKP_ENTRIES) return 0; if (index & 1) return STM32_BKP_DATA(index >> 1) >> 16; else return STM32_BKP_DATA(index >> 1) & 0xFFFF; } /** * Write hibernate register at specified index. * * @return nonzero if error. */ static int bkpdata_write(enum bkpdata_index index, uint16_t value) { static struct mutex bkpdata_write_mutex; if (index < 0 || index >= STM32_BKP_ENTRIES) return EC_ERROR_INVAL; /* * Two entries share a single 32-bit register, lock mutex to prevent * read/mask/write races. */ mutex_lock(&bkpdata_write_mutex); if (index & 1) { uint32_t val = STM32_BKP_DATA(index >> 1); val = (val & 0x0000FFFF) | (value << 16); STM32_BKP_DATA(index >> 1) = val; } else { uint32_t val = STM32_BKP_DATA(index >> 1); val = (val & 0xFFFF0000) | value; STM32_BKP_DATA(index >> 1) = val; } mutex_unlock(&bkpdata_write_mutex); return EC_SUCCESS; } void __no_hibernate(uint32_t seconds, uint32_t microseconds) { #ifdef CONFIG_COMMON_RUNTIME /* * Hibernate not implemented on this platform. * * Until then, treat this as a request to hard-reboot. */ cprints(CC_SYSTEM, "hibernate not supported, so rebooting"); cflush(); system_reset(SYSTEM_RESET_HARD); #endif } void __enter_hibernate(uint32_t seconds, uint32_t microseconds) __attribute__((weak, alias("__no_hibernate"))); void system_hibernate(uint32_t seconds, uint32_t microseconds) { #ifdef CONFIG_HOSTCMD_PD /* Inform the PD MCU that we are going to hibernate. */ host_command_pd_request_hibernate(); /* Wait to ensure exchange with PD before hibernating. */ msleep(100); #endif /* Flush console before hibernating */ cflush(); if (board_hibernate) board_hibernate(); /* chip specific standby mode */ __enter_hibernate(seconds, microseconds); } static void check_reset_cause(void) { uint32_t flags = bkpdata_read(BKPDATA_INDEX_SAVED_RESET_FLAGS); uint32_t raw_cause = STM32_RCC_RESET_CAUSE; uint32_t pwr_status = STM32_PWR_RESET_CAUSE; #ifdef CONFIG_STM32_RESET_FLAGS_EXTENDED flags |= bkpdata_read(BKPDATA_INDEX_SAVED_RESET_FLAGS_2) << 16; #endif /* Clear the hardware reset cause by setting the RMVF bit */ STM32_RCC_RESET_CAUSE |= RESET_CAUSE_RMVF; /* Clear SBF in PWR_CSR */ STM32_PWR_RESET_CAUSE_CLR |= RESET_CAUSE_SBF_CLR; /* Clear saved reset flags */ bkpdata_write(BKPDATA_INDEX_SAVED_RESET_FLAGS, 0); #ifdef CONFIG_STM32_RESET_FLAGS_EXTENDED bkpdata_write(BKPDATA_INDEX_SAVED_RESET_FLAGS_2, 0); #endif if (raw_cause & RESET_CAUSE_WDG) { /* * IWDG or WWDG, if the watchdog was not used as an hard reset * mechanism */ if (!(flags & RESET_FLAG_HARD)) flags |= RESET_FLAG_WATCHDOG; } if (raw_cause & RESET_CAUSE_SFT) flags |= RESET_FLAG_SOFT; if (raw_cause & RESET_CAUSE_POR) flags |= RESET_FLAG_POWER_ON; if (raw_cause & RESET_CAUSE_PIN) flags |= RESET_FLAG_RESET_PIN; if (pwr_status & RESET_CAUSE_SBF) /* Hibernated and subsequently awakened */ flags |= RESET_FLAG_HIBERNATE; if (!flags && (raw_cause & RESET_CAUSE_OTHER)) flags |= RESET_FLAG_OTHER; /* * WORKAROUND: as we cannot de-activate the watchdog during * long hibernation, we are woken-up once by the watchdog and * go back to hibernate if we detect that condition, without * watchdog initialized this time. * The RTC deadline (if any) is already set. */ if ((flags & (RESET_FLAG_HIBERNATE | RESET_FLAG_WATCHDOG)) == (RESET_FLAG_HIBERNATE | RESET_FLAG_WATCHDOG)) { __enter_hibernate(0, 0); } system_set_reset_flags(flags); } /* Stop all timers and WDGs we might use when JTAG stops the CPU. */ void chip_pre_init(void) { uint32_t apb1fz_reg = 0; uint32_t apb2fz_reg = 0; #if defined(CHIP_FAMILY_STM32F0) apb1fz_reg = STM32_RCC_PB1_TIM2 | STM32_RCC_PB1_TIM3 | STM32_RCC_PB1_TIM6 | STM32_RCC_PB1_TIM7 | STM32_RCC_PB1_WWDG | STM32_RCC_PB1_IWDG; apb2fz_reg = STM32_RCC_PB2_TIM15 | STM32_RCC_PB2_TIM16 | STM32_RCC_PB2_TIM17 | STM32_RCC_PB2_TIM1; /* enable clock to debug module before writing */ STM32_RCC_APB2ENR |= STM32_RCC_DBGMCUEN; #elif defined(CHIP_FAMILY_STM32F3) apb1fz_reg = STM32_RCC_PB1_TIM2 | STM32_RCC_PB1_TIM3 | STM32_RCC_PB1_TIM4 | STM32_RCC_PB1_TIM5 | STM32_RCC_PB1_TIM6 | STM32_RCC_PB1_TIM7 | STM32_RCC_PB1_WWDG | STM32_RCC_PB1_IWDG; apb2fz_reg = STM32_RCC_PB2_TIM15 | STM32_RCC_PB2_TIM16 | STM32_RCC_PB2_TIM17; #elif defined(CHIP_FAMILY_STM32F4) /* TODO(nsanders): Implement this if someone needs jtag. */ #elif defined(CHIP_FAMILY_STM32L4) apb1fz_reg = STM32_RCC_PB1_TIM2 | STM32_RCC_PB1_TIM3 | STM32_RCC_PB1_TIM4 | STM32_RCC_PB1_TIM5 | STM32_RCC_PB1_TIM6 | STM32_RCC_PB1_TIM7 | STM32_RCC_PB1_WWDG | STM32_RCC_PB1_IWDG; apb2fz_reg = STM32_RCC_PB2_TIM1 | STM32_RCC_PB2_TIM8; #elif defined(CHIP_FAMILY_STM32L) apb1fz_reg = STM32_RCC_PB1_TIM2 | STM32_RCC_PB1_TIM3 | STM32_RCC_PB1_TIM4 | STM32_RCC_PB1_WWDG | STM32_RCC_PB1_IWDG; apb2fz_reg = STM32_RCC_PB2_TIM9 | STM32_RCC_PB2_TIM10 | STM32_RCC_PB2_TIM11; #elif defined(CHIP_FAMILY_STM32H7) /* TODO(b/67081508) */ #endif if (apb1fz_reg) STM32_DBGMCU_APB1FZ |= apb1fz_reg; if (apb2fz_reg) STM32_DBGMCU_APB2FZ |= apb2fz_reg; } void system_pre_init(void) { #ifdef CONFIG_SOFTWARE_PANIC uint16_t reason, info; uint8_t exception; #endif /* enable clock on Power module */ #ifndef CHIP_FAMILY_STM32H7 STM32_RCC_APB1ENR |= STM32_RCC_PWREN; #endif #if defined(CHIP_FAMILY_STM32F4) /* enable backup registers */ STM32_RCC_AHB1ENR |= STM32_RCC_AHB1ENR_BKPSRAMEN; #elif defined(CHIP_FAMILY_STM32H7) /* enable backup registers */ STM32_RCC_AHB4ENR |= 1 << 28; #else /* enable backup registers */ STM32_RCC_APB1ENR |= 1 << 27; #endif /* Delay 1 APB clock cycle after the clock is enabled */ clock_wait_bus_cycles(BUS_APB, 1); /* Enable access to RCC CSR register and RTC backup registers */ STM32_PWR_CR |= 1 << 8; #ifdef CHIP_VARIANT_STM32L476 /* Enable Vddio2 */ STM32_PWR_CR2 |= 1 << 9; #endif /* switch on LSI */ STM32_RCC_CSR |= 1 << 0; /* Wait for LSI to be ready */ while (!(STM32_RCC_CSR & (1 << 1))) ; /* re-configure RTC if needed */ #ifdef CHIP_FAMILY_STM32L if ((STM32_RCC_CSR & 0x00C30000) != 0x00420000) { /* The RTC settings are bad, we need to reset it */ STM32_RCC_CSR |= 0x00800000; /* Enable RTC and use LSI as clock source */ STM32_RCC_CSR = (STM32_RCC_CSR & ~0x00C30000) | 0x00420000; } #elif defined(CHIP_FAMILY_STM32F0) || defined(CHIP_FAMILY_STM32F3) || \ defined(CHIP_FAMILY_STM32L4) || defined(CHIP_FAMILY_STM32F4) || \ defined(CHIP_FAMILY_STM32H7) if ((STM32_RCC_BDCR & BDCR_ENABLE_MASK) != BDCR_ENABLE_VALUE) { /* The RTC settings are bad, we need to reset it */ STM32_RCC_BDCR |= STM32_RCC_BDCR_BDRST; STM32_RCC_BDCR = STM32_RCC_BDCR & ~BDCR_ENABLE_MASK; #ifdef CONFIG_STM32_CLOCK_LSE /* Turn on LSE */ STM32_RCC_BDCR |= STM32_RCC_BDCR_LSEON; /* Wait for LSE to be ready */ while (!(STM32_RCC_BDCR & STM32_RCC_BDCR_LSERDY)) ; #endif /* Select clock source and enable RTC */ STM32_RCC_BDCR |= BDCR_RTCSEL(BDCR_SRC) | STM32_RCC_BDCR_RTCEN; } #else #error "Unsupported chip family" #endif check_reset_cause(); #ifdef CONFIG_SOFTWARE_PANIC /* Restore then clear saved panic reason */ reason = bkpdata_read(BKPDATA_INDEX_SAVED_PANIC_REASON); info = bkpdata_read(BKPDATA_INDEX_SAVED_PANIC_INFO); exception = bkpdata_read(BKPDATA_INDEX_SAVED_PANIC_EXCEPTION); if (reason || info || exception) { panic_set_reason(reason, info, exception); bkpdata_write(BKPDATA_INDEX_SAVED_PANIC_REASON, 0); bkpdata_write(BKPDATA_INDEX_SAVED_PANIC_INFO, 0); bkpdata_write(BKPDATA_INDEX_SAVED_PANIC_EXCEPTION, 0); } #endif } void system_reset(int flags) { uint32_t save_flags = 0; /* Disable interrupts to avoid task swaps during reboot */ interrupt_disable(); /* Save current reset reasons if necessary */ if (flags & SYSTEM_RESET_PRESERVE_FLAGS) save_flags = system_get_reset_flags() | RESET_FLAG_PRESERVED; if (flags & SYSTEM_RESET_LEAVE_AP_OFF) save_flags |= RESET_FLAG_AP_OFF; /* Remember that the software asked us to hard reboot */ if (flags & SYSTEM_RESET_HARD) save_flags |= RESET_FLAG_HARD; #ifdef CONFIG_STM32_RESET_FLAGS_EXTENDED if (flags & SYSTEM_RESET_AP_WATCHDOG) save_flags |= RESET_FLAG_AP_WATCHDOG; bkpdata_write(BKPDATA_INDEX_SAVED_RESET_FLAGS, save_flags & 0xffff); bkpdata_write(BKPDATA_INDEX_SAVED_RESET_FLAGS_2, save_flags >> 16); #else /* Reset flags are 32-bits, but BBRAM entry is only 16 bits. */ ASSERT(!(save_flags >> 16)); bkpdata_write(BKPDATA_INDEX_SAVED_RESET_FLAGS, save_flags); #endif if (flags & SYSTEM_RESET_HARD) { #ifdef CONFIG_SOFTWARE_PANIC uint32_t reason, info; uint8_t exception; /* Panic data will be wiped by hard reset, so save it */ panic_get_reason(&reason, &info, &exception); /* 16 bits stored - upper 16 bits of reason / info are lost */ bkpdata_write(BKPDATA_INDEX_SAVED_PANIC_REASON, reason); bkpdata_write(BKPDATA_INDEX_SAVED_PANIC_INFO, info); bkpdata_write(BKPDATA_INDEX_SAVED_PANIC_EXCEPTION, exception); #endif #ifdef CHIP_FAMILY_STM32L /* * Ask the flash module to reboot, so that we reload the * option bytes. */ flash_physical_force_reload(); /* Fall through to watchdog if that fails */ #endif #if defined(CHIP_FAMILY_STM32F0) || defined(CHIP_FAMILY_STM32F3) /* * On some chips, a reboot doesn't always reload the option * bytes, and we need to explicitly request for a reload. * The reload request triggers a chip reset, so let's just * use this for hard reset. */ STM32_FLASH_CR |= FLASH_CR_OBL_LAUNCH; #elif defined(CHIP_FAMILY_STM32L4) STM32_FLASH_KEYR = FLASH_KEYR_KEY1; STM32_FLASH_KEYR = FLASH_KEYR_KEY2; STM32_FLASH_OPTKEYR = FLASH_OPTKEYR_KEY1; STM32_FLASH_OPTKEYR = FLASH_OPTKEYR_KEY2; STM32_FLASH_CR |= FLASH_CR_OBL_LAUNCH; #else /* Ask the watchdog to trigger a hard reboot */ STM32_IWDG_KR = STM32_IWDG_KR_UNLOCK; STM32_IWDG_RLR = 0x1; /* Wait for value to be reloaded. */ while (STM32_IWDG_SR & STM32_IWDG_SR_RVU) ; STM32_IWDG_KR = STM32_IWDG_KR_RELOAD; #endif /* wait for the chip to reboot */ while (1) ; } else { if (flags & SYSTEM_RESET_WAIT_EXT) { int i; /* Wait 10 seconds for external reset */ for (i = 0; i < 1000; i++) { watchdog_reload(); udelay(10000); } } CPU_NVIC_APINT = 0x05fa0004; } /* Spin and wait for reboot; should never return */ while (1) ; } int system_set_scratchpad(uint32_t value) { /* Check if value fits in 16 bits */ if (value & 0xffff0000) return EC_ERROR_INVAL; return bkpdata_write(BKPDATA_INDEX_SCRATCHPAD, (uint16_t)value); } uint32_t system_get_scratchpad(void) { return (uint32_t)bkpdata_read(BKPDATA_INDEX_SCRATCHPAD); } const char *system_get_chip_vendor(void) { return "stm"; } const char *system_get_chip_name(void) { return STRINGIFY(CHIP_VARIANT); } const char *system_get_chip_revision(void) { return ""; } int system_get_chip_unique_id(uint8_t **id) { *id = (uint8_t *)STM32_UNIQUE_ID_ADDRESS; return STM32_UNIQUE_ID_LENGTH; } static int bkpdata_index_lookup(enum system_bbram_idx idx, int *msb) { *msb = 0; #ifdef CONFIG_HOSTCMD_VBNV_CONTEXT if (idx >= SYSTEM_BBRAM_IDX_VBNVBLOCK0 && idx <= SYSTEM_BBRAM_IDX_VBNVBLOCK15) { *msb = (idx - SYSTEM_BBRAM_IDX_VBNVBLOCK0) % 2; return BKPDATA_INDEX_VBNV_CONTEXT0 + (idx - SYSTEM_BBRAM_IDX_VBNVBLOCK0) / 2; } #endif #ifdef CONFIG_USB_PD_DUAL_ROLE if (idx == SYSTEM_BBRAM_IDX_PD0) return BKPDATA_INDEX_PD0; if (idx == SYSTEM_BBRAM_IDX_PD1) return BKPDATA_INDEX_PD1; #endif return -1; } int system_get_bbram(enum system_bbram_idx idx, uint8_t *value) { int msb = 0; int bkpdata_index = bkpdata_index_lookup(idx, &msb); if (bkpdata_index < 0) return EC_ERROR_INVAL; *value = (bkpdata_read(bkpdata_index) >> (8 * msb)) & 0xff; return EC_SUCCESS; } int system_set_bbram(enum system_bbram_idx idx, uint8_t value) { uint16_t read; int msb = 0; int bkpdata_index = bkpdata_index_lookup(idx, &msb); if (bkpdata_index < 0) return EC_ERROR_INVAL; read = bkpdata_read(bkpdata_index); if (msb) read = (read & 0xff) | (value << 8); else read = (read & 0xff00) | value; bkpdata_write(bkpdata_index, read); return EC_SUCCESS; } int system_is_reboot_warm(void) { #if defined(CHIP_FAMILY_STM32F0) || defined(CHIP_FAMILY_STM32F3) return ((STM32_RCC_AHBENR & 0x7e0000) == 0x7e0000); #elif defined(CHIP_FAMILY_STM32L) return ((STM32_RCC_AHBENR & 0x3f) == 0x3f); #elif defined(CHIP_FAMILY_STM32L4) return ((STM32_RCC_AHB2ENR & STM32_RCC_AHB2ENR_GPIOMASK) == STM32_RCC_AHB2ENR_GPIOMASK); #elif defined(CHIP_FAMILY_STM32F4) return ((STM32_RCC_AHB1ENR & STM32_RCC_AHB1ENR_GPIOMASK) == STM32_RCC_AHB1ENR_GPIOMASK); #elif defined(CHIP_FAMILY_STM32H7) return ((STM32_RCC_AHB4ENR & STM32_RCC_AHB4ENR_GPIOMASK) == STM32_RCC_AHB4ENR_GPIOMASK); #endif }