/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "adc.h" #include "chip/stm32/registers.h" #include "gpio.h" #include "usb_mux.h" /* USB Power delivery board configuration */ #ifndef __CROS_EC_USB_PD_CONFIG_H #define __CROS_EC_USB_PD_CONFIG_H /* Timer selection for baseband PD communication */ #define TIM_CLOCK_PD_TX_C0 17 #define TIM_CLOCK_PD_RX_C0 1 #define TIM_CLOCK_PD_TX_C1 14 #define TIM_CLOCK_PD_RX_C1 3 #define TIM_CLOCK_PD_TX(p) ((p) ? TIM_CLOCK_PD_TX_C1 : TIM_CLOCK_PD_TX_C0) #define TIM_CLOCK_PD_RX(p) ((p) ? TIM_CLOCK_PD_RX_C1 : TIM_CLOCK_PD_RX_C0) /* Timer channel */ #define TIM_RX_CCR_C0 1 #define TIM_RX_CCR_C1 1 #define TIM_TX_CCR_C0 1 #define TIM_TX_CCR_C1 1 /* RX timer capture/compare register */ #define TIM_CCR_C0 (&STM32_TIM_CCRx(TIM_CLOCK_PD_RX_C0, TIM_RX_CCR_C0)) #define TIM_CCR_C1 (&STM32_TIM_CCRx(TIM_CLOCK_PD_RX_C1, TIM_RX_CCR_C1)) #define TIM_RX_CCR_REG(p) ((p) ? TIM_CCR_C1 : TIM_CCR_C0) /* TX and RX timer register */ #define TIM_REG_TX_C0 (STM32_TIM_BASE(TIM_CLOCK_PD_TX_C0)) #define TIM_REG_RX_C0 (STM32_TIM_BASE(TIM_CLOCK_PD_RX_C0)) #define TIM_REG_TX_C1 (STM32_TIM_BASE(TIM_CLOCK_PD_TX_C1)) #define TIM_REG_RX_C1 (STM32_TIM_BASE(TIM_CLOCK_PD_RX_C1)) #define TIM_REG_TX(p) ((p) ? TIM_REG_TX_C1 : TIM_REG_TX_C0) #define TIM_REG_RX(p) ((p) ? TIM_REG_RX_C1 : TIM_REG_RX_C0) /* use the hardware accelerator for CRC */ #define CONFIG_HW_CRC /* TX uses SPI1 on PB3-4 for port C1, SPI2 on PB 13-14 for port C0 */ #define SPI_REGS(p) ((p) ? STM32_SPI1_REGS : STM32_SPI2_REGS) static inline void spi_enable_clock(int port) { if (port == 0) STM32_RCC_APB1ENR |= STM32_RCC_PB1_SPI2; else STM32_RCC_APB2ENR |= STM32_RCC_PB2_SPI1; } /* DMA for transmit uses DMA CH7 for C0 and DMA_CH3 for C1 */ #define DMAC_SPI_TX(p) ((p) ? STM32_DMAC_CH3 : STM32_DMAC_CH7) /* RX uses COMP1 and TIM1 CH1 on port C0 and COMP2 and TIM3_CH1 for port C1*/ #define CMP1OUTSEL STM32_COMP_CMP1OUTSEL_TIM1_IC1 #define CMP2OUTSEL STM32_COMP_CMP2OUTSEL_TIM3_IC1 #define TIM_TX_CCR_IDX(p) ((p) ? TIM_TX_CCR_C1 : TIM_TX_CCR_C0) #define TIM_RX_CCR_IDX(p) ((p) ? TIM_RX_CCR_C1 : TIM_RX_CCR_C0) #define TIM_CCR_CS 1 #define EXTI_COMP_MASK(p) ((p) ? (1<<22) : (1 << 21)) #define IRQ_COMP STM32_IRQ_COMP /* triggers packet detection on comparator falling edge */ #define EXTI_XTSR STM32_EXTI_FTSR /* DMA for receive uses DMA_CH2 for C0 and DMA_CH6 for C1 */ #define DMAC_TIM_RX(p) ((p) ? STM32_DMAC_CH6 : STM32_DMAC_CH2) /* the pins used for communication need to be hi-speed */ static inline void pd_set_pins_speed(int port) { if (port == 0) { /* 40 MHz pin speed on SPI PB13/14 */ STM32_GPIO_OSPEEDR(GPIO_B) |= 0x3C000000; /* 40 MHz pin speed on TIM17_CH1 (PE1) */ STM32_GPIO_OSPEEDR(GPIO_E) |= 0x0000000C; } else { /* 40 MHz pin speed on SPI PB3/4 */ STM32_GPIO_OSPEEDR(GPIO_B) |= 0x000003C0; /* 40 MHz pin speed on TIM14_CH1 (PB1) */ STM32_GPIO_OSPEEDR(GPIO_B) |= 0x0000000C; } } /* Reset SPI peripheral used for TX */ static inline void pd_tx_spi_reset(int port) { if (port == 0) { /* Reset SPI2 */ STM32_RCC_APB1RSTR |= (1 << 14); STM32_RCC_APB1RSTR &= ~(1 << 14); } else { /* Reset SPI1 */ STM32_RCC_APB2RSTR |= (1 << 12); STM32_RCC_APB2RSTR &= ~(1 << 12); } } /* Drive the CC line from the TX block */ static inline void pd_tx_enable(int port, int polarity) { if (port == 0) { /* put SPI function on TX pin */ if (polarity) /* PD3 is SPI2 MISO */ gpio_set_alternate_function(GPIO_D, 0x0008, 1); else /* PB14 is SPI2 MISO */ gpio_set_alternate_function(GPIO_B, 0x4000, 0); /* set the low level reference */ gpio_set_level(GPIO_USB_C0_CC_TX_EN, 1); } else { /* put SPI function on TX pin */ if (polarity) /* PE14 is SPI1 MISO */ gpio_set_alternate_function(GPIO_E, 0x4000, 1); else /* PB4 is SPI1 MISO */ gpio_set_alternate_function(GPIO_B, 0x0010, 0); /* set the low level reference */ gpio_set_level(GPIO_USB_C1_CC_TX_EN, 1); } } /* Put the TX driver in Hi-Z state */ static inline void pd_tx_disable(int port, int polarity) { if (port == 0) { /* output low on SPI TX to disable the FET */ if (polarity) /* PD3 is SPI2 MISO */ STM32_GPIO_MODER(GPIO_D) = (STM32_GPIO_MODER(GPIO_D) & ~(3 << (2*3))) | (1 << (2*3)); else /* PB14 is SPI2 MISO */ STM32_GPIO_MODER(GPIO_B) = (STM32_GPIO_MODER(GPIO_B) & ~(3 << (2*14))) | (1 << (2*14)); /* put the low level reference in Hi-Z */ gpio_set_level(GPIO_USB_C0_CC_TX_EN, 0); } else { /* output low on SPI TX to disable the FET */ if (polarity) /* PE14 is SPI1 MISO */ STM32_GPIO_MODER(GPIO_E) = (STM32_GPIO_MODER(GPIO_E) & ~(3 << (2*14))) | (1 << (2*14)); else /* PB4 is SPI1 MISO */ STM32_GPIO_MODER(GPIO_B) = (STM32_GPIO_MODER(GPIO_B) & ~(3 << (2*4))) | (1 << (2*4)); /* put the low level reference in Hi-Z */ gpio_set_level(GPIO_USB_C1_CC_TX_EN, 0); } } /* we know the plug polarity, do the right configuration */ static inline void pd_select_polarity(int port, int polarity) { uint32_t val = STM32_COMP_CSR; /* Use window mode so that COMP1 and COMP2 share non-inverting input */ val |= STM32_COMP_CMP1EN | STM32_COMP_CMP2EN | STM32_COMP_WNDWEN; if (port == 0) { /* use the right comparator inverted input for COMP1 */ STM32_COMP_CSR = (val & ~STM32_COMP_CMP1INSEL_MASK) | (polarity ? STM32_COMP_CMP1INSEL_INM4 : STM32_COMP_CMP1INSEL_INM6); } else { /* use the right comparator inverted input for COMP2 */ STM32_COMP_CSR = (val & ~STM32_COMP_CMP2INSEL_MASK) | (polarity ? STM32_COMP_CMP2INSEL_INM5 : STM32_COMP_CMP2INSEL_INM6); } } /* Initialize pins used for TX and put them in Hi-Z */ static inline void pd_tx_init(void) { gpio_config_module(MODULE_USB_PD, 1); } static inline void pd_set_host_mode(int port, int enable) { if (port == 0) { if (enable) { /* We never charging in power source mode */ gpio_set_level(GPIO_USB_C0_CHARGE_EN_L, 1); /* High-Z is used for host mode. */ gpio_set_level(GPIO_USB_C0_CC1_ODL, 1); gpio_set_level(GPIO_USB_C0_CC2_ODL, 1); } else { /* Kill VBUS power supply */ gpio_set_level(GPIO_USB_C0_5V_EN, 0); /* Pull low for device mode. */ gpio_set_level(GPIO_USB_C0_CC1_ODL, 0); gpio_set_level(GPIO_USB_C0_CC2_ODL, 0); /* Let charge_manager decide to enable the port */ } } else { if (enable) { /* We never charging in power source mode */ gpio_set_level(GPIO_USB_C1_CHARGE_EN_L, 1); /* High-Z is used for host mode. */ gpio_set_level(GPIO_USB_C1_CC1_ODL, 1); gpio_set_level(GPIO_USB_C1_CC2_ODL, 1); } else { /* Kill VBUS power supply */ gpio_set_level(GPIO_USB_C1_5V_EN, 0); /* Pull low for device mode. */ gpio_set_level(GPIO_USB_C1_CC1_ODL, 0); gpio_set_level(GPIO_USB_C1_CC2_ODL, 0); /* Let charge_manager decide to enable the port */ } } } /** * Initialize various GPIOs and interfaces to safe state at start of pd_task. * * These include: * VBUS, charge path based on power role. * Physical layer CC transmit. * VCONNs disabled. * * @param port USB-C port number * @param power_role Power role of device */ static inline void pd_config_init(int port, uint8_t power_role) { /* * Set CC pull resistors, and charge_en and vbus_en GPIOs to match * the initial role. */ pd_set_host_mode(port, power_role); /* Initialize TX pins and put them in Hi-Z */ pd_tx_init(); /* Reset mux ... for NONE polarity doesn't matter */ usb_mux_set(port, TYPEC_MUX_NONE, USB_SWITCH_DISCONNECT, 0); if (port == 0) { gpio_set_level(GPIO_USB_C0_CC1_VCONN1_EN_L, 1); gpio_set_level(GPIO_USB_C0_CC2_VCONN1_EN_L, 1); gpio_set_level(GPIO_USB_C0_DP_HPD, 0); } else { gpio_set_level(GPIO_USB_C1_CC1_VCONN1_EN_L, 1); gpio_set_level(GPIO_USB_C1_CC2_VCONN1_EN_L, 1); gpio_set_level(GPIO_USB_C1_DP_HPD, 0); } } static inline int pd_adc_read(int port, int cc) { if (port == 0) return adc_read_channel(cc ? ADC_C0_CC2_PD : ADC_C0_CC1_PD); else return adc_read_channel(cc ? ADC_C1_CC2_PD : ADC_C1_CC1_PD); } static inline void pd_set_vconn(int port, int polarity, int enable) { /* Set VCONN on the opposite CC line from the polarity */ if (port == 0) gpio_set_level(polarity ? GPIO_USB_C0_CC1_VCONN1_EN_L : GPIO_USB_C0_CC2_VCONN1_EN_L, !enable); else gpio_set_level(polarity ? GPIO_USB_C1_CC1_VCONN1_EN_L : GPIO_USB_C1_CC2_VCONN1_EN_L, !enable); } #endif /* __CROS_EC_USB_PD_CONFIG_H */