/* Copyright 2016 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Poppy board-specific configuration */ #include "adc.h" #include "adc_chip.h" #include "als.h" #include "bd99992gw.h" #include "board_config.h" #include "button.h" #include "charge_manager.h" #include "charge_state.h" #include "charge_ramp.h" #include "charger.h" #include "chipset.h" #include "console.h" #include "driver/accelgyro_bmi_common.h" #include "driver/als_opt3001.h" #include "driver/baro_bmp280.h" #include "driver/charger/isl923x.h" #include "driver/tcpm/anx74xx.h" #include "driver/tcpm/ps8xxx.h" #include "driver/tcpm/tcpci.h" #include "driver/tcpm/tcpm.h" #include "driver/temp_sensor/bd99992gw.h" #include "extpower.h" #include "gpio.h" #include "hooks.h" #include "host_command.h" #include "i2c.h" #include "lid_switch.h" #include "math_util.h" #include "motion_lid.h" #include "motion_sense.h" #include "pi3usb9281.h" #include "power.h" #include "power_button.h" #include "spi.h" #include "switch.h" #include "system.h" #include "tablet_mode.h" #include "task.h" #include "temp_sensor.h" #include "timer.h" #include "uart.h" #include "usb_charge.h" #include "usb_mux.h" #include "usb_pd.h" #include "usb_pd_tcpm.h" #include "util.h" #include "espi.h" #define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args) #define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args) #define USB_PD_PORT_ANX74XX 0 /* Minimum input current limit. */ #define ILIM_MIN_MA 472 static void tcpc_alert_event(enum gpio_signal signal) { if ((signal == GPIO_USB_C0_PD_INT_ODL) && !gpio_get_level(GPIO_USB_C0_PD_RST_L)) return; else if ((signal == GPIO_USB_C1_PD_INT_ODL) && !gpio_get_level(GPIO_USB_C1_PD_RST_L)) return; #ifdef HAS_TASK_PDCMD /* Exchange status with TCPCs */ host_command_pd_send_status(PD_CHARGE_NO_CHANGE); #endif } /* Set PD discharge whenever VBUS detection is high (i.e. below threshold). */ static void vbus_discharge_handler(void) { if (system_get_board_version() >= 2) { pd_set_vbus_discharge(0, gpio_get_level(GPIO_USB_C0_VBUS_WAKE_L)); pd_set_vbus_discharge(1, gpio_get_level(GPIO_USB_C1_VBUS_WAKE_L)); } } DECLARE_DEFERRED(vbus_discharge_handler); void vbus0_evt(enum gpio_signal signal) { /* VBUS present GPIO is inverted */ usb_charger_vbus_change(0, !gpio_get_level(signal)); task_wake(TASK_ID_PD_C0); hook_call_deferred(&vbus_discharge_handler_data, 0); } void vbus1_evt(enum gpio_signal signal) { /* VBUS present GPIO is inverted */ usb_charger_vbus_change(1, !gpio_get_level(signal)); task_wake(TASK_ID_PD_C1); hook_call_deferred(&vbus_discharge_handler_data, 0); } void usb0_evt(enum gpio_signal signal) { task_set_event(TASK_ID_USB_CHG_P0, USB_CHG_EVENT_BC12, 0); } void usb1_evt(enum gpio_signal signal) { task_set_event(TASK_ID_USB_CHG_P1, USB_CHG_EVENT_BC12, 0); } #ifdef CONFIG_USB_PD_TCPC_LOW_POWER static void anx74xx_cable_det_handler(void) { int cable_det = gpio_get_level(GPIO_USB_C0_CABLE_DET); int reset_n = gpio_get_level(GPIO_USB_C0_PD_RST_L); /* * A cable_det low->high transition was detected. If following the * debounce time, cable_det is high, and reset_n is low, then ANX3429 is * currently in standby mode and needs to be woken up. Set the * TCPC_RESET event which will bring the ANX3429 out of standby * mode. Setting this event is gated on reset_n being low because the * ANX3429 will always set cable_det when transitioning to normal mode * and if in normal mode, then there is no need to trigger a tcpc reset. */ if (cable_det && !reset_n) task_set_event(TASK_ID_PD_C0, PD_EVENT_TCPC_RESET, 0); } DECLARE_DEFERRED(anx74xx_cable_det_handler); void anx74xx_cable_det_interrupt(enum gpio_signal signal) { /* debounce for 2 msec */ hook_call_deferred(&anx74xx_cable_det_handler_data, (2 * MSEC)); } #endif #include "gpio_list.h" /* Hibernate wake configuration */ const enum gpio_signal hibernate_wake_pins[] = { GPIO_AC_PRESENT, GPIO_POWER_BUTTON_L, }; const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins); /* ADC channels */ const struct adc_t adc_channels[] = { /* Base detection */ [ADC_BASE_DET] = {"BASE_DET", NPCX_ADC_CH0, ADC_MAX_VOLT, ADC_READ_MAX+1, 0}, /* Vbus sensing (10x voltage divider). */ [ADC_VBUS] = {"VBUS", NPCX_ADC_CH2, ADC_MAX_VOLT*10, ADC_READ_MAX+1, 0}, /* * Adapter current output or battery charging/discharging current (uV) * 18x amplification on charger side. */ [ADC_AMON_BMON] = {"AMON_BMON", NPCX_ADC_CH1, ADC_MAX_VOLT*1000/18, ADC_READ_MAX+1, 0}, #ifdef BOARD_LUX /* * ISL9238 PSYS output is 1.44 uA/W over 12.4K resistor, to read * 0.8V @ 45 W, i.e. 56250 uW/mV. Using ADC_MAX_VOLT*56250 and * ADC_READ_MAX+1 as multiplier/divider leads to overflows, so we * only divide by 2 (enough to avoid precision issues). */ [ADC_PSYS] = {"PSYS", NPCX_ADC_CH3, ADC_MAX_VOLT*56250*2/(ADC_READ_MAX+1), 2, 0}, #endif }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); /* I2C port map */ const struct i2c_port_t i2c_ports[] = { {"tcpc", NPCX_I2C_PORT0_0, 400, GPIO_I2C0_0_SCL, GPIO_I2C0_0_SDA}, {"als", NPCX_I2C_PORT0_1, 400, GPIO_I2C0_1_SCL, GPIO_I2C0_1_SDA}, {"charger", NPCX_I2C_PORT1, 100, GPIO_I2C1_SCL, GPIO_I2C1_SDA}, {"pmic", NPCX_I2C_PORT2, 400, GPIO_I2C2_SCL, GPIO_I2C2_SDA}, {"accelgyro", NPCX_I2C_PORT3, 400, GPIO_I2C3_SCL, GPIO_I2C3_SDA}, }; const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports); /* TCPC mux configuration */ const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_MAX_COUNT] = { { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = NPCX_I2C_PORT0_0, .addr_flags = ANX74XX_I2C_ADDR1_FLAGS, }, .drv = &anx74xx_tcpm_drv, }, { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = NPCX_I2C_PORT0_0, .addr_flags = PS8751_I2C_ADDR1_FLAGS, }, .drv = &ps8xxx_tcpm_drv, }, }; const struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_MAX_COUNT] = { { .usb_port = 0, .driver = &anx74xx_tcpm_usb_mux_driver, .hpd_update = &anx74xx_tcpc_update_hpd_status, }, { .usb_port = 1, .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, } }; struct pi3usb9281_config pi3usb9281_chips[] = { { .i2c_port = I2C_PORT_USB_CHARGER_0, .mux_lock = NULL, }, { .i2c_port = I2C_PORT_USB_CHARGER_1, .mux_lock = NULL, }, }; BUILD_ASSERT(ARRAY_SIZE(pi3usb9281_chips) == CONFIG_BC12_DETECT_PI3USB9281_CHIP_COUNT); const struct charger_config_t chg_chips[] = { { .i2c_port = I2C_PORT_CHARGER, .i2c_addr_flags = ISL923X_ADDR_FLAGS, .drv = &isl923x_drv, }, }; const unsigned int chg_cnt = ARRAY_SIZE(chg_chips); /** * Power on (or off) a single TCPC. * minimum on/off delays are included. * * @param port Port number of TCPC. * @param mode 0: power off, 1: power on. */ void board_set_tcpc_power_mode(int port, int mode) { if (port != USB_PD_PORT_ANX74XX) return; if (mode) { gpio_set_level(GPIO_USB_C0_TCPC_PWR, 1); msleep(ANX74XX_PWR_H_RST_H_DELAY_MS); gpio_set_level(GPIO_USB_C0_PD_RST_L, 1); } else { gpio_set_level(GPIO_USB_C0_PD_RST_L, 0); msleep(ANX74XX_RST_L_PWR_L_DELAY_MS); gpio_set_level(GPIO_USB_C0_TCPC_PWR, 0); msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS); } } void board_reset_pd_mcu(void) { /* Assert reset */ gpio_set_level(GPIO_USB_C0_PD_RST_L, 0); gpio_set_level(GPIO_USB_C1_PD_RST_L, 0); msleep(MAX(1, ANX74XX_RST_L_PWR_L_DELAY_MS)); gpio_set_level(GPIO_USB_C1_PD_RST_L, 1); /* Disable TCPC0 (anx3429) power */ gpio_set_level(GPIO_USB_C0_TCPC_PWR, 0); msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS); board_set_tcpc_power_mode(USB_PD_PORT_ANX74XX, 1); } void board_tcpc_init(void) { int reg; /* Only reset TCPC if not sysjump */ if (!system_jumped_late()) { gpio_set_level(GPIO_PP3300_USB_PD, 1); /* TODO(crosbug.com/p/61098): How long do we need to wait? */ msleep(10); board_reset_pd_mcu(); } /* * TODO: Remove when Poppy is updated with PS8751 A3. * * Force PS8751 A2 to wake from low power mode. * If PS8751 remains in low power mode after sysjump, * TCPM_INIT will fail due to not able to access PS8751. * * NOTE: PS8751 A3 will wake on any I2C access. */ i2c_read8(NPCX_I2C_PORT0_1, 0x08, 0xA0, ®); /* Enable TCPC interrupts */ gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL); #ifdef CONFIG_USB_PD_TCPC_LOW_POWER /* Enable CABLE_DET interrupt for ANX3429 wake from standby */ gpio_enable_interrupt(GPIO_USB_C0_CABLE_DET); #endif /* * Initialize HPD to low; after sysjump SOC needs to see * HPD pulse to enable video path */ for (int port = 0; port < CONFIG_USB_PD_PORT_MAX_COUNT; ++port) usb_mux_hpd_update(port, 0, 0); } DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C+1); uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C0_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_0; } if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C1_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_1; } return status; } const struct temp_sensor_t temp_sensors[] = { {"Battery", TEMP_SENSOR_TYPE_BATTERY, charge_get_battery_temp, 0}, /* These BD99992GW temp sensors are only readable in S0 */ {"Ambient", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM0}, {"Charger", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM1}, {"DRAM", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM2}, {"eMMC", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM3}, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* * Check if PMIC fault registers indicate VR fault. If yes, print out fault * register info to console. Additionally, set panic reason so that the OS can * check for fault register info by looking at offset 0x14(PWRSTAT1) and * 0x15(PWRSTAT2) in cros ec panicinfo. */ static void board_report_pmic_fault(const char *str) { int vrfault, pwrstat1 = 0, pwrstat2 = 0; uint32_t info; /* RESETIRQ1 -- Bit 4: VRFAULT */ if (i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x8, &vrfault) != EC_SUCCESS) return; if (!(vrfault & BIT(4))) return; /* VRFAULT has occurred, print VRFAULT status bits. */ /* PWRSTAT1 */ i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x16, &pwrstat1); /* PWRSTAT2 */ i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x17, &pwrstat2); CPRINTS("PMIC VRFAULT: %s", str); CPRINTS("PMIC VRFAULT: PWRSTAT1=0x%02x PWRSTAT2=0x%02x", pwrstat1, pwrstat2); /* Clear all faults -- Write 1 to clear. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x8, BIT(4)); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x16, pwrstat1); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x17, pwrstat2); /* * Status of the fault registers can be checked in the OS by looking at * offset 0x14(PWRSTAT1) and 0x15(PWRSTAT2) in cros ec panicinfo. */ info = ((pwrstat2 & 0xFF) << 8) | (pwrstat1 & 0xFF); panic_set_reason(PANIC_SW_PMIC_FAULT, info, 0); } static void board_pmic_disable_slp_s0_vr_decay(void) { /* * VCCIOCNT: * Bit 6 (0) - Disable decay of VCCIO on SLP_S0# assertion * Bits 5:4 (00) - Nominal output voltage: 0.850V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x30, 0x3a); /* * V18ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage set to 1.8V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x34, 0x2a); /* * V100ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (01) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x37, 0x1a); /* * V085ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (11) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x38, 0x3a); } static void board_pmic_enable_slp_s0_vr_decay(void) { /* * VCCIOCNT: * Bit 6 (1) - Enable decay of VCCIO on SLP_S0# assertion * Bits 5:4 (00) - Nominal output voltage: 0.850V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x30, 0x7a); /* * V18ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage set to 1.8V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x34, 0x6a); /* * V100ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (01) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x37, 0x5a); /* * V085ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (11) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x38, 0x7a); } __override void power_board_handle_host_sleep_event( enum host_sleep_event state) { if (state == HOST_SLEEP_EVENT_S0IX_SUSPEND) board_pmic_enable_slp_s0_vr_decay(); else if (state == HOST_SLEEP_EVENT_S0IX_RESUME) board_pmic_disable_slp_s0_vr_decay(); } static void board_pmic_init(void) { board_report_pmic_fault("SYSJUMP"); if (system_jumped_late()) return; /* DISCHGCNT3 - enable 100 ohm discharge on V1.00A */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x3e, 0x04); board_pmic_disable_slp_s0_vr_decay(); /* VRMODECTRL - disable low-power mode for all rails */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x3b, 0x1f); /* Disable power button shutdown timer. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x14, 0x00); } DECLARE_DEFERRED(board_pmic_init); /* Initialize board. */ static void board_init(void) { /* * This enables pull-down on F_DIO1 (SPI MISO), and F_DIO0 (SPI MOSI), * whenever the EC is not doing SPI flash transactions. This avoids * floating SPI buffer input (MISO), which causes power leakage (see * b/64797021). */ NPCX_PUPD_EN1 |= BIT(NPCX_DEVPU1_F_SPI_PUD_EN); /* Provide AC status to the PCH */ gpio_set_level(GPIO_PCH_ACOK, extpower_is_present()); /* Enable sensors power supply */ gpio_set_level(GPIO_PP1800_DX_SENSOR, 1); gpio_set_level(GPIO_PP3300_DX_SENSOR, 1); /* Enable VBUS interrupt */ if (system_get_board_version() == 0) { /* * crosbug.com/p/61929: rev0 does not have VBUS detection, * force detection on both ports. */ gpio_set_flags(GPIO_USB_C0_VBUS_WAKE_L, GPIO_INPUT | GPIO_PULL_DOWN); gpio_set_flags(GPIO_USB_C1_VBUS_WAKE_L, GPIO_INPUT | GPIO_PULL_DOWN); vbus0_evt(GPIO_USB_C0_VBUS_WAKE_L); vbus1_evt(GPIO_USB_C1_VBUS_WAKE_L); } else { gpio_enable_interrupt(GPIO_USB_C0_VBUS_WAKE_L); gpio_enable_interrupt(GPIO_USB_C1_VBUS_WAKE_L); } /* Enable pericom BC1.2 interrupts */ gpio_enable_interrupt(GPIO_USB_C0_BC12_INT_L); gpio_enable_interrupt(GPIO_USB_C1_BC12_INT_L); /* * Set unused GPIO_LED_YELLO_C0[_OLD] as INPUT | PULL_UP * for better S0ix/S3 power */ if (system_get_board_version() >= 5) gpio_set_flags(GPIO_LED_YELLOW_C0_OLD, GPIO_INPUT | GPIO_PULL_UP); else gpio_set_flags(GPIO_LED_YELLOW_C0, GPIO_INPUT | GPIO_PULL_UP); #ifdef BOARD_SORAKA /* * TODO(b/64503543): Add proper options(#ifdef ) for Non-LTE SKU * Set unused LTE related pins as INPUT | PULL_UP * for better S0ix/S3 power */ if (system_get_board_version() >= 4) { gpio_set_flags(GPIO_WLAN_PE_RST, GPIO_INPUT | GPIO_PULL_UP); gpio_set_flags(GPIO_PP3300_DX_LTE, GPIO_INPUT | GPIO_PULL_UP); gpio_set_flags(GPIO_LTE_GPS_OFF_L, GPIO_INPUT | GPIO_PULL_UP); gpio_set_flags(GPIO_LTE_BODY_SAR_L, GPIO_INPUT | GPIO_PULL_UP); gpio_set_flags(GPIO_LTE_WAKE_L, GPIO_INPUT | GPIO_PULL_UP); gpio_set_flags(GPIO_LTE_OFF_ODL, GPIO_INPUT | GPIO_PULL_UP); } #endif /* Enable Gyro interrupts */ gpio_enable_interrupt(GPIO_ACCELGYRO3_INT_L); /* Initialize PMIC */ hook_call_deferred(&board_pmic_init_data, 0); } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); /** * Buffer the AC present GPIO to the PCH. */ static void board_extpower(void) { gpio_set_level(GPIO_PCH_ACOK, extpower_is_present()); } DECLARE_HOOK(HOOK_AC_CHANGE, board_extpower, HOOK_PRIO_DEFAULT); /** * Set active charge port -- only one port can be active at a time. * * @param charge_port Charge port to enable. * * Returns EC_SUCCESS if charge port is accepted and made active, * EC_ERROR_* otherwise. */ int board_set_active_charge_port(int charge_port) { /* charge port is a physical port */ int is_real_port = (charge_port >= 0 && charge_port < CONFIG_USB_PD_PORT_MAX_COUNT); /* check if we are source VBUS on the port */ int source = gpio_get_level(charge_port == 0 ? GPIO_USB_C0_5V_EN : GPIO_USB_C1_5V_EN); if (is_real_port && source) { CPRINTF("Skip enable p%d", charge_port); return EC_ERROR_INVAL; } CPRINTF("New chg p%d", charge_port); if (charge_port == CHARGE_PORT_NONE) { /* Disable both ports */ gpio_set_level(GPIO_USB_C0_CHARGE_L, 1); gpio_set_level(GPIO_USB_C1_CHARGE_L, 1); } else { #ifdef BOARD_LUX /* Disable cross-power with base, charger task will reenable. */ board_enable_base_power(0); #endif /* Make sure non-charging port is disabled */ gpio_set_level(charge_port ? GPIO_USB_C0_CHARGE_L : GPIO_USB_C1_CHARGE_L, 1); /* Enable charging port */ gpio_set_level(charge_port ? GPIO_USB_C1_CHARGE_L : GPIO_USB_C0_CHARGE_L, 0); } return EC_SUCCESS; } /** * Set the charge limit based upon desired maximum. * * @param port Port number. * @param supplier Charge supplier type. * @param charge_ma Desired charge limit (mA). * @param charge_mv Negotiated charge voltage (mV). */ void board_set_charge_limit(int port, int supplier, int charge_ma, int max_ma, int charge_mv) { /* Adjust ILIM according to measurements to eliminate overshoot. */ charge_ma = (charge_ma - 500) * 31 / 32 + 472; /* 5V is significantly more accurate than other voltages. */ if (charge_mv > 5000) charge_ma -= 52; charge_set_input_current_limit(MAX(charge_ma, ILIM_MIN_MA), charge_mv); } void board_hibernate(void) { CPRINTS("Triggering PMIC shutdown."); uart_flush_output(); /* Trigger PMIC shutdown. */ if (i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x49, 0x01)) { /* * If we can't tell the PMIC to shutdown, instead reset * and don't start the AP. Hopefully we'll be able to * communicate with the PMIC next time. */ CPRINTS("PMIC i2c failed."); system_reset(SYSTEM_RESET_LEAVE_AP_OFF); } /* Await shutdown. */ while (1) ; } int board_get_version(void) { static int ver = -1; uint8_t id4; if (ver != -1) return ver; ver = 0; /* First 3 strappings are binary. */ if (gpio_get_level(GPIO_BOARD_VERSION1)) ver |= 0x01; if (gpio_get_level(GPIO_BOARD_VERSION2)) ver |= 0x02; if (gpio_get_level(GPIO_BOARD_VERSION3)) ver |= 0x04; /* * 4th bit is using tristate strapping, ternary encoding: * Hi-Z (id4=2) => 0, (id4=0) => 1, (id4=1) => 2 */ id4 = gpio_get_ternary(GPIO_BOARD_VERSION4); ver |= ((id4 + 1) % 3) * 0x08; CPRINTS("Board ID = %d", ver); return ver; } /* Lid Sensor mutex */ static struct mutex g_lid_mutex; static struct bmi_drv_data_t g_bmi160_data; static struct opt3001_drv_data_t g_opt3001_data = { .scale = 1, .uscale = 0, .offset = 0, }; /* Matrix to rotate accelrator into standard reference frame */ const mat33_fp_t mag_standard_ref = { { FLOAT_TO_FP(-1), 0, 0}, { 0, FLOAT_TO_FP(1), 0}, { 0, 0, FLOAT_TO_FP(-1)} }; #ifdef BOARD_SORAKA const mat33_fp_t lid_standard_ref = { { 0, FLOAT_TO_FP(-1), 0}, {FLOAT_TO_FP(1), 0, 0}, { 0, 0, FLOAT_TO_FP(1)} }; /* For rev3 and older */ const mat33_fp_t lid_standard_ref_old = { {FLOAT_TO_FP(-1), 0, 0}, { 0, FLOAT_TO_FP(-1), 0}, { 0, 0, FLOAT_TO_FP(1)} }; #else const mat33_fp_t lid_standard_ref = { {FLOAT_TO_FP(-1), 0, 0}, { 0, FLOAT_TO_FP(-1), 0}, { 0, 0, FLOAT_TO_FP(1)} }; #endif struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &bmi160_drv, .mutex = &g_lid_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_GYRO, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .rot_standard_ref = &lid_standard_ref, .default_range = 4, /* g, to meet CDD 7.3.1/C-1-4 reqs */ .min_frequency = BMI_ACCEL_MIN_FREQ, .max_frequency = BMI_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, }, }, [LID_GYRO] = { .name = "Lid Gyro", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_LID, .drv = &bmi160_drv, .mutex = &g_lid_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_GYRO, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = &lid_standard_ref, .min_frequency = BMI_GYRO_MIN_FREQ, .max_frequency = BMI_GYRO_MAX_FREQ, }, [LID_MAG] = { .name = "Lid Mag", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_MAG, .location = MOTIONSENSE_LOC_LID, .drv = &bmi160_drv, .mutex = &g_lid_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_GYRO, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = BIT(11), /* 16LSB / uT, fixed */ .rot_standard_ref = &mag_standard_ref, .min_frequency = BMM150_MAG_MIN_FREQ, .max_frequency = BMM150_MAG_MAX_FREQ(SPECIAL), }, [LID_ALS] = { .name = "Light", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_OPT3001, .type = MOTIONSENSE_TYPE_LIGHT, .location = MOTIONSENSE_LOC_LID, .drv = &opt3001_drv, .drv_data = &g_opt3001_data, .port = I2C_PORT_ALS, .i2c_spi_addr_flags = OPT3001_I2C_ADDR_FLAGS, .rot_standard_ref = NULL, .default_range = 0x10000, /* scale = 1; uscale = 0 */ .min_frequency = OPT3001_LIGHT_MIN_FREQ, .max_frequency = OPT3001_LIGHT_MAX_FREQ, .config = { [SENSOR_CONFIG_EC_S0] = { .odr = 1000, }, }, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); /* ALS instances when LPC mapping is needed. Each entry directs to a sensor. */ const struct motion_sensor_t *motion_als_sensors[] = { &motion_sensors[LID_ALS], }; BUILD_ASSERT(ARRAY_SIZE(motion_als_sensors) == ALS_COUNT); #ifdef BOARD_SORAKA static void board_sensor_init(void) { /* Old soraka use a different reference matrix */ if (system_get_board_version() <= 3) { motion_sensors[LID_ACCEL].rot_standard_ref = &lid_standard_ref_old; motion_sensors[LID_GYRO].rot_standard_ref = &lid_standard_ref_old; } } DECLARE_HOOK(HOOK_INIT, board_sensor_init, HOOK_PRIO_DEFAULT); #endif static void board_chipset_reset(void) { board_report_pmic_fault("CHIPSET RESET"); } DECLARE_HOOK(HOOK_CHIPSET_RESET, board_chipset_reset, HOOK_PRIO_DEFAULT); /* Called on AP S3 -> S0 transition */ static void board_chipset_resume(void) { gpio_set_level(GPIO_ENABLE_BACKLIGHT, 1); } DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT); /* Called on AP S0 -> S3 transition */ static void board_chipset_suspend(void) { gpio_set_level(GPIO_ENABLE_BACKLIGHT, 0); } DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT); int board_has_working_reset_flags(void) { int version = system_get_board_version(); /* Boards Rev1 and Rev2 will lose reset flags on power cycle. */ if ((version == 1) || (version == 2)) return 0; /* All other board versions should have working reset flags */ return 1; }