/* Copyright 2018 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Nocturne board-specific configuration */ #include "adc_chip.h" #include "button.h" #include "charge_manager.h" #include "charge_state.h" #include "charge_state_v2.h" #include "chipset.h" #include "common.h" #include "console.h" #include "compile_time_macros.h" #include "driver/accelgyro_bmi160.h" #include "driver/als_opt3001.h" #include "driver/ppc/sn5s330.h" #include "driver/sync.h" #include "driver/tcpm/ps8xxx.h" #include "driver/temp_sensor/bd99992gw.h" #include "ec_commands.h" #include "extpower.h" #include "gpio.h" #include "hooks.h" #include "i2c.h" #include "lid_switch.h" #include "lpc.h" #include "mkbp_event.h" #include "motion_sense.h" #include "power.h" #include "power_button.h" #include "pwm.h" #include "pwm_chip.h" #include "registers.h" #include "system.h" #include "system_chip.h" #include "switch.h" #include "task.h" #include "tcpci.h" #include "temp_sensor.h" #include "usb_mux.h" #include "usb_pd_tcpm.h" #include "usbc_ppc.h" #include "util.h" #define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args) #define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args) static void tcpc_alert_event(enum gpio_signal s) { int port = -1; switch (s) { case GPIO_USB_C0_PD_INT_ODL: port = 0; break; case GPIO_USB_C1_PD_INT_ODL: port = 1; break; default: return; } schedule_deferred_pd_interrupt(port); } /* * Nocturne shares the TCPC Alert# line with the TI SN5S330's interrupt line. * Therefore, we need to also check on that part. */ static void usb_c_interrupt(enum gpio_signal s) { int port = (s == GPIO_USB_C0_PD_INT_ODL) ? 0 : 1; tcpc_alert_event(s); sn5s330_interrupt(port); } #include "gpio_list.h" const enum gpio_signal hibernate_wake_pins[] = { GPIO_LID_OPEN, GPIO_AC_PRESENT, GPIO_POWER_BUTTON_L, }; const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins); const struct adc_t adc_channels[] = { [ADC_BASE_ATTACH] = { "BASE ATTACH", NPCX_ADC_CH0, ADC_MAX_VOLT, ADC_READ_MAX + 1, 0 }, [ADC_BASE_DETACH] = { "BASE DETACH", NPCX_ADC_CH1, ADC_MAX_VOLT, ADC_READ_MAX + 1, 0 }, }; /* Power signal list. Must match order of enum power_signal. */ const struct power_signal_info power_signal_list[] = { {GPIO_SLP_S0_L, POWER_SIGNAL_ACTIVE_HIGH | POWER_SIGNAL_DISABLE_AT_BOOT, "SLP_S0_DEASSERTED"}, {GPIO_SLP_S3_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S3_DEASSERTED"}, {GPIO_SLP_S4_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S4_DEASSERTED"}, {GPIO_PCH_SLP_SUS_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_SUS_DEASSERTED"}, {GPIO_RSMRST_L_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "RSMRST_L_PGOOD"}, {GPIO_PMIC_DPWROK, POWER_SIGNAL_ACTIVE_HIGH, "PMIC_DPWROK"}, }; BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT); /* PWM channels. Must be in the exactly same order as in enum pwm_channel. */ const struct pwm_t pwm_channels[] = { [PWM_CH_DB0_LED_RED] = { 3, PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 2400 }, [PWM_CH_DB0_LED_GREEN] = { 0, PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 2400 }, [PWM_CH_DB0_LED_BLUE] = { 2, PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 2400 }, [PWM_CH_DB1_LED_RED] = { 7, PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 2400 }, [PWM_CH_DB1_LED_GREEN] = { 5, PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 2400 }, [PWM_CH_DB1_LED_BLUE] = { 6, PWM_CONFIG_ACTIVE_LOW | PWM_CONFIG_DSLEEP, 2400 }, }; BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT); /* I2C port map */ const struct i2c_port_t i2c_ports[] = { { "battery", I2C_PORT_BATTERY, 100, GPIO_EC_I2C4_BATTERY_SCL, GPIO_EC_I2C4_BATTERY_SDA }, { "power", I2C_PORT_POWER, 100, GPIO_EC_I2C0_POWER_SCL, GPIO_EC_I2C0_POWER_SDA }, { "als_gyro", I2C_PORT_ALS_GYRO, 400, GPIO_EC_I2C5_ALS_GYRO_SCL, GPIO_EC_I2C5_ALS_GYRO_SDA }, { "usbc0", I2C_PORT_USB_C0, 100, GPIO_USB_C0_SCL, GPIO_USB_C0_SDA }, { "usbc1", I2C_PORT_USB_C1, 100, GPIO_USB_C1_SCL, GPIO_USB_C1_SDA }, }; const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports); /* * Motion Sense */ /* Lid Sensor mutex */ static struct mutex g_lid_mutex; /* Sensor driver data */ static struct bmi160_drv_data_t g_bmi160_data; static struct opt3001_drv_data_t g_opt3001_data = { .scale = 1, .uscale = 0, .offset = 0, }; /* Matrix to rotate accel/gyro into standard reference frame. */ const mat33_fp_t lid_standard_ref = { { 0, FLOAT_TO_FP(1), 0}, { FLOAT_TO_FP(-1), 0, 0}, { 0, 0, FLOAT_TO_FP(1)} }; struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "BMI160 ACC", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &bmi160_drv, .mutex = &g_lid_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_ALS_GYRO, .addr = BMI160_ADDR0, .rot_standard_ref = &lid_standard_ref, .default_range = 4, /* g */ .min_frequency = BMI160_ACCEL_MIN_FREQ, .max_frequency = BMI160_ACCEL_MAX_FREQ, .config = { /* EC setup accel for chrome usage */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [LID_GYRO] = { .name = "BMI160 GYRO", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_LID, .drv = &bmi160_drv, .mutex = &g_lid_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_ALS_GYRO, .addr = BMI160_ADDR0, .rot_standard_ref = &lid_standard_ref, .default_range = 1000, /* dps */ .min_frequency = BMI160_GYRO_MIN_FREQ, .max_frequency = BMI160_GYRO_MAX_FREQ, }, [LID_ALS] = { .name = "Light", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_OPT3001, .type = MOTIONSENSE_TYPE_LIGHT, .location = MOTIONSENSE_LOC_LID, .drv = &opt3001_drv, .drv_data = &g_opt3001_data, .port = I2C_PORT_ALS_GYRO, .addr = OPT3001_I2C_ADDR, .rot_standard_ref = NULL, /* scale = 43.4513 http://b/111528815#comment14 */ .default_range = 0x2b11a1, .min_frequency = OPT3001_LIGHT_MIN_FREQ, .max_frequency = OPT3001_LIGHT_MAX_FREQ, .config = { /* Run ALS sensor in S0 */ [SENSOR_CONFIG_EC_S0] = { .odr = 1000, }, }, }, [VSYNC] = { .name = "Camera VSYNC", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_GPIO, .type = MOTIONSENSE_TYPE_SYNC, .location = MOTIONSENSE_LOC_CAMERA, .drv = &sync_drv, .default_range = 0, .min_frequency = 0, .max_frequency = 1, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); /* ALS instances when LPC mapping is needed. Each entry directs to a sensor. */ const struct motion_sensor_t *motion_als_sensors[] = { &motion_sensors[LID_ALS], }; BUILD_ASSERT(ARRAY_SIZE(motion_als_sensors) == ALS_COUNT); static void disable_sensor_irqs(void) { /* * In S5, sensors are unpowered, therefore disable their interrupts on * shutdown. */ gpio_disable_interrupt(GPIO_ACCELGYRO3_INT_L); gpio_disable_interrupt(GPIO_RCAM_VSYNC); } DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, disable_sensor_irqs, HOOK_PRIO_DEFAULT); static void enable_sensor_irqs(void) { /* * Re-enable the sensor interrupts when entering S0. */ gpio_enable_interrupt(GPIO_ACCELGYRO3_INT_L); gpio_enable_interrupt(GPIO_RCAM_VSYNC); } DECLARE_HOOK(HOOK_CHIPSET_RESUME, enable_sensor_irqs, HOOK_PRIO_DEFAULT); struct ppc_config_t ppc_chips[] = { { .i2c_port = I2C_PORT_USB_C0, .i2c_addr = SN5S330_ADDR0, .drv = &sn5s330_drv }, { .i2c_port = I2C_PORT_USB_C1, .i2c_addr = SN5S330_ADDR0, .drv = &sn5s330_drv, }, }; unsigned int ppc_cnt = ARRAY_SIZE(ppc_chips); const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_COUNT] = { { .i2c_host_port = I2C_PORT_USB_C0, .i2c_slave_addr = PS8751_I2C_ADDR1, .drv = &tcpci_tcpm_drv, .pol = TCPC_ALERT_ACTIVE_LOW, }, { .i2c_host_port = I2C_PORT_USB_C1, .i2c_slave_addr = PS8751_I2C_ADDR1, .drv = &tcpci_tcpm_drv, .pol = TCPC_ALERT_ACTIVE_LOW, }, }; struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_COUNT] = { { .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, }, { .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, }, }; void board_chipset_startup(void) { gpio_set_level(GPIO_EN_5V, 1); gpio_set_level(GPIO_PP3300_NVME_EN, 1); msleep(2); gpio_set_level(GPIO_PP1800_NVME_EN, 1); gpio_set_level(GPIO_PPVAR_NVME_CORE_EN, 1); } DECLARE_HOOK(HOOK_CHIPSET_STARTUP, board_chipset_startup, HOOK_PRIO_DEFAULT); static void imvp8_tune_deferred(void) { /* For the IMVP8, reduce the steps during decay from 3 to 1. */ if (i2c_write16(I2C_PORT_POWER, I2C_ADDR_MP2949, 0xFA, 0x0AC5)) CPRINTS("Failed to change step decay!"); } DECLARE_DEFERRED(imvp8_tune_deferred); void board_chipset_resume(void) { /* Write to the IMVP8 after 250ms. */ hook_call_deferred(&imvp8_tune_deferred_data, 250 * MSEC); } DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT); void board_chipset_shutdown(void) { gpio_set_level(GPIO_EN_5V, 0); gpio_set_level(GPIO_PPVAR_NVME_CORE_EN, 0); gpio_set_level(GPIO_PP1800_NVME_EN, 0); msleep(2); gpio_set_level(GPIO_PP3300_NVME_EN, 0); } DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, board_chipset_shutdown, HOOK_PRIO_DEFAULT); int board_get_version(void) { static int board_version = -1; if (board_version == -1) { board_version = 0; /* BRD_ID0 is LSb. */ if (gpio_get_level(GPIO_EC_BRD_ID0)) board_version |= 0x1; if (gpio_get_level(GPIO_EC_BRD_ID1)) board_version |= 0x2; if (gpio_get_level(GPIO_EC_BRD_ID2)) board_version |= 0x4; if (gpio_get_level(GPIO_EC_BRD_ID3)) board_version |= 0x8; } return board_version; } void board_hibernate(void) { int p; /* Configure PSL pins */ for (p = 0; p < hibernate_wake_pins_used; p++) system_config_psl_mode(hibernate_wake_pins[p]); /* * Enter PSL mode. Note that on Nocturne, simply enabling PSL mode does * not cut the EC's power. Therefore, we'll need to cut off power via * the ROP PMIC afterwards. */ system_enter_psl_mode(); /* Cut off DSW power via the ROP PMIC. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x49, 0x1); /* Wait for power to be cut. */ while (1) ; } static int mkbp_uses_gpio(void) { return board_get_version() >= 2; } void mkbp_set_host_active(int active) { if (mkbp_uses_gpio()) mkbp_set_host_active_via_gpio(active); /* * Always send the host event for compatibility. * On board versions 2 and newer, the firmware is configured * to not actually trigger an SCI on MKBP events. This means that * the EC can send host event notifications without concern for the * board version and expect the right thing to happen. */ mkbp_set_host_active_via_event(active); } static void board_init(void) { /* Enable USB Type-C interrupts. */ gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL); /* Enable sensor IRQs if we're in S0. */ if (chipset_in_state(CHIPSET_STATE_ON)) enable_sensor_irqs(); } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); int board_is_i2c_port_powered(int port) { if (port != I2C_PORT_ALS_GYRO) return 1; /* The sensors are not powered in anything lower than S5. */ return chipset_in_state(CHIPSET_STATE_ANY_OFF) ? 0 : 1; } static void board_lid_change(void) { /* This is done in hardware on old revisions. */ if (board_get_version() <= 1) return; if (lid_is_open()) gpio_set_level(GPIO_UHALL_PWR_EN, 1); else gpio_set_level(GPIO_UHALL_PWR_EN, 0); } DECLARE_HOOK(HOOK_LID_CHANGE, board_lid_change, HOOK_PRIO_DEFAULT); static void board_pmic_disable_slp_s0_vr_decay(void) { /* * VCCIOCNT: * Bit 6 (0) - Disable decay of VCCIO on SLP_S0# assertion * Bits 5:4 (11) - Nominal output voltage: 0.850V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x30, 0x3a); /* * V18ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage set to 1.8V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x34, 0x2a); /* * V100ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (01) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x37, 0x1a); /* * V085ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage 0.85V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x38, 0x2a); } static void board_pmic_enable_slp_s0_vr_decay(void) { /* * VCCIOCNT: * Bit 6 (1) - Enable decay of VCCIO on SLP_S0# assertion * Bits 5:4 (11) - Nominal output voltage: 0.850V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x30, 0x7a); /* * V18ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage set to 1.8V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x34, 0x6a); /* * V100ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (01) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x37, 0x5a); /* * V085ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage 0.85V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x38, 0x6a); } void power_board_handle_host_sleep_event(enum host_sleep_event state) { if (state == HOST_SLEEP_EVENT_S0IX_SUSPEND) board_pmic_enable_slp_s0_vr_decay(); else if (state == HOST_SLEEP_EVENT_S0IX_RESUME) board_pmic_disable_slp_s0_vr_decay(); } static void board_pmic_init(void) { int pgmask1; /* Mask V5A_DS3_PG from PMIC PGMASK1. */ if (i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x18, &pgmask1)) return; pgmask1 |= (1 << 2); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x18, pgmask1); board_pmic_disable_slp_s0_vr_decay(); /* Enable active discharge (100 ohms) on V33A_PCH and V1.8A. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x3D, 0x5); } DECLARE_HOOK(HOOK_INIT, board_pmic_init, HOOK_PRIO_DEFAULT); static void board_quirks(void) { /* * Newer board revisions have external pull ups stuffed, so remove the * internal pulls. */ if (board_get_version() > 0) { gpio_set_flags(GPIO_USB_C0_PD_INT_ODL, GPIO_INT_FALLING); gpio_set_flags(GPIO_USB_C1_PD_INT_ODL, GPIO_INT_FALLING); } } DECLARE_HOOK(HOOK_INIT, board_quirks, HOOK_PRIO_DEFAULT); void board_overcurrent_event(int port) { /* Sanity check the port. */ if ((port < 0) || (port >= CONFIG_USB_PD_PORT_COUNT)) return; /* Note that the levels are inverted because the pin is active low. */ switch (port) { case 0: gpio_set_level(GPIO_USB_C0_OC_ODL, 0); break; case 1: gpio_set_level(GPIO_USB_C1_OC_ODL, 0); break; default: return; }; /* TODO(b/69935262): Write a PD log entry for the OC event. */ CPRINTS("C%d: overcurrent!", port); } static int read_gyro_sensor_temp(int idx, int *temp_ptr) { /* * The gyro is only powered in S0, so don't go and read it if the AP is * off. */ if (chipset_in_state(CHIPSET_STATE_ANY_OFF)) return EC_ERROR_NOT_POWERED; return bmi160_get_sensor_temp(idx, temp_ptr); } const struct temp_sensor_t temp_sensors[] = { {"Battery", TEMP_SENSOR_TYPE_BATTERY, charge_get_battery_temp, 0, 4}, /* These BD99992GW temp sensors are only readable in S0 */ {"Ambient", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM0, 4}, {"Charger", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM1, 4}, {"DRAM", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM2, 4}, {"eMMC", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM3, 4}, /* The Gyro temperature sensor is only readable in S0. */ {"Gyro", TEMP_SENSOR_TYPE_BOARD, read_gyro_sensor_temp, LID_GYRO, 1} }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* * Check if PMIC fault registers indicate VR fault. If yes, print out fault * register info to console. Additionally, set panic reason so that the OS can * check for fault register info by looking at offset 0x14(PWRSTAT1) and * 0x15(PWRSTAT2) in cros ec panicinfo. */ static void board_report_pmic_fault(const char *str) { int vrfault, pwrstat1 = 0, pwrstat2 = 0; uint32_t info; /* RESETIRQ1 -- Bit 4: VRFAULT */ if (i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x8, &vrfault) != EC_SUCCESS) return; if (!(vrfault & (1 << 4))) return; /* VRFAULT has occurred, print VRFAULT status bits. */ /* PWRSTAT1 */ i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x16, &pwrstat1); /* PWRSTAT2 */ i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x17, &pwrstat2); CPRINTS("PMIC VRFAULT: %s", str); CPRINTS("PMIC VRFAULT: PWRSTAT1=0x%02x PWRSTAT2=0x%02x", pwrstat1, pwrstat2); /* Clear all faults -- Write 1 to clear. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x8, (1 << 4)); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x16, pwrstat1); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x17, pwrstat2); /* * Status of the fault registers can be checked in the OS by looking at * offset 0x14(PWRSTAT1) and 0x15(PWRSTAT2) in cros ec panicinfo. */ info = ((pwrstat2 & 0xFF) << 8) | (pwrstat1 & 0xFF); panic_set_reason(PANIC_SW_PMIC_FAULT, info, 0); } void board_reset_pd_mcu(void) { cprints(CC_USB, "Resetting TCPCs..."); cflush(); /* GPIO_USB_PD_RST_L resets all the TCPCs. */ gpio_set_level(GPIO_USB_PD_RST_L, 0); msleep(10); /* TODO(aaboagye): Verify min hold time. */ gpio_set_level(GPIO_USB_PD_RST_L, 1); } void board_set_tcpc_power_mode(int port, int mode) { /* Ignore the "mode" to turn the chip on. We can only do a reset. */ if (mode) return; board_reset_pd_mcu(); } void board_rtc_reset(void) { cprints(CC_SYSTEM, "Asserting RTCRST# to PCH"); gpio_set_level(GPIO_EC_PCH_RTCRST, 1); udelay(100); gpio_set_level(GPIO_EC_PCH_RTCRST, 0); } int board_set_active_charge_port(int port) { int is_real_port = (port >= 0 && port < CONFIG_USB_PD_PORT_COUNT); int i; int rv; if (!is_real_port && port != CHARGE_PORT_NONE) return EC_ERROR_INVAL; CPRINTS("New chg p%d", port); if (port == CHARGE_PORT_NONE) { /* Disable all ports. */ for (i = 0; i < ppc_cnt; i++) { rv = ppc_vbus_sink_enable(i, 0); /* * Deliberately ignoring this error since it may cause * an assertion error. */ if (rv) CPRINTS("Disabling p%d sink path failed.", i); } return EC_SUCCESS; } /* Check if the port is sourcing VBUS. */ if (ppc_is_sourcing_vbus(port)) { CPRINTF("Skip enable p%d", port); return EC_ERROR_INVAL; } /* * Turn off the other ports' sink path FETs, before enabling the * requested charge port. */ for (i = 0; i < ppc_cnt; i++) { if (i == port) continue; if (ppc_vbus_sink_enable(i, 0)) CPRINTS("p%d: sink path disable failed.", i); } /* Enable requested charge port. */ if (ppc_vbus_sink_enable(port, 1)) { CPRINTS("p%d: sink path enable failed."); return EC_ERROR_UNKNOWN; } return EC_SUCCESS; } void board_set_charge_limit(int port, int supplier, int charge_ma, int max_ma, int charge_mv) { int icl = MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT); /* * Nocturne seems to overdraw its set input current limit by about 5%. * Request at most 95% of what's desired. */ icl = icl * 95 / 100; charge_set_input_current_limit(icl, charge_mv); } static void board_chipset_reset(void) { board_report_pmic_fault("CHIPSET RESET"); } DECLARE_HOOK(HOOK_CHIPSET_RESET, board_chipset_reset, HOOK_PRIO_DEFAULT); uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; int regval; /* * The interrupt line is shared between the TCPC and PPC. Therefore, go * out and actually read the alert registers to report the alert status. */ if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) { if (!tcpc_read16(0, TCPC_REG_ALERT, ®val)) { /* The TCPCI spec says to ignore bits 14:12. */ regval &= ~((1 << 14) | (1 << 13) | (1 << 12)); if (regval) status |= PD_STATUS_TCPC_ALERT_0; } } if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) { if (!tcpc_read16(1, TCPC_REG_ALERT, ®val)) { /* TCPCI spec says to ignore bits 14:12. */ regval &= ~((1 << 14) | (1 << 13) | (1 << 12)); if (regval) status |= PD_STATUS_TCPC_ALERT_1; } } return status; }