/* Copyright 2017 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Poppy board-specific configuration */ #include "adc.h" #include "adc_chip.h" #include "bd99992gw.h" #include "board_config.h" #include "battery_smart.h" #include "button.h" #include "charge_manager.h" #include "charge_state.h" #include "charge_ramp.h" #include "charger.h" #include "chipset.h" #include "console.h" #include "driver/accelgyro_bmi160.h" #include "driver/accel_bma2x2.h" #include "driver/baro_bmp280.h" #include "driver/tcpm/ps8xxx.h" #include "driver/tcpm/tcpci.h" #include "driver/tcpm/tcpm.h" #include "driver/temp_sensor/bd99992gw.h" #include "extpower.h" #include "gpio.h" #include "hooks.h" #include "host_command.h" #include "i2c.h" #include "keyboard_scan.h" #include "lid_switch.h" #include "math_util.h" #include "motion_lid.h" #include "motion_sense.h" #include "pi3usb9281.h" #include "power.h" #include "power_button.h" #include "spi.h" #include "switch.h" #include "system.h" #include "tablet_mode.h" #include "task.h" #include "temp_sensor.h" #include "timer.h" #include "uart.h" #include "usb_charge.h" #include "usb_mux.h" #include "usb_pd.h" #include "usb_pd_tcpm.h" #include "util.h" #include "espi.h" #define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args) #define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args) static void tcpc_alert_event(enum gpio_signal signal) { if ((signal == GPIO_USB_C0_PD_INT_ODL) && !gpio_get_level(GPIO_USB_C0_PD_RST_L)) return; else if ((signal == GPIO_USB_C1_PD_INT_ODL) && !gpio_get_level(GPIO_USB_C1_PD_RST_L)) return; #ifdef HAS_TASK_PDCMD /* Exchange status with TCPCs */ host_command_pd_send_status(PD_CHARGE_NO_CHANGE); #endif } /* Set PD discharge whenever VBUS detection is high (i.e. below threshold). */ static void vbus_discharge_handler(void) { if (system_get_board_version() >= 2) { pd_set_vbus_discharge(0, gpio_get_level(GPIO_USB_C0_VBUS_WAKE_L)); pd_set_vbus_discharge(1, gpio_get_level(GPIO_USB_C1_VBUS_WAKE_L)); } } DECLARE_DEFERRED(vbus_discharge_handler); void vbus0_evt(enum gpio_signal signal) { /* VBUS present GPIO is inverted */ usb_charger_vbus_change(0, !gpio_get_level(signal)); task_wake(TASK_ID_PD_C0); hook_call_deferred(&vbus_discharge_handler_data, 0); } void vbus1_evt(enum gpio_signal signal) { /* VBUS present GPIO is inverted */ usb_charger_vbus_change(1, !gpio_get_level(signal)); task_wake(TASK_ID_PD_C1); hook_call_deferred(&vbus_discharge_handler_data, 0); } void usb0_evt(enum gpio_signal signal) { task_set_event(TASK_ID_USB_CHG_P0, USB_CHG_EVENT_BC12, 0); } void usb1_evt(enum gpio_signal signal) { task_set_event(TASK_ID_USB_CHG_P1, USB_CHG_EVENT_BC12, 0); } #include "gpio_list.h" /* power signal list. Must match order of enum power_signal. */ const struct power_signal_info power_signal_list[] = { #ifdef CONFIG_POWER_S0IX {GPIO_PCH_SLP_S0_L, POWER_SIGNAL_ACTIVE_HIGH | POWER_SIGNAL_DISABLE_AT_BOOT, "SLP_S0_DEASSERTED"}, #endif #ifdef CONFIG_ESPI_VW_SIGNALS {VW_SLP_S3_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S3_DEASSERTED"}, {VW_SLP_S4_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S4_DEASSERTED"}, #else {GPIO_PCH_SLP_S3_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S3_DEASSERTED"}, {GPIO_PCH_SLP_S4_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S4_DEASSERTED"}, #endif {GPIO_PCH_SLP_SUS_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_SUS_DEASSERTED"}, {GPIO_RSMRST_L_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "RSMRST_L_PGOOD"}, {GPIO_PMIC_DPWROK, POWER_SIGNAL_ACTIVE_HIGH, "PMIC_DPWROK"}, }; BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT); /* Hibernate wake configuration */ const enum gpio_signal hibernate_wake_pins[] = { GPIO_AC_PRESENT, GPIO_POWER_BUTTON_L, }; const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins); /* ADC channels */ const struct adc_t adc_channels[] = { /* Base detection */ [ADC_BASE_DET] = {"BASE_DET", NPCX_ADC_CH0, ADC_MAX_VOLT, ADC_READ_MAX+1, 0}, /* Vbus sensing (10x voltage divider). */ [ADC_VBUS] = {"VBUS", NPCX_ADC_CH2, ADC_MAX_VOLT*10, ADC_READ_MAX+1, 0}, /* * Adapter current output or battery charging/discharging current (uV) * 18x amplification on charger side. */ [ADC_AMON_BMON] = {"AMON_BMON", NPCX_ADC_CH1, ADC_MAX_VOLT*1000/18, ADC_READ_MAX+1, 0}, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); /* I2C port map */ const struct i2c_port_t i2c_ports[] = { {"tcpc0", NPCX_I2C_PORT0_0, 400, GPIO_I2C0_0_SCL, GPIO_I2C0_0_SDA}, {"tcpc1", NPCX_I2C_PORT0_1, 400, GPIO_I2C0_1_SCL, GPIO_I2C0_1_SDA}, {"charger", NPCX_I2C_PORT1, 100, GPIO_I2C1_SCL, GPIO_I2C1_SDA}, {"pmic", NPCX_I2C_PORT2, 400, GPIO_I2C2_SCL, GPIO_I2C2_SDA}, {"accelgyro", NPCX_I2C_PORT3, 400, GPIO_I2C3_SCL, GPIO_I2C3_SDA}, }; const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports); /* TCPC mux configuration */ const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_COUNT] = { {NPCX_I2C_PORT0_0, 0x16, &ps8xxx_tcpm_drv, TCPC_ALERT_ACTIVE_LOW}, {NPCX_I2C_PORT0_1, 0x16, &ps8xxx_tcpm_drv, TCPC_ALERT_ACTIVE_LOW}, }; struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_COUNT] = { { .port_addr = 0, .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, }, { .port_addr = 1, .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, } }; struct pi3usb9281_config pi3usb9281_chips[] = { { .i2c_port = I2C_PORT_USB_CHARGER_0, .mux_lock = NULL, }, { .i2c_port = I2C_PORT_USB_CHARGER_1, .mux_lock = NULL, }, }; BUILD_ASSERT(ARRAY_SIZE(pi3usb9281_chips) == CONFIG_BC12_DETECT_PI3USB9281_CHIP_COUNT); const int usb_port_enable[CONFIG_USB_PORT_POWER_SMART_PORT_COUNT] = { GPIO_USB1_ENABLE, }; void board_reset_pd_mcu(void) { /* Assert reset */ gpio_set_level(GPIO_USB_C0_PD_RST_L, 0); gpio_set_level(GPIO_USB_C1_PD_RST_L, 0); msleep(1); gpio_set_level(GPIO_USB_C0_PD_RST_L, 1); gpio_set_level(GPIO_USB_C1_PD_RST_L, 1); } void board_tcpc_init(void) { int port; /* Only reset TCPC if not sysjump */ if (!system_jumped_to_this_image()) { board_reset_pd_mcu(); } /* Enable TCPC interrupts */ gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL); /* * Initialize HPD to low; after sysjump SOC needs to see * HPD pulse to enable video path */ for (port = 0; port < CONFIG_USB_PD_PORT_COUNT; port++) { const struct usb_mux *mux = &usb_muxes[port]; mux->hpd_update(port, 0, 0); } } DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C+1); uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C0_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_0; } if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C1_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_1; } return status; } const struct temp_sensor_t temp_sensors[] = { {"Battery", TEMP_SENSOR_TYPE_BATTERY, charge_get_battery_temp, 0, 4}, /* These BD99992GW temp sensors are only readable in S0 */ {"Charger", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM1, 4}, {"DRAM", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM2, 4}, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* * Check if PMIC fault registers indicate VR fault. If yes, print out fault * register info to console. Additionally, set panic reason so that the OS can * check for fault register info by looking at offset 0x14(PWRSTAT1) and * 0x15(PWRSTAT2) in cros ec panicinfo. */ static void board_report_pmic_fault(const char *str) { int vrfault, pwrstat1 = 0, pwrstat2 = 0; uint32_t info; /* RESETIRQ1 -- Bit 4: VRFAULT */ if (i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x8, &vrfault) != EC_SUCCESS) return; if (!(vrfault & (1 << 4))) return; /* VRFAULT has occurred, print VRFAULT status bits. */ /* PWRSTAT1 */ i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x16, &pwrstat1); /* PWRSTAT2 */ i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x17, &pwrstat2); CPRINTS("PMIC VRFAULT: %s", str); CPRINTS("PMIC VRFAULT: PWRSTAT1=0x%02x PWRSTAT2=0x%02x", pwrstat1, pwrstat2); /* Clear all faults -- Write 1 to clear. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x8, (1 << 4)); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x16, pwrstat1); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x17, pwrstat2); /* * Status of the fault registers can be checked in the OS by looking at * offset 0x14(PWRSTAT1) and 0x15(PWRSTAT2) in cros ec panicinfo. */ info = ((pwrstat2 & 0xFF) << 8) | (pwrstat1 & 0xFF); panic_set_reason(PANIC_SW_PMIC_FAULT, info, 0); } static void board_pmic_disable_slp_s0_vr_decay(void) { /* * VCCIOCNT: * Bit 6 (0) - Disable decay of VCCIO on SLP_S0# assertion * Bits 5:4 (11) - Nominal output voltage: 0.850V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x30, 0x3a); /* * V18ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage set to 1.8V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x34, 0x2a); /* * V100ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (01) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x37, 0x1a); /* * V085ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (11) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x38, 0x3a); } static void board_pmic_enable_slp_s0_vr_decay(void) { /* * VCCIOCNT: * Bit 6 (1) - Enable decay of VCCIO on SLP_S0# assertion * Bits 5:4 (11) - Nominal output voltage: 0.850V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x30, 0x7a); /* * V18ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage set to 1.8V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x34, 0x6a); /* * V100ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (01) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x37, 0x5a); /* * V085ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (11) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x38, 0x7a); } void power_board_handle_host_sleep_event(enum host_sleep_event state) { if (state == HOST_SLEEP_EVENT_S0IX_SUSPEND) board_pmic_enable_slp_s0_vr_decay(); else if (state == HOST_SLEEP_EVENT_S0IX_RESUME) board_pmic_disable_slp_s0_vr_decay(); } static void board_pmic_init(void) { board_report_pmic_fault("SYSJUMP"); if (system_jumped_to_this_image()) return; /* DISCHGCNT3 - enable 100 ohm discharge on V1.00A */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x3e, 0x04); board_pmic_disable_slp_s0_vr_decay(); /* VRMODECTRL - disable low-power mode for all rails */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x3b, 0x1f); } DECLARE_DEFERRED(board_pmic_init); /* Initialize board. */ static void board_init(void) { /* * This enables pull-down on F_DIO1 (SPI MISO), and F_DIO0 (SPI MOSI), * whenever the EC is not doing SPI flash transactions. This avoids * floating SPI buffer input (MISO), which causes power leakage (see * b/64797021). */ NPCX_PUPD_EN1 |= (1 << NPCX_DEVPU1_F_SPI_PUD_EN); /* Provide AC status to the PCH */ gpio_set_level(GPIO_PCH_ACOK, extpower_is_present()); /* Enable VBUS interrupt */ gpio_enable_interrupt(GPIO_USB_C0_VBUS_WAKE_L); gpio_enable_interrupt(GPIO_USB_C1_VBUS_WAKE_L); /* Enable pericom BC1.2 interrupts */ gpio_enable_interrupt(GPIO_USB_C0_BC12_INT_L); gpio_enable_interrupt(GPIO_USB_C1_BC12_INT_L); /* Level of sensor's I2C and interrupt are 3.3V on proto board */ if(system_get_board_version() < 2) { /* ACCELGYRO3_INT_L */ gpio_set_flags(GPIO_ACCELGYRO3_INT_L, GPIO_INT_FALLING); /* I2C3_SCL / I2C3_SDA */ gpio_set_flags(GPIO_I2C3_SCL, GPIO_INPUT); gpio_set_flags(GPIO_I2C3_SDA, GPIO_INPUT); } /* Enable Gyro interrupts */ gpio_enable_interrupt(GPIO_ACCELGYRO3_INT_L); /* Initialize PMIC */ hook_call_deferred(&board_pmic_init_data, 0); } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); /** * Buffer the AC present GPIO to the PCH. */ static void board_extpower(void) { gpio_set_level(GPIO_PCH_ACOK, extpower_is_present()); } DECLARE_HOOK(HOOK_AC_CHANGE, board_extpower, HOOK_PRIO_DEFAULT); /** * Set active charge port -- only one port can be active at a time. * * @param charge_port Charge port to enable. * * Returns EC_SUCCESS if charge port is accepted and made active, * EC_ERROR_* otherwise. */ int board_set_active_charge_port(int charge_port) { /* charge port is a physical port */ int is_real_port = (charge_port >= 0 && charge_port < CONFIG_USB_PD_PORT_COUNT); /* check if we are source VBUS on the port */ int source = gpio_get_level(charge_port == 0 ? GPIO_USB_C0_5V_EN : GPIO_USB_C1_5V_EN); if (is_real_port && source) { CPRINTF("Skip enable p%d", charge_port); return EC_ERROR_INVAL; } CPRINTF("New chg p%d", charge_port); if (charge_port == CHARGE_PORT_NONE) { /* Disable both ports */ gpio_set_level(GPIO_USB_C0_CHARGE_L, 1); gpio_set_level(GPIO_USB_C1_CHARGE_L, 1); } else { /* Make sure non-charging port is disabled */ gpio_set_level(charge_port ? GPIO_USB_C0_CHARGE_L : GPIO_USB_C1_CHARGE_L, 1); /* Enable charging port */ gpio_set_level(charge_port ? GPIO_USB_C1_CHARGE_L : GPIO_USB_C0_CHARGE_L, 0); } return EC_SUCCESS; } /** * Set the charge limit based upon desired maximum. * * @param port Port number. * @param supplier Charge supplier type. * @param charge_ma Desired charge limit (mA). * @param charge_mv Negotiated charge voltage (mV). */ void board_set_charge_limit(int port, int supplier, int charge_ma, int max_ma, int charge_mv) { /* * Limit the input current to 96% negotiated limit, * to account for the charger chip margin. */ charge_ma = charge_ma * 96 / 100; charge_set_input_current_limit(MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT), charge_mv); } /** * Return whether ramping is allowed for given supplier */ int board_is_ramp_allowed(int supplier) { /* Don't allow ramping in RO when write protected */ if (!system_is_in_rw() && system_is_locked()) return 0; else return (supplier == CHARGE_SUPPLIER_BC12_DCP || supplier == CHARGE_SUPPLIER_BC12_SDP || supplier == CHARGE_SUPPLIER_BC12_CDP || supplier == CHARGE_SUPPLIER_OTHER); } /** * Return the maximum allowed input current */ int board_get_ramp_current_limit(int supplier, int sup_curr) { switch (supplier) { case CHARGE_SUPPLIER_BC12_DCP: return 2000; case CHARGE_SUPPLIER_BC12_SDP: return 1000; case CHARGE_SUPPLIER_BC12_CDP: case CHARGE_SUPPLIER_PROPRIETARY: return sup_curr; default: return 500; } } void board_hibernate(void) { CPRINTS("Triggering PMIC shutdown."); uart_flush_output(); /* Trigger PMIC shutdown. */ if (i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x49, 0x01)) { /* * If we can't tell the PMIC to shutdown, instead reset * and don't start the AP. Hopefully we'll be able to * communicate with the PMIC next time. */ CPRINTS("PMIC i2c failed."); system_reset(SYSTEM_RESET_LEAVE_AP_OFF); } /* Await shutdown. */ while (1) ; } int board_get_version(void) { static int ver = -1; uint8_t id3; if (ver != -1) return ver; ver = 0; /* First 2 strappings are binary. */ if (gpio_get_level(GPIO_BOARD_VERSION1)) ver |= 0x01; if (gpio_get_level(GPIO_BOARD_VERSION2)) ver |= 0x02; /* * The 3rd strapping pin is tristate. * id3 = 2 if Hi-Z, id3 = 1 if high, and id3 = 0 if low. */ id3 = gpio_get_ternary(GPIO_BOARD_VERSION3); ver |= id3 * 0x04; CPRINTS("Board ID = %d", ver); return ver; } /* Lid Sensor mutex */ static struct mutex g_lid_mutex; static struct mutex g_base_mutex; static struct bmi160_drv_data_t g_bmi160_data; /* BMA255 private data */ static struct accelgyro_saved_data_t g_bma255_data; /* Matrix to rotate accelrator into standard reference frame */ const matrix_3x3_t base_standard_ref = { { FLOAT_TO_FP(-1), 0, 0 }, { 0, FLOAT_TO_FP(1), 0 }, { 0, 0, FLOAT_TO_FP(-1) } }; const matrix_3x3_t lid_standard_ref = { { FLOAT_TO_FP(-1), 0, 0 }, { 0, FLOAT_TO_FP(1), 0 }, { 0, 0, FLOAT_TO_FP(-1) } }; struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMA255, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &bma2x2_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_bma255_data, .port = I2C_PORT_ACCEL, .addr = BMA2x2_I2C_ADDR1, .rot_standard_ref = &lid_standard_ref, .min_frequency = BMA255_ACCEL_MIN_FREQ, .max_frequency = BMA255_ACCEL_MAX_FREQ, .default_range = 2, /* g, to support tablet mode */ .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, }, /* Sensor on in S3 */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_ACCEL, .addr = BMI160_ADDR0, .rot_standard_ref = &base_standard_ref, .min_frequency = BMI160_ACCEL_MIN_FREQ, .max_frequency = BMI160_ACCEL_MAX_FREQ, .default_range = 2, /* g, to support tablet mode */ .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, /* Sensor on in S3 */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_ACCEL, .addr = BMI160_ADDR0, .default_range = 1000, /* dps */ .rot_standard_ref = &base_standard_ref, .min_frequency = BMI160_GYRO_MIN_FREQ, .max_frequency = BMI160_GYRO_MAX_FREQ, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); /* Enable or disable input devices, based on chipset state and tablet mode */ #ifndef TEST_BUILD void lid_angle_peripheral_enable(int enable) { /* If the lid is in 360 position, ignore the lid angle, * which might be faulty. Disable keyboard. */ if (tablet_get_mode() || chipset_in_state(CHIPSET_STATE_ANY_OFF)) enable = 0; keyboard_scan_enable(enable, KB_SCAN_DISABLE_LID_ANGLE); } #endif static void board_chipset_reset(void) { board_report_pmic_fault("CHIPSET RESET"); } DECLARE_HOOK(HOOK_CHIPSET_RESET, board_chipset_reset, HOOK_PRIO_DEFAULT); /* Called on AP S3 -> S0 transition */ static void board_chipset_resume(void) { gpio_set_level(GPIO_ENABLE_BACKLIGHT, 1); } DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT); /* Called on AP S0 -> S3 transition */ static void board_chipset_suspend(void) { gpio_set_level(GPIO_ENABLE_BACKLIGHT, 0); } DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT); static void board_chipset_startup(void) { /* Power On USB-A port */ gpio_set_level(GPIO_USB_POWERON_L, 0); /* Enable USB-A port. */ gpio_set_level(GPIO_USB1_ENABLE, 1); gpio_set_level(GPIO_ENABLE_TOUCHPAD, 1); gpio_set_level(GPIO_PP1800_DX_SENSOR, 1); } DECLARE_HOOK(HOOK_CHIPSET_STARTUP, board_chipset_startup, HOOK_PRIO_DEFAULT); static void board_chipset_shutdown(void) { /* Power Off USB-A port */ gpio_set_level(GPIO_USB_POWERON_L, 1); /* Disable USB-A port. */ gpio_set_level(GPIO_USB1_ENABLE, 0); gpio_set_level(GPIO_ENABLE_TOUCHPAD, 0); gpio_set_level(GPIO_PP1800_DX_SENSOR, 0); } DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, board_chipset_shutdown, HOOK_PRIO_DEFAULT); int board_has_working_reset_flags(void) { int version = system_get_board_version(); /* Boards Rev1, Rev2 and Rev3 will lose reset flags on power cycle. */ if ((version == 1) || (version == 2) || (version == 3)) return 0; /* All other board versions should have working reset flags */ return 1; } /* * I2C callbacks to ensure bus free time for battery I2C transactions is at * least 5ms. */ #define BATTERY_FREE_MIN_DELTA_US (5 * MSEC) static timestamp_t battery_last_i2c_time; static int is_battery_i2c(int port, int slave_addr) { return (port == I2C_PORT_BATTERY) && (slave_addr == BATTERY_ADDR); } static int is_battery_port(int port) { return (port == I2C_PORT_BATTERY); } void i2c_start_xfer_notify(int port, int slave_addr) { unsigned int time_delta_us; if (!is_battery_i2c(port, slave_addr)) return; time_delta_us = time_since32(battery_last_i2c_time); if (time_delta_us >= BATTERY_FREE_MIN_DELTA_US) return; usleep(BATTERY_FREE_MIN_DELTA_US - time_delta_us); } void i2c_end_xfer_notify(int port, int slave_addr) { /* * The bus free time needs to be maintained from last transaction * on I2C bus to any device on it to the next transaction to battery. */ if (!is_battery_port(port)) return; battery_last_i2c_time = get_time(); }