/* Copyright 2017 The ChromiumOS Authors * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Poppy board-specific configuration */ #include "adc.h" #include "bd99992gw.h" #include "board_config.h" #include "battery_smart.h" #include "button.h" #include "charge_manager.h" #include "charge_state.h" #include "charge_ramp.h" #include "charger.h" #include "chipset.h" #include "console.h" #include "driver/accelgyro_bmi_common.h" #include "driver/accel_bma2x2.h" #include "driver/baro_bmp280.h" #include "driver/charger/isl923x.h" #include "driver/tcpm/ps8xxx.h" #include "driver/tcpm/tcpci.h" #include "driver/tcpm/tcpm.h" #include "driver/temp_sensor/bd99992gw.h" #include "extpower.h" #include "gpio.h" #include "hooks.h" #include "host_command.h" #include "i2c.h" #include "keyboard_scan.h" #include "lid_switch.h" #include "math_util.h" #include "motion_lid.h" #include "motion_sense.h" #include "pi3usb9281.h" #include "panic.h" #include "power.h" #include "power_button.h" #include "spi.h" #include "switch.h" #include "system.h" #include "tablet_mode.h" #include "task.h" #include "temp_sensor.h" #include "timer.h" #include "uart.h" #include "usb_charge.h" #include "usb_mux.h" #include "usb_pd.h" #include "usb_pd_tcpm.h" #include "util.h" #include "espi.h" #define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ##args) #define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ##args) static void tcpc_alert_event(enum gpio_signal signal) { if ((signal == GPIO_USB_C0_PD_INT_ODL) && !gpio_get_level(GPIO_USB_C0_PD_RST_L)) return; else if ((signal == GPIO_USB_C1_PD_INT_ODL) && !gpio_get_level(GPIO_USB_C1_PD_RST_L)) return; #ifdef HAS_TASK_PDCMD /* Exchange status with TCPCs */ host_command_pd_send_status(PD_CHARGE_NO_CHANGE); #endif } /* Set PD discharge whenever VBUS detection is high (i.e. below threshold). */ static void vbus_discharge_handler(void) { if (system_get_board_version() >= 2) { pd_set_vbus_discharge(0, gpio_get_level(GPIO_USB_C0_VBUS_WAKE_L)); pd_set_vbus_discharge(1, gpio_get_level(GPIO_USB_C1_VBUS_WAKE_L)); } } DECLARE_DEFERRED(vbus_discharge_handler); void vbus0_evt(enum gpio_signal signal) { /* VBUS present GPIO is inverted */ usb_charger_vbus_change(0, !gpio_get_level(signal)); task_wake(TASK_ID_PD_C0); hook_call_deferred(&vbus_discharge_handler_data, 0); } void vbus1_evt(enum gpio_signal signal) { /* VBUS present GPIO is inverted */ usb_charger_vbus_change(1, !gpio_get_level(signal)); task_wake(TASK_ID_PD_C1); hook_call_deferred(&vbus_discharge_handler_data, 0); } void usb0_evt(enum gpio_signal signal) { usb_charger_task_set_event(0, USB_CHG_EVENT_BC12); } void usb1_evt(enum gpio_signal signal) { usb_charger_task_set_event(1, USB_CHG_EVENT_BC12); } #include "gpio_list.h" /* Hibernate wake configuration */ const enum gpio_signal hibernate_wake_pins[] = { GPIO_AC_PRESENT, GPIO_POWER_BUTTON_L, }; const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins); /* ADC channels */ const struct adc_t adc_channels[] = { /* Base detection */ [ADC_BASE_DET] = { "BASE_DET", NPCX_ADC_CH0, ADC_MAX_VOLT, ADC_READ_MAX + 1, 0 }, /* Vbus sensing (10x voltage divider). */ [ADC_VBUS] = { "VBUS", NPCX_ADC_CH2, ADC_MAX_VOLT * 10, ADC_READ_MAX + 1, 0 }, /* * Adapter current output or battery charging/discharging current (uV) * 18x amplification on charger side. */ [ADC_AMON_BMON] = { "AMON_BMON", NPCX_ADC_CH1, ADC_MAX_VOLT * 1000 / 18, ADC_READ_MAX + 1, 0 }, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); /* I2C port map */ const struct i2c_port_t i2c_ports[] = { { .name = "tcpc0", .port = NPCX_I2C_PORT0_0, .kbps = 400, .scl = GPIO_I2C0_0_SCL, .sda = GPIO_I2C0_0_SDA }, { .name = "tcpc1", .port = NPCX_I2C_PORT0_1, .kbps = 400, .scl = GPIO_I2C0_1_SCL, .sda = GPIO_I2C0_1_SDA }, { .name = "charger", .port = NPCX_I2C_PORT1, .kbps = 100, .scl = GPIO_I2C1_SCL, .sda = GPIO_I2C1_SDA }, { .name = "pmic", .port = NPCX_I2C_PORT2, .kbps = 400, .scl = GPIO_I2C2_SCL, .sda = GPIO_I2C2_SDA }, { .name = "accelgyro", .port = NPCX_I2C_PORT3, .kbps = 400, .scl = GPIO_I2C3_SCL, .sda = GPIO_I2C3_SDA }, }; const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports); /* TCPC mux configuration */ const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_MAX_COUNT] = { { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = NPCX_I2C_PORT0_0, .addr_flags = PS8XXX_I2C_ADDR1_FLAGS, }, .drv = &ps8xxx_tcpm_drv, }, { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = NPCX_I2C_PORT0_1, .addr_flags = PS8XXX_I2C_ADDR1_FLAGS, }, .drv = &ps8xxx_tcpm_drv, }, }; const struct usb_mux_chain usb_muxes[CONFIG_USB_PD_PORT_MAX_COUNT] = { { .mux = &(const struct usb_mux){ .usb_port = 0, .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, }, }, { .mux = &(const struct usb_mux){ .usb_port = 1, .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, }, } }; struct pi3usb9281_config pi3usb9281_chips[] = { { .i2c_port = I2C_PORT_USB_CHARGER_0, .mux_lock = NULL, }, { .i2c_port = I2C_PORT_USB_CHARGER_1, .mux_lock = NULL, }, }; BUILD_ASSERT(ARRAY_SIZE(pi3usb9281_chips) == CONFIG_BC12_DETECT_PI3USB9281_CHIP_COUNT); const int usb_port_enable[CONFIG_USB_PORT_POWER_SMART_PORT_COUNT] = { GPIO_USB1_ENABLE, }; const struct charger_config_t chg_chips[] = { { .i2c_port = I2C_PORT_CHARGER, .i2c_addr_flags = ISL923X_ADDR_FLAGS, .drv = &isl923x_drv, }, }; void board_reset_pd_mcu(void) { /* Assert reset */ gpio_set_level(GPIO_USB_C0_PD_RST_L, 0); gpio_set_level(GPIO_USB_C1_PD_RST_L, 0); msleep(1); gpio_set_level(GPIO_USB_C0_PD_RST_L, 1); gpio_set_level(GPIO_USB_C1_PD_RST_L, 1); } void board_tcpc_init(void) { /* Only reset TCPC if not sysjump */ if (!system_jumped_late()) { board_reset_pd_mcu(); } /* Enable TCPC interrupts */ gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL); /* * Initialize HPD to low; after sysjump SOC needs to see * HPD pulse to enable video path */ for (int port = 0; port < CONFIG_USB_PD_PORT_MAX_COUNT; ++port) usb_mux_hpd_update(port, USB_PD_MUX_HPD_LVL_DEASSERTED | USB_PD_MUX_HPD_IRQ_DEASSERTED); } DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C + 1); uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C0_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_0; } if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C1_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_1; } return status; } const struct temp_sensor_t temp_sensors[] = { { "Battery", TEMP_SENSOR_TYPE_BATTERY, charge_get_battery_temp, 0 }, /* These BD99992GW temp sensors are only readable in S0 */ { "Charger", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM1 }, { "DRAM", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM2 }, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); /* * Check if PMIC fault registers indicate VR fault. If yes, print out fault * register info to console. Additionally, set panic reason so that the OS can * check for fault register info by looking at offset 0x14(PWRSTAT1) and * 0x15(PWRSTAT2) in cros ec panicinfo. */ static void board_report_pmic_fault(const char *str) { int vrfault, pwrstat1 = 0, pwrstat2 = 0; uint32_t info; /* RESETIRQ1 -- Bit 4: VRFAULT */ if (i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x8, &vrfault) != EC_SUCCESS) return; if (!(vrfault & BIT(4))) return; /* VRFAULT has occurred, print VRFAULT status bits. */ /* PWRSTAT1 */ i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x16, &pwrstat1); /* PWRSTAT2 */ i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x17, &pwrstat2); CPRINTS("PMIC VRFAULT: %s", str); CPRINTS("PMIC VRFAULT: PWRSTAT1=0x%02x PWRSTAT2=0x%02x", pwrstat1, pwrstat2); /* Clear all faults -- Write 1 to clear. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x8, BIT(4)); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x16, pwrstat1); i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x17, pwrstat2); /* * Status of the fault registers can be checked in the OS by looking at * offset 0x14(PWRSTAT1) and 0x15(PWRSTAT2) in cros ec panicinfo. */ info = ((pwrstat2 & 0xFF) << 8) | (pwrstat1 & 0xFF); panic_set_reason(PANIC_SW_PMIC_FAULT, info, 0); } static void board_pmic_disable_slp_s0_vr_decay(void) { /* * VCCIOCNT: * Bit 6 (0) - Disable decay of VCCIO on SLP_S0# assertion * Bits 5:4 (11) - Nominal output voltage: 0.850V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x30, 0x3a); /* * V18ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage set to 1.8V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x34, 0x2a); /* * V100ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (01) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x37, 0x1a); /* * V085ACNT: * Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion * Bits 5:4 (11) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x38, 0x3a); } static void board_pmic_enable_slp_s0_vr_decay(void) { /* * VCCIOCNT: * Bit 6 (1) - Enable decay of VCCIO on SLP_S0# assertion * Bits 5:4 (11) - Nominal output voltage: 0.850V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x30, 0x7a); /* * V18ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (10) - Nominal voltage set to 1.8V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x34, 0x6a); /* * V100ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (01) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x37, 0x5a); /* * V085ACNT: * Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion * Bits 5:4 (11) - Nominal voltage 1.0V * Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion * Bits 1:0 (10) - VR set to AUTO operating mode */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x38, 0x7a); } __override void power_board_handle_host_sleep_event(enum host_sleep_event state) { if (state == HOST_SLEEP_EVENT_S0IX_SUSPEND) board_pmic_enable_slp_s0_vr_decay(); else if (state == HOST_SLEEP_EVENT_S0IX_RESUME) board_pmic_disable_slp_s0_vr_decay(); } static void board_pmic_init(void) { board_report_pmic_fault("SYSJUMP"); if (system_jumped_late()) return; /* DISCHGCNT3 - enable 100 ohm discharge on V1.00A */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x3e, 0x04); board_pmic_disable_slp_s0_vr_decay(); /* VRMODECTRL - disable low-power mode for all rails */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x3b, 0x1f); } DECLARE_DEFERRED(board_pmic_init); /* Initialize board. */ static void board_init(void) { /* * This enables pull-down on F_DIO1 (SPI MISO), and F_DIO0 (SPI MOSI), * whenever the EC is not doing SPI flash transactions. This avoids * floating SPI buffer input (MISO), which causes power leakage (see * b/64797021). */ NPCX_PUPD_EN1 |= BIT(NPCX_DEVPU1_F_SPI_PUD_EN); /* Provide AC status to the PCH */ gpio_set_level(GPIO_PCH_ACOK, extpower_is_present()); /* Enable VBUS interrupt */ gpio_enable_interrupt(GPIO_USB_C0_VBUS_WAKE_L); gpio_enable_interrupt(GPIO_USB_C1_VBUS_WAKE_L); /* Enable pericom BC1.2 interrupts */ gpio_enable_interrupt(GPIO_USB_C0_BC12_INT_L); gpio_enable_interrupt(GPIO_USB_C1_BC12_INT_L); /* Level of sensor's I2C and interrupt are 3.3V on proto board */ if (system_get_board_version() < 2) { /* ACCELGYRO3_INT_L */ gpio_set_flags(GPIO_ACCELGYRO3_INT_L, GPIO_INT_FALLING); /* I2C3_SCL / I2C3_SDA */ gpio_set_flags(GPIO_I2C3_SCL, GPIO_INPUT); gpio_set_flags(GPIO_I2C3_SDA, GPIO_INPUT); } /* Enable Gyro interrupts */ gpio_enable_interrupt(GPIO_ACCELGYRO3_INT_L); /* Initialize PMIC */ hook_call_deferred(&board_pmic_init_data, 0); } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); /** * Buffer the AC present GPIO to the PCH. */ static void board_extpower(void) { gpio_set_level(GPIO_PCH_ACOK, extpower_is_present()); } DECLARE_HOOK(HOOK_AC_CHANGE, board_extpower, HOOK_PRIO_DEFAULT); /** * Set active charge port -- only one port can be active at a time. * * @param charge_port Charge port to enable. * * Returns EC_SUCCESS if charge port is accepted and made active, * EC_ERROR_* otherwise. */ int board_set_active_charge_port(int charge_port) { /* charge port is a physical port */ int is_real_port = (charge_port >= 0 && charge_port < CONFIG_USB_PD_PORT_MAX_COUNT); /* check if we are source VBUS on the port */ int source = gpio_get_level(charge_port == 0 ? GPIO_USB_C0_5V_EN : GPIO_USB_C1_5V_EN); if (is_real_port && source) { CPRINTF("Skip enable p%d", charge_port); return EC_ERROR_INVAL; } CPRINTF("New chg p%d", charge_port); if (charge_port == CHARGE_PORT_NONE) { /* Disable both ports */ gpio_set_level(GPIO_USB_C0_CHARGE_L, 1); gpio_set_level(GPIO_USB_C1_CHARGE_L, 1); } else { /* Make sure non-charging port is disabled */ gpio_set_level(charge_port ? GPIO_USB_C0_CHARGE_L : GPIO_USB_C1_CHARGE_L, 1); /* Enable charging port */ gpio_set_level(charge_port ? GPIO_USB_C1_CHARGE_L : GPIO_USB_C0_CHARGE_L, 0); } return EC_SUCCESS; } /** * Return the maximum allowed input current */ int board_get_ramp_current_limit(int supplier, int sup_curr) { switch (supplier) { case CHARGE_SUPPLIER_BC12_DCP: return 2000; case CHARGE_SUPPLIER_BC12_SDP: return 1000; case CHARGE_SUPPLIER_BC12_CDP: case CHARGE_SUPPLIER_PROPRIETARY: return sup_curr; default: return 500; } } void board_hibernate(void) { CPRINTS("Triggering PMIC shutdown."); uart_flush_output(); /* Trigger PMIC shutdown. */ if (i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x49, 0x01)) { /* * If we can't tell the PMIC to shutdown, instead reset * and don't start the AP. Hopefully we'll be able to * communicate with the PMIC next time. */ CPRINTS("PMIC i2c failed."); system_reset(SYSTEM_RESET_LEAVE_AP_OFF); } /* Await shutdown. */ while (1) ; } int board_get_version(void) { static int ver = -1; uint8_t id3; if (ver != -1) return ver; ver = 0; /* First 2 strappings are binary. */ if (gpio_get_level(GPIO_BOARD_VERSION1)) ver |= 0x01; if (gpio_get_level(GPIO_BOARD_VERSION2)) ver |= 0x02; /* * The 3rd strapping pin is tristate. * id3 = 2 if Hi-Z, id3 = 1 if high, and id3 = 0 if low. */ id3 = gpio_get_ternary(GPIO_BOARD_VERSION3); ver |= id3 * 0x04; CPRINTS("Board ID = %d", ver); return ver; } /* Lid Sensor mutex */ static struct mutex g_lid_mutex; static struct mutex g_base_mutex; static struct bmi_drv_data_t g_bmi160_data; /* BMA255 private data */ static struct accelgyro_saved_data_t g_bma255_data; /* Matrix to rotate accelrator into standard reference frame */ const mat33_fp_t base_standard_ref = { { FLOAT_TO_FP(-1), 0, 0 }, { 0, FLOAT_TO_FP(1), 0 }, { 0, 0, FLOAT_TO_FP(-1) } }; const mat33_fp_t lid_standard_ref = { { FLOAT_TO_FP(-1), 0, 0 }, { 0, FLOAT_TO_FP(1), 0 }, { 0, 0, FLOAT_TO_FP(-1) } }; struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMA255, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &bma2x2_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_bma255_data, .port = I2C_PORT_ACCEL, .i2c_spi_addr_flags = BMA2x2_I2C_ADDR1_FLAGS, .rot_standard_ref = &lid_standard_ref, .min_frequency = BMA255_ACCEL_MIN_FREQ, .max_frequency = BMA255_ACCEL_MAX_FREQ, .default_range = 2, /* g, to support lid angle calculation. */ .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, }, /* Sensor on in S3 */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_ACCEL, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .rot_standard_ref = &base_standard_ref, .min_frequency = BMI_ACCEL_MIN_FREQ, .max_frequency = BMI_ACCEL_MAX_FREQ, .default_range = 4, /* g, to meet CDD 7.3.1/C-1-4 reqs */ .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, /* Sensor on in S3 */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_ACCEL, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = &base_standard_ref, .min_frequency = BMI_GYRO_MIN_FREQ, .max_frequency = BMI_GYRO_MAX_FREQ, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); /* Enable or disable input devices, based on chipset state and tablet mode */ __override void lid_angle_peripheral_enable(int enable) { /* If the lid is in 360 position, ignore the lid angle, * which might be faulty. Disable keyboard. */ if (tablet_get_mode() || chipset_in_state(CHIPSET_STATE_ANY_OFF)) enable = 0; keyboard_scan_enable(enable, KB_SCAN_DISABLE_LID_ANGLE); } static void board_chipset_reset(void) { board_report_pmic_fault("CHIPSET RESET"); } DECLARE_HOOK(HOOK_CHIPSET_RESET, board_chipset_reset, HOOK_PRIO_DEFAULT); /* Called on AP S3 -> S0 transition */ static void board_chipset_resume(void) { gpio_set_level(GPIO_ENABLE_BACKLIGHT, 1); } DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT); /* Called on AP S0 -> S3 transition */ static void board_chipset_suspend(void) { gpio_set_level(GPIO_ENABLE_BACKLIGHT, 0); } DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT); static void board_chipset_startup(void) { /* Enable USB-A port. */ gpio_set_level(GPIO_USB1_ENABLE, 1); gpio_set_level(GPIO_ENABLE_TOUCHPAD, 1); gpio_set_level(GPIO_PP1800_DX_SENSOR, 1); } DECLARE_HOOK(HOOK_CHIPSET_STARTUP, board_chipset_startup, HOOK_PRIO_DEFAULT); static void board_chipset_shutdown(void) { /* Disable USB-A port. */ gpio_set_level(GPIO_USB1_ENABLE, 0); gpio_set_level(GPIO_ENABLE_TOUCHPAD, 0); gpio_set_level(GPIO_PP1800_DX_SENSOR, 0); } DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, board_chipset_shutdown, HOOK_PRIO_DEFAULT); int board_has_working_reset_flags(void) { int version = system_get_board_version(); /* Boards Rev1, Rev2 and Rev3 will lose reset flags on power cycle. */ if ((version == 1) || (version == 2) || (version == 3)) return 0; /* All other board versions should have working reset flags */ return 1; } /* * I2C callbacks to ensure bus free time for battery I2C transactions is at * least 5ms. */ #define BATTERY_FREE_MIN_DELTA_US (5 * MSEC) static timestamp_t battery_last_i2c_time; static int is_battery_i2c(const int port, const uint16_t addr_flags) { return (port == I2C_PORT_BATTERY) && (addr_flags == BATTERY_ADDR_FLAGS); } void i2c_start_xfer_notify(const int port, const uint16_t addr_flags) { unsigned int time_delta_us; if (!is_battery_i2c(port, addr_flags)) return; time_delta_us = time_since32(battery_last_i2c_time); if (time_delta_us >= BATTERY_FREE_MIN_DELTA_US) return; usleep(BATTERY_FREE_MIN_DELTA_US - time_delta_us); } void i2c_end_xfer_notify(const int port, const uint16_t addr_flags) { if (!is_battery_i2c(port, addr_flags)) return; battery_last_i2c_time = get_time(); }