/* Copyright 2020 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "adc.h" #include "adc_chip.h" #include "button.h" #include "charge_state_v2.h" #include "cros_board_info.h" #include "driver/accelgyro_bmi_common.h" #include "driver/accelgyro_icm_common.h" #include "driver/accelgyro_icm426xx.h" #include "driver/accel_kionix.h" #include "driver/accel_kx022.h" #include "driver/ppc/aoz1380.h" #include "driver/ppc/nx20p348x.h" #include "driver/retimer/pi3hdx1204.h" #include "driver/retimer/tusb544.h" #include "driver/temp_sensor/sb_tsi.h" #include "driver/usb_mux/amd_fp5.h" #include "driver/usb_mux/ps8743.h" #include "extpower.h" #include "fan.h" #include "fan_chip.h" #include "gpio.h" #include "hooks.h" #include "lid_switch.h" #include "power.h" #include "power_button.h" #include "pwm.h" #include "pwm_chip.h" #include "switch.h" #include "system.h" #include "task.h" #include "temp_sensor/thermistor.h" #include "temp_sensor.h" #include "usb_charge.h" #include "usb_mux.h" #include "usbc_ppc.h" #include "gpio_list.h" static int board_ver; /* Motion sensors */ static struct mutex g_lid_mutex; static struct mutex g_base_mutex; /* sensor private data */ static struct kionix_accel_data g_kx022_data; static struct bmi_drv_data_t g_bmi160_data; static struct icm_drv_data_t g_icm426xx_data; /* Matrix to rotate accelrator into standard reference frame */ const mat33_fp_t base_standard_ref = { { 0, FLOAT_TO_FP(-1), 0}, { FLOAT_TO_FP(-1), 0, 0}, { 0, 0, FLOAT_TO_FP(-1)} }; const mat33_fp_t base_standard_ref_1 = { { FLOAT_TO_FP(1), 0, 0}, { 0, FLOAT_TO_FP(-1), 0}, { 0, 0, FLOAT_TO_FP(-1)} }; const mat33_fp_t lid_standard_ref = { { FLOAT_TO_FP(-1), 0, 0}, { 0, FLOAT_TO_FP(-1), 0}, { 0, 0, FLOAT_TO_FP(1)} }; /* TODO(gcc >= 5.0) Remove the casts to const pointer at rot_standard_ref */ struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_KX022, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &kionix_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_kx022_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = KX022_ADDR1_FLAGS, .rot_standard_ref = &lid_standard_ref, .default_range = 2, /* g, enough for laptop. */ .min_frequency = KX022_ACCEL_MIN_FREQ, .max_frequency = KX022_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 4, /* g, to meet CDD 7.3.1/C-1-4 reqs.*/ .rot_standard_ref = &base_standard_ref, .min_frequency = BMI_ACCEL_MIN_FREQ, .max_frequency = BMI_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = &base_standard_ref, .min_frequency = BMI_GYRO_MIN_FREQ, .max_frequency = BMI_GYRO_MAX_FREQ, }, }; unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); struct motion_sensor_t icm426xx_base_accel = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_ICM426XX, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &icm426xx_drv, .mutex = &g_base_mutex, .drv_data = &g_icm426xx_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = ICM426XX_ADDR0_FLAGS, .default_range = 4, /* g, to meet CDD 7.3.1/C-1-4 reqs.*/ .rot_standard_ref = &base_standard_ref_1, .min_frequency = ICM426XX_ACCEL_MIN_FREQ, .max_frequency = ICM426XX_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }; struct motion_sensor_t icm426xx_base_gyro = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_ICM426XX, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &icm426xx_drv, .mutex = &g_base_mutex, .drv_data = &g_icm426xx_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = ICM426XX_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = &base_standard_ref_1, .min_frequency = ICM426XX_GYRO_MIN_FREQ, .max_frequency = ICM426XX_GYRO_MAX_FREQ, }; const struct power_signal_info power_signal_list[] = { [X86_SLP_S3_N] = { .gpio = GPIO_PCH_SLP_S3_L, .flags = POWER_SIGNAL_ACTIVE_HIGH, .name = "SLP_S3_DEASSERTED", }, [X86_SLP_S5_N] = { .gpio = GPIO_PCH_SLP_S5_L, .flags = POWER_SIGNAL_ACTIVE_HIGH, .name = "SLP_S5_DEASSERTED", }, [X86_S0_PGOOD] = { .gpio = GPIO_S0_PGOOD, .flags = POWER_SIGNAL_ACTIVE_HIGH, .name = "S0_PGOOD", }, [X86_S5_PGOOD] = { .gpio = GPIO_S5_PGOOD, .flags = POWER_SIGNAL_ACTIVE_HIGH, .name = "S5_PGOOD", }, }; BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT); const struct pwm_t pwm_channels[] = { [PWM_CH_KBLIGHT] = { .channel = 3, .flags = PWM_CONFIG_DSLEEP, .freq = 100, }, [PWM_CH_FAN] = { .channel = 2, .flags = PWM_CONFIG_OPEN_DRAIN, .freq = 25000, }, }; BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT); /* MFT channels. These are logically separate from pwm_channels. */ const struct mft_t mft_channels[] = { [MFT_CH_0] = { .module = NPCX_MFT_MODULE_1, .clk_src = TCKC_LFCLK, .pwm_id = PWM_CH_FAN, }, }; BUILD_ASSERT(ARRAY_SIZE(mft_channels) == MFT_CH_COUNT); const int usb_port_enable[USBA_PORT_COUNT] = { IOEX_EN_USB_A0_5V, IOEX_EN_USB_A1_5V_DB, }; const struct pi3hdx1204_tuning pi3hdx1204_tuning = { .eq_ch0_ch1_offset = PI3HDX1204_EQ_DB710, .eq_ch2_ch3_offset = PI3HDX1204_EQ_DB710, .vod_offset = PI3HDX1204_VOD_130_ALL_CHANNELS, .de_offset = PI3HDX1204_DE_DB_MINUS5, }; /* * USB C0 port SBU mux use standalone FSUSB42UMX * chip and it need a board specific driver. * Overall, it will use chained mux framework. */ static int fsusb42umx_set_mux(const struct usb_mux *me, mux_state_t mux_state) { if (mux_state & USB_PD_MUX_POLARITY_INVERTED) ioex_set_level(IOEX_USB_C0_SBU_FLIP, 1); else ioex_set_level(IOEX_USB_C0_SBU_FLIP, 0); return EC_SUCCESS; } /* * .init is not necessary here because it has nothing * to do. Primary mux will handle mux state so .get is * not needed as well. usb_mux.c can handle the situation * properly. */ const struct usb_mux_driver usbc0_sbu_mux_driver = { .set = fsusb42umx_set_mux, }; /* * Since FSUSB42UMX is not a i2c device, .i2c_port and * .i2c_addr_flags are not required here. */ const struct usb_mux usbc0_sbu_mux = { .usb_port = USBC_PORT_C0, .driver = &usbc0_sbu_mux_driver, }; /***************************************************************************** * Base Gyro Sensor dynamic configuration */ static int base_gyro_config; static void setup_base_gyro_config(void) { base_gyro_config = ec_config_has_base_gyro_sensor(); if (base_gyro_config == BASE_GYRO_ICM426XX) { motion_sensors[BASE_ACCEL] = icm426xx_base_accel; motion_sensors[BASE_GYRO] = icm426xx_base_gyro; ccprints("BASE GYRO is ICM426XX"); } else if (base_gyro_config == BASE_GYRO_BMI160) ccprints("BASE GYRO is BMI160"); } void motion_interrupt(enum gpio_signal signal) { switch (base_gyro_config) { case BASE_GYRO_ICM426XX: icm426xx_interrupt(signal); break; case BASE_GYRO_BMI160: default: bmi160_interrupt(signal); break; } } /***************************************************************************** * USB-C MUX/Retimer dynamic configuration */ static void setup_mux(void) { if (ec_config_has_usbc1_retimer_tusb544()) { ccprints("C1 TUSB544 detected"); /* * Main MUX is FP5, secondary MUX is TUSB544 * * Replace usb_muxes[USBC_PORT_C1] with the AMD FP5 * table entry. */ memcpy(&usb_muxes[USBC_PORT_C1], &usbc1_amd_fp5_usb_mux, sizeof(struct usb_mux)); /* Set the TUSB544 as the secondary MUX */ usb_muxes[USBC_PORT_C1].next_mux = &usbc1_tusb544; } else if (ec_config_has_usbc1_retimer_ps8743()) { ccprints("C1 PS8743 detected"); /* * Main MUX is PS8743, secondary MUX is modified FP5 * * Replace usb_muxes[USBC_PORT_C1] with the PS8743 * table entry. */ memcpy(&usb_muxes[USBC_PORT_C1], &usbc1_ps8743, sizeof(struct usb_mux)); /* Set the AMD FP5 as the secondary MUX */ usb_muxes[USBC_PORT_C1].next_mux = &usbc1_amd_fp5_usb_mux; /* Don't have the AMD FP5 flip */ usbc1_amd_fp5_usb_mux.flags = USB_MUX_FLAG_SET_WITHOUT_FLIP; } } struct usb_mux usb_muxes[] = { [USBC_PORT_C0] = { .usb_port = USBC_PORT_C0, .i2c_port = I2C_PORT_USB_AP_MUX, .i2c_addr_flags = AMD_FP5_MUX_I2C_ADDR_FLAGS, .driver = &amd_fp5_usb_mux_driver, .next_mux = &usbc0_sbu_mux, }, [USBC_PORT_C1] = { /* Filled in dynamically at startup */ }, }; BUILD_ASSERT(ARRAY_SIZE(usb_muxes) == USBC_PORT_COUNT); static int board_tusb544_mux_set(const struct usb_mux *me, mux_state_t mux_state) { if (mux_state & USB_PD_MUX_DP_ENABLED) { /* Enable IN_HPD on the DB */ ioex_set_level(IOEX_USB_C1_HPD_IN_DB, 1); } else { /* Disable IN_HPD on the DB */ ioex_set_level(IOEX_USB_C1_HPD_IN_DB, 0); } return EC_SUCCESS; } static int board_ps8743_mux_set(const struct usb_mux *me, mux_state_t mux_state) { if (mux_state & USB_PD_MUX_DP_ENABLED) /* Enable IN_HPD on the DB */ ioex_set_level(IOEX_USB_C1_HPD_IN_DB, 1); else /* Disable IN_HPD on the DB */ ioex_set_level(IOEX_USB_C1_HPD_IN_DB, 0); return EC_SUCCESS; } const struct usb_mux usbc1_tusb544 = { .usb_port = USBC_PORT_C1, .i2c_port = I2C_PORT_TCPC1, .i2c_addr_flags = TUSB544_I2C_ADDR_FLAGS1, .driver = &tusb544_drv, .board_set = &board_tusb544_mux_set, }; const struct usb_mux usbc1_ps8743 = { .usb_port = USBC_PORT_C1, .i2c_port = I2C_PORT_TCPC1, .i2c_addr_flags = PS8743_I2C_ADDR1_FLAG, .driver = &ps8743_usb_mux_driver, .board_set = &board_ps8743_mux_set, }; /***************************************************************************** * PPC */ static int ppc_id; static void setup_c1_ppc_config(void) { /* * Read USB_C1_POWER_SWITCH_ID to choose DB ppc chip * 0: NX20P3483UK * 1: AOZ1380DI */ ioex_get_level(IOEX_USB_C1_POWER_SWITCH_ID, &ppc_id); ccprints("C1: PPC is %s", ppc_id ? "AOZ1380DI" : "NX20P3483UK"); if (ppc_id) { ppc_chips[USBC_PORT_C1].drv = &aoz1380_drv; ioex_set_flags(IOEX_USB_C1_PPC_ILIM_3A_EN, GPIO_OUT_LOW); } } __override void ppc_interrupt(enum gpio_signal signal) { switch (signal) { case GPIO_USB_C0_PPC_FAULT_ODL: aoz1380_interrupt(USBC_PORT_C0); break; case GPIO_USB_C1_PPC_INT_ODL: if (ppc_id) aoz1380_interrupt(USBC_PORT_C1); else nx20p348x_interrupt(USBC_PORT_C1); break; default: break; } } __override int board_aoz1380_set_vbus_source_current_limit(int port, enum tcpc_rp_value rp) { int rv; /* Use the TCPC to set the current limit */ rv = ioex_set_level(port ? IOEX_USB_C1_PPC_ILIM_3A_EN : IOEX_USB_C0_PPC_ILIM_3A_EN, (rp == TYPEC_RP_3A0) ? 1 : 0); return rv; } /***************************************************************************** * Use FW_CONFIG to set correct configuration. */ static void setup_v0_charger(void) { int rv; rv = cbi_get_board_version(&board_ver); if (rv) { ccprints("Fail to get board_ver"); /* Default for v3 */ board_ver = 3; } if (board_ver == 1) chg_chips[0].i2c_port = I2C_PORT_CHARGER_V0; } /* * Use HOOK_PRIO_INIT_I2C so we re-map before charger_chips_init() * talks to the charger. */ DECLARE_HOOK(HOOK_INIT, setup_v0_charger, HOOK_PRIO_INIT_I2C); static void setup_fw_config(void) { /* Enable Gyro interrupts */ gpio_enable_interrupt(GPIO_6AXIS_INT_L); setup_mux(); if (board_ver >= 3) setup_c1_ppc_config(); if (ec_config_has_hdmi_conn_hpd()) { if (board_ver < 3) ioex_enable_interrupt(IOEX_HDMI_CONN_HPD_3V3_DB); else gpio_enable_interrupt(GPIO_DP1_HPD_EC_IN); } setup_base_gyro_config(); } /* Use HOOK_PRIO_INIT_I2C + 2 to be after ioex_init(). */ DECLARE_HOOK(HOOK_INIT, setup_fw_config, HOOK_PRIO_INIT_I2C + 2); static int check_hdmi_hpd_status(void) { int hpd = 0; if (board_ver < 3) ioex_get_level(IOEX_HDMI_CONN_HPD_3V3_DB, &hpd); else hpd = gpio_get_level(GPIO_DP1_HPD_EC_IN); return hpd; } static void hdmi_hpd_handler(void) { /* Pass HPD through from DB OPT1 HDMI connector to AP's DP1. */ int hpd = check_hdmi_hpd_status(); gpio_set_level(GPIO_DP1_HPD, hpd); ccprints("HDMI HPD %d", hpd); pi3hdx1204_enable(I2C_PORT_TCPC1, PI3HDX1204_I2C_ADDR_FLAGS, chipset_in_or_transitioning_to_state(CHIPSET_STATE_ON) && hpd); } DECLARE_DEFERRED(hdmi_hpd_handler); void hdmi_hpd_interrupt(enum gpio_signal signal) { /* Debounce for 2 msec. */ hook_call_deferred(&hdmi_hpd_handler_data, (2 * MSEC)); } void hdmi_hpd_interrupt_v2(enum ioex_signal signal) { /* Debounce for 2 msec. */ hook_call_deferred(&hdmi_hpd_handler_data, (2 * MSEC)); } /***************************************************************************** * Board suspend / resume */ static void board_chipset_resume(void) { ioex_set_level(IOEX_USB_A1_RETIMER_EN, 1); ioex_set_level(IOEX_HDMI_DATA_EN_DB, 1); if (ec_config_has_hdmi_retimer_pi3hdx1204()) { ioex_set_level(IOEX_HDMI_POWER_EN_DB, 1); msleep(PI3HDX1204_POWER_ON_DELAY_MS); pi3hdx1204_enable(I2C_PORT_TCPC1, PI3HDX1204_I2C_ADDR_FLAGS, check_hdmi_hpd_status()); } } DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT); static void board_chipset_suspend(void) { ioex_set_level(IOEX_USB_A1_RETIMER_EN, 0); if (ec_config_has_hdmi_retimer_pi3hdx1204()) { pi3hdx1204_enable(I2C_PORT_TCPC1, PI3HDX1204_I2C_ADDR_FLAGS, 0); ioex_set_level(IOEX_HDMI_POWER_EN_DB, 0); } ioex_set_level(IOEX_HDMI_DATA_EN_DB, 0); } DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT); /***************************************************************************** * Fan */ /* Physical fans. These are logically separate from pwm_channels. */ const struct fan_conf fan_conf_0 = { .flags = FAN_USE_RPM_MODE, .ch = MFT_CH_0, /* Use MFT id to control fan */ .pgood_gpio = -1, .enable_gpio = -1, }; const struct fan_rpm fan_rpm_0 = { .rpm_min = 3200, .rpm_start = 3200, .rpm_max = 6000, }; const struct fan_t fans[] = { [FAN_CH_0] = { .conf = &fan_conf_0, .rpm = &fan_rpm_0, }, }; BUILD_ASSERT(ARRAY_SIZE(fans) == FAN_CH_COUNT); int board_get_temp(int idx, int *temp_k) { int mv; int temp_c; enum adc_channel channel; /* idx is the sensor index set in board temp_sensors[] */ switch (idx) { case TEMP_SENSOR_CHARGER: channel = ADC_TEMP_SENSOR_CHARGER; break; case TEMP_SENSOR_SOC: /* thermistor is not powered in G3 */ if (chipset_in_state(CHIPSET_STATE_HARD_OFF)) return EC_ERROR_NOT_POWERED; channel = ADC_TEMP_SENSOR_SOC; break; default: return EC_ERROR_INVAL; } mv = adc_read_channel(channel); if (mv < 0) return EC_ERROR_INVAL; temp_c = thermistor_linear_interpolate(mv, &thermistor_info); *temp_k = C_TO_K(temp_c); return EC_SUCCESS; } const struct adc_t adc_channels[] = { [ADC_TEMP_SENSOR_CHARGER] = { .name = "CHARGER", .input_ch = NPCX_ADC_CH2, .factor_mul = ADC_MAX_VOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, }, [ADC_TEMP_SENSOR_SOC] = { .name = "SOC", .input_ch = NPCX_ADC_CH3, .factor_mul = ADC_MAX_VOLT, .factor_div = ADC_READ_MAX + 1, .shift = 0, }, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); const struct temp_sensor_t temp_sensors[] = { [TEMP_SENSOR_CHARGER] = { .name = "Charger", .type = TEMP_SENSOR_TYPE_BOARD, .read = board_get_temp, .idx = TEMP_SENSOR_CHARGER, }, [TEMP_SENSOR_SOC] = { .name = "SOC", .type = TEMP_SENSOR_TYPE_BOARD, .read = board_get_temp, .idx = TEMP_SENSOR_SOC, }, [TEMP_SENSOR_CPU] = { .name = "CPU", .type = TEMP_SENSOR_TYPE_CPU, .read = sb_tsi_get_val, .idx = 0, }, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); const static struct ec_thermal_config thermal_thermistor = { .temp_host = { [EC_TEMP_THRESH_HIGH] = C_TO_K(85), [EC_TEMP_THRESH_HALT] = C_TO_K(95), }, .temp_host_release = { [EC_TEMP_THRESH_HIGH] = C_TO_K(70), }, .temp_fan_off = 0, .temp_fan_max = 0, }; const static struct ec_thermal_config thermal_soc = { .temp_host = { [EC_TEMP_THRESH_HIGH] = C_TO_K(75), [EC_TEMP_THRESH_HALT] = C_TO_K(80), }, .temp_host_release = { [EC_TEMP_THRESH_HIGH] = C_TO_K(65), }, .temp_fan_off = C_TO_K(32), .temp_fan_max = C_TO_K(75), }; struct ec_thermal_config thermal_params[TEMP_SENSOR_COUNT]; struct fan_step { int on; int off; int rpm; }; /* Note: Do not make the fan on/off point equal to 0 or 100 */ static const struct fan_step fan_table0[] = { {.on = 0, .off = 1, .rpm = 0}, {.on = 9, .off = 1, .rpm = 3200}, {.on = 21, .off = 7, .rpm = 3500}, {.on = 28, .off = 16, .rpm = 3900}, {.on = 37, .off = 26, .rpm = 4200}, {.on = 47, .off = 35, .rpm = 4600}, {.on = 56, .off = 44, .rpm = 5100}, {.on = 72, .off = 60, .rpm = 5500}, }; /* All fan tables must have the same number of levels */ #define NUM_FAN_LEVELS ARRAY_SIZE(fan_table0) static const struct fan_step *fan_table = fan_table0; static void setup_fans(void) { thermal_params[TEMP_SENSOR_CHARGER] = thermal_thermistor; thermal_params[TEMP_SENSOR_SOC] = thermal_soc; } DECLARE_HOOK(HOOK_INIT, setup_fans, HOOK_PRIO_DEFAULT); int fan_percent_to_rpm(int fan, int pct) { static int current_level; static int previous_pct; int i; /* * Compare the pct and previous pct, we have the three paths : * 1. decreasing path. (check the off point) * 2. increasing path. (check the on point) * 3. invariant path. (return the current RPM) */ if (pct < previous_pct) { for (i = current_level; i >= 0; i--) { if (pct <= fan_table[i].off) current_level = i - 1; else break; } } else if (pct > previous_pct) { for (i = current_level + 1; i < NUM_FAN_LEVELS; i++) { if (pct >= fan_table[i].on) current_level = i; else break; } } if (current_level < 0) current_level = 0; previous_pct = pct; if (fan_table[current_level].rpm != fan_get_rpm_target(FAN_CH(fan))) { cprints(CC_THERMAL, "Setting fan RPM to %d", fan_table[current_level].rpm); board_print_temps(); } return fan_table[current_level].rpm; } __override void board_set_charge_limit(int port, int supplier, int charge_ma, int max_ma, int charge_mv) { /* * Limit the input current to 95% negotiated limit, * to account for the charger chip margin. */ charge_ma = charge_ma * 95 / 100; charge_set_input_current_limit(MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT), charge_mv); }