/* Copyright 2016 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Eve board-specific configuration */ #include "adc_chip.h" #include "bd99992gw.h" #include "board_config.h" #include "button.h" #include "charge_manager.h" #include "charge_state.h" #include "charge_ramp.h" #include "charger.h" #include "chipset.h" #include "console.h" #include "driver/accel_kionix.h" #include "driver/accel_kxcj9.h" #include "driver/accelgyro_bmi160.h" #include "driver/als_si114x.h" #include "driver/charger/bd9995x.h" #include "driver/tcpm/anx74xx.h" #include "driver/tcpm/tcpci.h" #include "driver/tcpm/tcpm.h" #include "driver/temp_sensor/bd99992gw.h" #include "extpower.h" #include "gpio.h" #include "hooks.h" #include "host_command.h" #include "i2c.h" #include "keyboard_scan.h" #include "lid_angle.h" #include "lid_switch.h" #include "math_util.h" #include "motion_lid.h" #include "motion_sense.h" #include "power.h" #include "power_button.h" #include "pwm.h" #include "pwm_chip.h" #include "spi.h" #include "switch.h" #include "system.h" #include "tablet_mode.h" #include "task.h" #include "temp_sensor.h" #include "timer.h" #include "uart.h" #include "usb_charge.h" #include "usb_mux.h" #include "usb_pd.h" #include "usb_pd_tcpm.h" #include "util.h" #include "espi.h" #define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args) #define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args) static void tcpc_alert_event(enum gpio_signal signal) { if ((signal == GPIO_USB_C0_PD_INT_ODL) && !gpio_get_level(GPIO_USB_C0_PD_RST_L)) return; else if ((signal == GPIO_USB_C1_PD_INT_ODL) && !gpio_get_level(GPIO_USB_C1_PD_RST_L)) return; #ifdef HAS_TASK_PDCMD /* Exchange status with TCPCs */ host_command_pd_send_status(PD_CHARGE_NO_CHANGE); #endif } /* * enable_input_devices() is called by the tablet_mode ISR, but changes the * state of GPIOs, so its definition must reside after including gpio_list. */ static void enable_input_devices(void); DECLARE_DEFERRED(enable_input_devices); #define LID_DEBOUNCE_US (30 * MSEC) void tablet_mode_interrupt(enum gpio_signal signal) { hook_call_deferred(&enable_input_devices_data, LID_DEBOUNCE_US); } #ifdef CONFIG_USB_PD_TCPC_LOW_POWER static void anx74xx_c0_cable_det_handler(void) { int level = gpio_get_level(GPIO_USB_C0_CABLE_DET); /* * Setting the low power is handled by DRP status hence * handle only the attach event. */ if (level) anx74xx_handle_power_mode(I2C_PORT_TCPC0, ANX74XX_NORMAL_MODE); /* confirm if cable_det is asserted */ if (!level || gpio_get_level(GPIO_USB_C0_PD_RST_L)) return; task_set_event(TASK_ID_PD_C0, PD_EVENT_TCPC_RESET, 0); } DECLARE_DEFERRED(anx74xx_c0_cable_det_handler); DECLARE_HOOK(HOOK_CHIPSET_RESUME, anx74xx_c0_cable_det_handler, HOOK_PRIO_LAST); static void anx74xx_c1_cable_det_handler(void) { int level = gpio_get_level(GPIO_USB_C1_CABLE_DET); /* * Setting the low power is handled by DRP status hence * handle only the attach event. */ if (level) anx74xx_handle_power_mode(I2C_PORT_TCPC1, ANX74XX_NORMAL_MODE); /* confirm if cable_det is asserted */ if (!level || gpio_get_level(GPIO_USB_C1_PD_RST_L)) return; task_set_event(TASK_ID_PD_C1, PD_EVENT_TCPC_RESET, 0); } DECLARE_DEFERRED(anx74xx_c1_cable_det_handler); DECLARE_HOOK(HOOK_CHIPSET_RESUME, anx74xx_c1_cable_det_handler, HOOK_PRIO_LAST); void anx74xx_cable_det_interrupt(enum gpio_signal signal) { /* Check if it is port 0 or 1, and debounce for 2 msec. */ if (signal == GPIO_USB_C0_CABLE_DET) hook_call_deferred(&anx74xx_c0_cable_det_handler_data, (2 * MSEC)); else hook_call_deferred(&anx74xx_c1_cable_det_handler_data, (2 * MSEC)); } #endif #include "gpio_list.h" /* power signal list. Must match order of enum power_signal. */ const struct power_signal_info power_signal_list[] = { {GPIO_PCH_SLP_S0_L, 1, "SLP_S0_DEASSERTED"}, {VW_SLP_S3_L, 1, "SLP_S3_DEASSERTED"}, {VW_SLP_S4_L, 1, "SLP_S4_DEASSERTED"}, {GPIO_PCH_SLP_SUS_L, 1, "SLP_SUS_DEASSERTED"}, {GPIO_RSMRST_L_PGOOD, 1, "RSMRST_L_PGOOD"}, {GPIO_PMIC_DPWROK, 1, "PMIC_DPWROK"}, }; BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT); /* Keyboard scan. Increase output_settle_us to 80us from default 50us. */ struct keyboard_scan_config keyscan_config = { .output_settle_us = 80, .debounce_down_us = 9 * MSEC, .debounce_up_us = 30 * MSEC, .scan_period_us = 3 * MSEC, .min_post_scan_delay_us = 1000, .poll_timeout_us = 100 * MSEC, .actual_key_mask = { 0x14, 0xff, 0xff, 0xff, 0xff, 0xf5, 0xff, 0xa4, 0xff, 0xfe, 0x55, 0xfa, 0xca /* full set */ }, }; /* PWM channels. Must be in the exactly same order as in enum pwm_channel. */ const struct pwm_t pwm_channels[] = { [PWM_CH_KBLIGHT] = { 5, PWM_CONFIG_DSLEEP, 100 }, [PWM_CH_LED_L_RED] = { 2, PWM_CONFIG_DSLEEP, 100 }, [PWM_CH_LED_L_GREEN] = { 3, PWM_CONFIG_DSLEEP, 100 }, [PWM_CH_LED_L_BLUE] = { 4, PWM_CONFIG_DSLEEP, 100 }, [PWM_CH_LED_R_RED] = { 1, PWM_CONFIG_DSLEEP, 100 }, [PWM_CH_LED_R_GREEN] = { 0, PWM_CONFIG_DSLEEP, 100 }, [PWM_CH_LED_R_BLUE] = { 6, PWM_CONFIG_DSLEEP, 100 }, }; BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT); /* Hibernate wake configuration */ const enum gpio_signal hibernate_wake_pins[] = { GPIO_AC_PRESENT, GPIO_LID_OPEN, GPIO_POWER_BUTTON_L, }; const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins); /* I2C port map */ const struct i2c_port_t i2c_ports[] = { {"tcpc0", I2C_PORT_TCPC0, 400, GPIO_I2C0_0_SCL, GPIO_I2C0_0_SDA}, {"tcpc1", I2C_PORT_TCPC1, 400, GPIO_I2C0_1_SCL, GPIO_I2C0_1_SDA}, {"accelgyro", I2C_PORT_GYRO, 400, GPIO_I2C1_SCL, GPIO_I2C1_SDA}, {"sensors", I2C_PORT_LID_ACCEL, 400, GPIO_I2C2_SCL, GPIO_I2C2_SDA}, {"batt", I2C_PORT_BATTERY, 100, GPIO_I2C3_SCL, GPIO_I2C3_SDA}, }; const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports); /* TCPC mux configuration */ const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_COUNT] = { {I2C_PORT_TCPC0, 0x50, &anx74xx_tcpm_drv, TCPC_ALERT_ACTIVE_LOW}, {I2C_PORT_TCPC1, 0x50, &anx74xx_tcpm_drv, TCPC_ALERT_ACTIVE_LOW}, }; struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_COUNT] = { { .port_addr = 0, .driver = &anx74xx_tcpm_usb_mux_driver, .hpd_update = &anx74xx_tcpc_update_hpd_status, }, { .port_addr = 1, .driver = &anx74xx_tcpm_usb_mux_driver, .hpd_update = &anx74xx_tcpc_update_hpd_status, }, }; /* called from anx74xx_set_power_mode() */ void board_set_tcpc_power_mode(int port, int mode) { switch (port) { case 0: if (mode) { gpio_set_level(GPIO_USB_C0_TCPC_PWR, 1); msleep(10); gpio_set_level(GPIO_USB_C0_PD_RST_L, 1); } else { gpio_set_level(GPIO_USB_C0_PD_RST_L, 0); msleep(1); gpio_set_level(GPIO_USB_C0_TCPC_PWR, 0); } break; case 1: if (mode) { gpio_set_level(GPIO_USB_C1_TCPC_PWR, 1); msleep(10); gpio_set_level(GPIO_USB_C1_PD_RST_L, 1); } else { gpio_set_level(GPIO_USB_C1_PD_RST_L, 0); msleep(1); gpio_set_level(GPIO_USB_C1_TCPC_PWR, 0); } break; } } void board_reset_pd_mcu(void) { /* Assert reset */ gpio_set_level(GPIO_USB_C0_PD_RST_L, 0); gpio_set_level(GPIO_USB_C1_PD_RST_L, 0); msleep(1); /* Disable power */ gpio_set_level(GPIO_USB_C0_TCPC_PWR, 0); gpio_set_level(GPIO_USB_C1_TCPC_PWR, 0); msleep(10); /* Enable power */ gpio_set_level(GPIO_USB_C0_TCPC_PWR, 1); gpio_set_level(GPIO_USB_C1_TCPC_PWR, 1); msleep(10); /* Deassert reset */ gpio_set_level(GPIO_USB_C0_PD_RST_L, 1); gpio_set_level(GPIO_USB_C1_PD_RST_L, 1); } void board_tcpc_init(void) { int port; /* Only reset TCPC if not sysjump */ if (!system_jumped_to_this_image()) board_reset_pd_mcu(); /* Enable TCPC interrupts */ gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL); #ifdef CONFIG_USB_PD_TCPC_LOW_POWER /* Enable CABLE_DET interrupt for ANX3429 wake from standby */ gpio_enable_interrupt(GPIO_USB_C0_CABLE_DET); gpio_enable_interrupt(GPIO_USB_C1_CABLE_DET); #endif /* * Initialize HPD to low; after sysjump SOC needs to see * HPD pulse to enable video path */ for (port = 0; port < CONFIG_USB_PD_PORT_COUNT; port++) { const struct usb_mux *mux = &usb_muxes[port]; mux->hpd_update(port, 0, 0); } } DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C+1); uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C0_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_0; } if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C1_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_1; } return status; } const struct temp_sensor_t temp_sensors[] = { {"Battery", TEMP_SENSOR_TYPE_BATTERY, charge_get_battery_temp, 0, 4}, /* These BD99992GW temp sensors are only readable in S0 */ {"Ambient", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM0, 4}, {"Charger", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM1, 4}, {"DRAM", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM2, 4}, {"eMMC", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val, BD99992GW_ADC_CHANNEL_SYSTHERM3, 4}, {"Gyro", TEMP_SENSOR_TYPE_BOARD, bmi160_get_sensor_temp, BASE_GYRO, 1}, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); const struct button_config buttons[CONFIG_BUTTON_COUNT] = { {"Volume Down", KEYBOARD_BUTTON_VOLUME_DOWN, GPIO_VOLUME_DOWN_L, 30 * MSEC, 0}, {"Volume Up", KEYBOARD_BUTTON_VOLUME_UP, GPIO_VOLUME_UP_L, 30 * MSEC, 0}, }; static void board_pmic_init(void) { if (system_jumped_to_this_image()) return; /* DISCHGCNT3 - enable 100 ohm discharge on V1.00A */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x3e, 0x04); /* Set CSDECAYEN / VCCIO decays to 0V at assertion of SLP_S0# */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x30, 0x4a); /* * Set V100ACNT / V1.00A Control Register: * Nominal output = 1.0V. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x37, 0x1a); /* * Set V085ACNT / V0.85A Control Register: * Lower power mode = 0.7V. * Nominal output = 1.0V. */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x38, 0x7a); /* VRMODECTRL - disable low-power mode for all rails */ i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992, 0x3b, 0x1f); } DECLARE_HOOK(HOOK_INIT, board_pmic_init, HOOK_PRIO_DEFAULT); static void board_set_tablet_mode(void) { tablet_set_mode(!gpio_get_level(GPIO_TABLET_MODE_L)); } /* Initialize board. */ static void board_init(void) { /* Enabure tablet mode is initialized */ board_set_tablet_mode(); /* Enable tablet mode interrupt for input device enable */ gpio_enable_interrupt(GPIO_TABLET_MODE_L); /* Enable charger interrupts */ gpio_enable_interrupt(GPIO_CHARGER_INT_L); /* Provide AC status to the PCH */ gpio_set_level(GPIO_PCH_ACOK, extpower_is_present()); } DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT); #define MP2949_PAGE_SELECT 0x00 /* Select rail/page */ #define MP2949_STORE_USER_ALL 0x15 /* Write settings to EEPROM */ #define MP2949_MFR_TRANS_FAST 0xfa /* Slew rate control */ #define MP2949_FIXED_SLEW_RATE 0x0ac5 /* 40mV/uS */ /* * Workaround for P0 boards: * Set voltage slew rate to 40mV/uS for all rails */ void board_before_rsmrst(int rsmrst) { int rail, rate; int fixed = 0; /* Only trigger on RSMRST# deassertion */ if (!rsmrst) return; /* Only apply workaround to P0 boards */ if (system_get_board_version() > BOARD_VERSION_P0B) return; i2c_lock(I2C_PORT_MP2949, 1); for (rail = 2; rail >= 0; rail--) { uint8_t buf[3]; /* Select register page for this rail */ buf[0] = MP2949_PAGE_SELECT; buf[1] = rail; i2c_xfer(I2C_PORT_MP2949, I2C_ADDR_MP2949, buf, 2, NULL, 0, I2C_XFER_SINGLE); /* Check for workaround already applied */ buf[0] = MP2949_MFR_TRANS_FAST; i2c_xfer(I2C_PORT_MP2949, I2C_ADDR_MP2949, buf, 1, buf+1, 2, I2C_XFER_SINGLE); rate = ((int)buf[2] << 8) | buf[1]; if (rate == MP2949_FIXED_SLEW_RATE) continue; fixed = 1; /* Set slew rate */ buf[0] = MP2949_MFR_TRANS_FAST; buf[1] = MP2949_FIXED_SLEW_RATE & 0xff; buf[2] = (MP2949_FIXED_SLEW_RATE >> 8) & 0xff; i2c_xfer(I2C_PORT_MP2949, I2C_ADDR_MP2949, buf, 3, NULL, 0, I2C_XFER_SINGLE); /* Store new settings (1 byte write, no data) */ buf[0] = MP2949_STORE_USER_ALL; i2c_xfer(I2C_PORT_MP2949, I2C_ADDR_MP2949, buf, 1, NULL, 0, I2C_XFER_SINGLE); } i2c_lock(I2C_PORT_MP2949, 0); CPRINTS("P0 board - IMVP8 workaround %sapplied", fixed ? "" : "already "); } /** * Buffer the AC present GPIO to the PCH. */ static void board_extpower(void) { gpio_set_level(GPIO_PCH_ACOK, extpower_is_present()); } DECLARE_HOOK(HOOK_AC_CHANGE, board_extpower, HOOK_PRIO_DEFAULT); int pd_snk_is_vbus_provided(int port) { enum bd9995x_charge_port bd9995x_port; switch (port) { case 0: case 1: bd9995x_port = bd9995x_pd_port_to_chg_port(port); break; default: panic("Invalid charge port\n"); break; } return bd9995x_is_vbus_provided(bd9995x_port); } /** * Set active charge port -- only one port can be active at a time. * * @param charge_port Charge port to enable. * * Returns EC_SUCCESS if charge port is accepted and made active, * EC_ERROR_* otherwise. */ int board_set_active_charge_port(int charge_port) { enum bd9995x_charge_port bd9995x_port; int bd9995x_port_select = 1; static int initialized; /* * Reject charge port disable if our battery is critical and we * have yet to initialize a charge port - continue to charge using * charger ROM / POR settings. */ if (!initialized && charge_port == CHARGE_PORT_NONE && charge_get_percent() < 2) return -1; switch (charge_port) { case 0: case 1: /* Don't charge from a source port */ if (board_vbus_source_enabled(charge_port)) return -1; bd9995x_port = bd9995x_pd_port_to_chg_port(charge_port); break; case CHARGE_PORT_NONE: bd9995x_port_select = 0; bd9995x_port = BD9995X_CHARGE_PORT_BOTH; break; default: panic("Invalid charge port\n"); break; } CPRINTS("New chg p%d", charge_port); initialized = 1; return bd9995x_select_input_port(bd9995x_port, bd9995x_port_select); } /** * Set the charge limit based upon desired maximum. * * @param port Port number. * @param supplier Charge supplier type. * @param charge_ma Desired charge limit (mA). * @param charge_mv Negotiated charge voltage (mV). */ void board_set_charge_limit(int port, int supplier, int charge_ma, int max_ma, int charge_mv) { /* Enable charging trigger by BC1.2 detection */ int bc12_enable = (supplier == CHARGE_SUPPLIER_BC12_CDP || supplier == CHARGE_SUPPLIER_BC12_DCP || supplier == CHARGE_SUPPLIER_BC12_SDP || supplier == CHARGE_SUPPLIER_OTHER); if (bd9995x_bc12_enable_charging(port, bc12_enable)) return; charge_set_input_current_limit(MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT), charge_mv); } /** * Return whether ramping is allowed for given supplier */ int board_is_ramp_allowed(int supplier) { /* Don't allow ramping in RO when write protected */ if (system_get_image_copy() != SYSTEM_IMAGE_RW && system_is_locked()) return 0; else return (supplier == CHARGE_SUPPLIER_BC12_DCP || supplier == CHARGE_SUPPLIER_BC12_SDP || supplier == CHARGE_SUPPLIER_BC12_CDP || supplier == CHARGE_SUPPLIER_OTHER); } /** * Return the maximum allowed input current */ int board_get_ramp_current_limit(int supplier, int sup_curr) { return bd9995x_get_bc12_ilim(supplier); } /** * Return if board is consuming full amount of input current */ int board_is_consuming_full_charge(void) { int chg_perc = charge_get_percent(); return chg_perc > 2 && chg_perc < 95; } /** * Return if VBUS is sagging too low */ int board_is_vbus_too_low(int port, enum chg_ramp_vbus_state ramp_state) { return charger_get_vbus_voltage(port) < BD9995X_BC12_MIN_VOLTAGE; } /* Enable or disable input devices, based upon chipset state and tablet mode */ static void enable_input_devices(void) { /* We need to turn on tablet mode for motion sense */ board_set_tablet_mode(); /* * Then, we disable peripherals only when the lid reaches 360 position. * (It's probably already disabled by motion_sense_task.) * We deliberately do not enable peripherals when the lid is leaving * 360 position. Instead, we let motion_sense_task enable it once it * reaches laptop zone (180 or less). */ if (tablet_get_mode()) lid_angle_peripheral_enable(0); } /* Enable or disable input devices, based on chipset state and tablet mode */ #ifndef TEST_BUILD void lid_angle_peripheral_enable(int enable) { /* * If the lid is in 360 position, ignore the lid angle, * which might be faulty. Disable keyboard and touchpad. */ if (tablet_get_mode() || chipset_in_state(CHIPSET_STATE_ANY_OFF)) enable = 0; keyboard_scan_enable(enable, KB_SCAN_DISABLE_LID_ANGLE); } #endif /* Called on AP S5 -> S3 transition */ static void board_chipset_startup(void) { /* Enable Trackpad */ gpio_set_level(GPIO_TRACKPAD_SHDN_L, 1); hook_call_deferred(&enable_input_devices_data, 0); } DECLARE_HOOK(HOOK_CHIPSET_STARTUP, board_chipset_startup, HOOK_PRIO_DEFAULT); /* Called on AP S3 -> S5 transition */ static void board_chipset_shutdown(void) { /* Disable Trackpad */ gpio_set_level(GPIO_TRACKPAD_SHDN_L, 0); hook_call_deferred(&enable_input_devices_data, 0); } DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, board_chipset_shutdown, HOOK_PRIO_DEFAULT); void board_hibernate_late(void) { int i; const uint32_t hibernate_pins[][2] = { {GPIO_LID_OPEN, GPIO_INT_RISING}, /* * BD99956 handles charge input automatically. We'll disable * charge output in hibernate. Charger will assert ACOK_OD * when VBUS or VCC are plugged in. */ {GPIO_USB_C0_5V_EN, GPIO_INPUT | GPIO_PULL_DOWN}, {GPIO_USB_C1_5V_EN, GPIO_INPUT | GPIO_PULL_DOWN}, }; /* Change GPIOs' state in hibernate for better power consumption */ for (i = 0; i < ARRAY_SIZE(hibernate_pins); ++i) gpio_set_flags(hibernate_pins[i][0], hibernate_pins[i][1]); gpio_config_module(MODULE_KEYBOARD_SCAN, 0); /* * Calling gpio_config_module sets disabled alternate function pins to * GPIO_INPUT. But to prevent keypresses causing leakage currents * while hibernating we want to enable GPIO_PULL_UP as well. */ gpio_set_flags_by_mask(0x2, 0x03, GPIO_INPUT | GPIO_PULL_UP); gpio_set_flags_by_mask(0x1, 0x7F, GPIO_INPUT | GPIO_PULL_UP); gpio_set_flags_by_mask(0x0, 0xE0, GPIO_INPUT | GPIO_PULL_UP); /* KBD_KS02 needs to have a pull-down enabled to match cr50 */ gpio_set_flags_by_mask(0x1, 0x80, GPIO_INPUT | GPIO_PULL_DOWN); } void board_hibernate(void) { /* Enable both the VBUS & VCC ports before entering PG3 */ bd9995x_select_input_port(BD9995X_CHARGE_PORT_BOTH, 1); /* Turn BGATE OFF for power saving */ bd9995x_set_power_save_mode(BD9995X_PWR_SAVE_MAX); } static int gpio_get_ternary(enum gpio_signal gpio) { int pd, pu; int flags = gpio_get_default_flags(gpio); /* Read GPIO with internal pull-down */ gpio_set_flags(gpio, GPIO_INPUT | GPIO_PULL_DOWN); pd = gpio_get_level(gpio); usleep(100); /* Read GPIO with internal pull-up */ gpio_set_flags(gpio, GPIO_INPUT | GPIO_PULL_UP); pu = gpio_get_level(gpio); usleep(100); /* Reset GPIO flags */ gpio_set_flags(gpio, flags); /* Check PU and PD readings to determine tristate */ return pu && !pd ? 2 : pd; } int board_get_version(void) { static int ver; if (!ver) { /* * Read the board EC ID on the tristate strappings * using ternary encoding: 0 = 0, 1 = 1, Hi-Z = 2 */ uint8_t id0, id1, id2; id0 = gpio_get_ternary(GPIO_BOARD_VERSION1); id1 = gpio_get_ternary(GPIO_BOARD_VERSION2); id2 = gpio_get_ternary(GPIO_BOARD_VERSION3); ver = (id2 * 9) + (id1 * 3) + id0; CPRINTS("Board ID = %d", ver); } return ver; } /* Base Sensor mutex */ static struct mutex g_base_mutex; /* Lid Sensor mutex */ static struct mutex g_lid_mutex; struct kionix_accel_data g_kxcj9_data; struct bmi160_drv_data_t g_bmi160_data; /* Matrix to rotate accelrator into standard reference frame */ const matrix_3x3_t mag_standard_ref = { { FLOAT_TO_FP(-1), 0, 0}, { 0, FLOAT_TO_FP(1), 0}, { 0, 0, FLOAT_TO_FP(-1)} }; const matrix_3x3_t lid_standard_ref = { {FLOAT_TO_FP(-1), 0, 0}, { 0, FLOAT_TO_FP(-1), 0}, { 0, 0, FLOAT_TO_FP(1)} }; struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3_S5, .chip = MOTIONSENSE_CHIP_KXCJ9, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &kionix_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_kxcj9_data, .port = I2C_PORT_LID_ACCEL, .addr = KXCJ9_ADDR0, .rot_standard_ref = &lid_standard_ref, .default_range = 2, /* g, enough for laptop. */ .config = { /* AP: by default use EC settings */ [SENSOR_CONFIG_AP] = { .odr = 0, .ec_rate = 0, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 0, }, /* Sensor on for lid angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 0, }, [SENSOR_CONFIG_EC_S5] = { .odr = 0, .ec_rate = 0, }, }, }, [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3_S5, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_GYRO, .addr = BMI160_ADDR0, .rot_standard_ref = NULL, .default_range = 2, /* g, enough for laptop. */ .config = { /* AP: by default use EC settings */ [SENSOR_CONFIG_AP] = { .odr = 0, .ec_rate = 0, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, /* Sensor on for lid angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100 * MSEC, }, /* Sensor off in S3/S5 */ [SENSOR_CONFIG_EC_S5] = { .odr = 0, .ec_rate = 0 }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_GYRO, .addr = BMI160_ADDR0, .default_range = 1000, /* dps */ .rot_standard_ref = NULL, .config = { /* AP: by default shutdown all sensors */ [SENSOR_CONFIG_AP] = { .odr = 0, .ec_rate = 0, }, /* EC does not need in S0 */ [SENSOR_CONFIG_EC_S0] = { .odr = 0, .ec_rate = 0, }, /* Sensor off in S3/S5 */ [SENSOR_CONFIG_EC_S3] = { .odr = 0, .ec_rate = 0, }, /* Sensor off in S3/S5 */ [SENSOR_CONFIG_EC_S5] = { .odr = 0, .ec_rate = 0, }, }, }, [BASE_MAG] = { .name = "Base Mag", .active_mask = SENSOR_ACTIVE_S0_S3_S5, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_MAG, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_GYRO, .addr = BMI160_ADDR0, .default_range = 1 << 11, /* 16LSB / uT, fixed */ .rot_standard_ref = &mag_standard_ref, .config = { /* AP: by default shutdown all sensors */ [SENSOR_CONFIG_AP] = { .odr = 0, .ec_rate = 0, }, /* EC does not need in S0 */ [SENSOR_CONFIG_EC_S0] = { .odr = 0, .ec_rate = 0, }, /* Sensor off in S3/S5 */ [SENSOR_CONFIG_EC_S3] = { .odr = 0, .ec_rate = 0, }, /* Sensor off in S3/S5 */ [SENSOR_CONFIG_EC_S5] = { .odr = 0, .ec_rate = 0, }, }, }, [LID_LIGHT] = { .name = "Light", .active_mask = SENSOR_ACTIVE_S0, .chip = MOTIONSENSE_CHIP_SI1141, .type = MOTIONSENSE_TYPE_LIGHT, .location = MOTIONSENSE_LOC_LID, .drv = &si114x_drv, .mutex = &g_lid_mutex, .drv_data = &g_si114x_data, .port = I2C_PORT_ALS, .addr = SI114X_ADDR, .rot_standard_ref = NULL, .default_range = 9000, /* 90%: int = 0 - frac = 9000/10000 */ .config = { /* AP: by default shutdown all sensors */ [SENSOR_CONFIG_AP] = { .odr = 0, .ec_rate = 0, }, /* Run ALS sensor in S0 */ [SENSOR_CONFIG_EC_S0] = { .odr = 1000, .ec_rate = 0, }, /* Sensor off in S3/S5 */ [SENSOR_CONFIG_EC_S3] = { .odr = 0, .ec_rate = 0, }, /* Sensor off in S3/S5 */ [SENSOR_CONFIG_EC_S5] = { .odr = 0, .ec_rate = 0, }, }, }, }; const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); /* ALS instances when LPC mapping is needed. Each entry directs to a sensor. */ const struct motion_sensor_t *motion_als_sensors[] = { &motion_sensors[LID_LIGHT], }; BUILD_ASSERT(ARRAY_SIZE(motion_als_sensors) == ALS_COUNT);