/* Copyright 2018 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Grunt family-specific configuration */ #include "adc.h" #include "adc_chip.h" #include "button.h" #include "charge_manager.h" #include "charge_state.h" #include "charge_state_v2.h" #include "common.h" #include "compile_time_macros.h" #include "console.h" #include "cros_board_info.h" #include "driver/accel_kionix.h" #include "driver/accel_kx022.h" #include "driver/accelgyro_bmi_common.h" #include "driver/bc12/max14637.h" #include "driver/charger/isl923x.h" #include "driver/ppc/sn5s330.h" #include "driver/tcpm/anx7447.h" #include "driver/tcpm/anx74xx.h" #include "driver/tcpm/ps8xxx.h" #include "driver/temp_sensor/sb_tsi.h" #include "ec_commands.h" #include "extpower.h" #include "gpio.h" #include "hooks.h" #include "i2c.h" #include "keyboard_scan.h" #include "lid_switch.h" #include "motion_sense.h" #include "power.h" #include "power_button.h" #include "registers.h" #include "switch.h" #include "system.h" #include "task.h" #include "tcpci.h" #include "temp_sensor.h" #include "thermistor.h" #include "usb_mux.h" #include "usb_pd.h" #include "usb_pd_tcpm.h" #include "usbc_ppc.h" #include "util.h" #define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args) #define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args) const struct adc_t adc_channels[] = { [ADC_TEMP_SENSOR_CHARGER] = { "CHARGER", NPCX_ADC_CH0, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 }, [ADC_TEMP_SENSOR_SOC] = { "SOC", NPCX_ADC_CH1, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 }, [ADC_VBUS] = { "VBUS", NPCX_ADC_CH8, ADC_MAX_VOLT*10, ADC_READ_MAX+1, 0 }, [ADC_SKU_ID1] = { "SKU1", NPCX_ADC_CH9, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 }, [ADC_SKU_ID2] = { "SKU2", NPCX_ADC_CH4, ADC_MAX_VOLT, ADC_READ_MAX+1, 0 }, }; BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT); /* Power signal list. Must match order of enum power_signal. */ const struct power_signal_info power_signal_list[] = { {GPIO_PCH_SLP_S3_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S3_DEASSERTED"}, {GPIO_PCH_SLP_S5_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S5_DEASSERTED"}, {GPIO_S0_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "S0_PGOOD"}, {GPIO_S5_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "S5_PGOOD"}, }; BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT); const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_MAX_COUNT] = { #ifdef VARIANT_GRUNT_TCPC_0_ANX3429 [USB_PD_PORT_ANX74XX] = { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = I2C_PORT_TCPC0, .addr_flags = ANX74XX_I2C_ADDR1_FLAGS, }, .drv = &anx74xx_tcpm_drv, /* Alert is active-low, open-drain */ .flags = TCPC_FLAGS_ALERT_OD, }, #elif defined(VARIANT_GRUNT_TCPC_0_ANX3447) [USB_PD_PORT_ANX74XX] = { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = I2C_PORT_TCPC0, .addr_flags = AN7447_TCPC0_I2C_ADDR_FLAGS, }, .drv = &anx7447_tcpm_drv, /* Alert is active-low, push-pull */ .flags = 0, }, #endif [USB_PD_PORT_PS8751] = { .bus_type = EC_BUS_TYPE_I2C, .i2c_info = { .port = I2C_PORT_TCPC1, .addr_flags = PS8751_I2C_ADDR1_FLAGS, }, .drv = &ps8xxx_tcpm_drv, /* Alert is active-low, push-pull */ .flags = 0, }, }; void tcpc_alert_event(enum gpio_signal signal) { int port = -1; switch (signal) { case GPIO_USB_C0_PD_INT_ODL: port = 0; break; case GPIO_USB_C1_PD_INT_ODL: port = 1; break; default: return; } schedule_deferred_pd_interrupt(port); } void board_tcpc_init(void) { /* Only reset TCPC if not sysjump */ if (!system_jumped_late()) board_reset_pd_mcu(); /* Enable PPC interrupts. */ gpio_enable_interrupt(GPIO_USB_C0_SWCTL_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_SWCTL_INT_ODL); /* Enable TCPC interrupts. */ gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL); gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL); #ifdef VARIANT_GRUNT_TCPC_0_ANX3429 /* Enable CABLE_DET interrupt for ANX3429 wake from standby */ gpio_enable_interrupt(GPIO_USB_C0_CABLE_DET); #endif /* * Initialize HPD to low; after sysjump SOC needs to see * HPD pulse to enable video path */ for (int port = 0; port < CONFIG_USB_PD_PORT_MAX_COUNT; ++port) usb_mux_hpd_update(port, 0, 0); } DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C + 1); uint16_t tcpc_get_alert_status(void) { uint16_t status = 0; if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) { #ifdef VARIANT_GRUNT_TCPC_0_ANX3429 if (gpio_get_level(GPIO_USB_C0_PD_RST_L)) #elif defined(VARIANT_GRUNT_TCPC_0_ANX3447) if (!gpio_get_level(GPIO_USB_C0_PD_RST)) #endif status |= PD_STATUS_TCPC_ALERT_0; } if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) { if (gpio_get_level(GPIO_USB_C1_PD_RST_L)) status |= PD_STATUS_TCPC_ALERT_1; } return status; } #ifdef VARIANT_GRUNT_TCPC_0_ANX3429 static void anx74xx_cable_det_handler(void) { int cable_det = gpio_get_level(GPIO_USB_C0_CABLE_DET); int reset_n = gpio_get_level(GPIO_USB_C0_PD_RST_L); /* * A cable_det low->high transition was detected. If following the * debounce time, cable_det is high, and reset_n is low, then ANX3429 is * currently in standby mode and needs to be woken up. Set the * TCPC_RESET event which will bring the ANX3429 out of standby * mode. Setting this event is gated on reset_n being low because the * ANX3429 will always set cable_det when transitioning to normal mode * and if in normal mode, then there is no need to trigger a tcpc reset. */ if (cable_det && !reset_n) task_set_event(TASK_ID_PD_C0, PD_EVENT_TCPC_RESET, 0); } DECLARE_DEFERRED(anx74xx_cable_det_handler); void anx74xx_cable_det_interrupt(enum gpio_signal signal) { /* debounce for 2 msec */ hook_call_deferred(&anx74xx_cable_det_handler_data, (2 * MSEC)); } /** * Power on (or off) a single TCPC. * minimum on/off delays are included. * * @param port Port number of TCPC. * @param mode 0: power off, 1: power on. */ void board_set_tcpc_power_mode(int port, int mode) { if (port != USB_PD_PORT_ANX74XX) return; switch (mode) { case ANX74XX_NORMAL_MODE: gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 1); msleep(ANX74XX_PWR_H_RST_H_DELAY_MS); gpio_set_level(GPIO_USB_C0_PD_RST_L, 1); break; case ANX74XX_STANDBY_MODE: gpio_set_level(GPIO_USB_C0_PD_RST_L, 0); msleep(ANX74XX_RST_L_PWR_L_DELAY_MS); gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 0); msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS); break; default: break; } } #endif /* VARIANT_GRUNT_TCPC_0_ANX3429 */ void board_reset_pd_mcu(void) { #ifdef VARIANT_GRUNT_TCPC_0_ANX3429 /* Assert reset to TCPC1 (ps8751) */ gpio_set_level(GPIO_USB_C1_PD_RST_L, 0); /* Assert reset to TCPC0 (anx3429) */ gpio_set_level(GPIO_USB_C0_PD_RST_L, 0); /* TCPC1 (ps8751) requires 1ms reset down assertion */ msleep(MAX(1, ANX74XX_RST_L_PWR_L_DELAY_MS)); /* Deassert reset to TCPC1 */ gpio_set_level(GPIO_USB_C1_PD_RST_L, 1); /* Disable TCPC0 power */ gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 0); /* * anx3429 requires 10ms reset/power down assertion */ msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS); board_set_tcpc_power_mode(USB_PD_PORT_ANX74XX, 1); #elif defined(VARIANT_GRUNT_TCPC_0_ANX3447) /* Assert reset to TCPC0 (anx3447) */ gpio_set_level(GPIO_USB_C0_PD_RST, 1); msleep(ANX74XX_RESET_HOLD_MS); gpio_set_level(GPIO_USB_C0_PD_RST, 0); msleep(ANX74XX_RESET_FINISH_MS); /* Assert reset to TCPC1 (ps8751) */ gpio_set_level(GPIO_USB_C1_PD_RST_L, 0); msleep(PS8XXX_RESET_DELAY_MS); gpio_set_level(GPIO_USB_C1_PD_RST_L, 1); #endif } static uint32_t sku_id; static int ps8751_tune_mux(const struct usb_mux *me) { /* Tune USB mux registers for treeya's port 1 Rx measurement */ if ((sku_id >= 0xa0) && (sku_id <= 0xaf)) mux_write(me, PS8XXX_REG_MUX_USB_C2SS_EQ, 0x40); return EC_SUCCESS; } const struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_MAX_COUNT] = { #ifdef VARIANT_GRUNT_TCPC_0_ANX3429 [USB_PD_PORT_ANX74XX] = { .usb_port = USB_PD_PORT_ANX74XX, .driver = &anx74xx_tcpm_usb_mux_driver, .hpd_update = &anx74xx_tcpc_update_hpd_status, }, #elif defined(VARIANT_GRUNT_TCPC_0_ANX3447) [USB_PD_PORT_ANX74XX] = { .usb_port = USB_PD_PORT_ANX74XX, .driver = &anx7447_usb_mux_driver, .hpd_update = &anx7447_tcpc_update_hpd_status, }, #endif [USB_PD_PORT_PS8751] = { .usb_port = USB_PD_PORT_PS8751, .driver = &tcpci_tcpm_usb_mux_driver, .hpd_update = &ps8xxx_tcpc_update_hpd_status, .board_init = &ps8751_tune_mux, } }; struct ppc_config_t ppc_chips[] = { { .i2c_port = I2C_PORT_TCPC0, .i2c_addr_flags = SN5S330_ADDR0_FLAGS, .drv = &sn5s330_drv }, { .i2c_port = I2C_PORT_TCPC1, .i2c_addr_flags = SN5S330_ADDR0_FLAGS, .drv = &sn5s330_drv }, }; unsigned int ppc_cnt = ARRAY_SIZE(ppc_chips); void ppc_interrupt(enum gpio_signal signal) { int port = (signal == GPIO_USB_C0_SWCTL_INT_ODL) ? 0 : 1; sn5s330_interrupt(port); } int ppc_get_alert_status(int port) { if (port == 0) return gpio_get_level(GPIO_USB_C0_SWCTL_INT_ODL) == 0; else return gpio_get_level(GPIO_USB_C1_SWCTL_INT_ODL) == 0; } void board_overcurrent_event(int port, int is_overcurrented) { enum gpio_signal signal = (port == 0) ? GPIO_USB_C0_OC_L : GPIO_USB_C1_OC_L; /* Note that the levels are inverted because the pin is active low. */ int lvl = is_overcurrented ? 0 : 1; gpio_set_level(signal, lvl); CPRINTS("p%d: overcurrent!", port); } /* BC 1.2 chip Configuration */ const struct max14637_config_t max14637_config[CONFIG_USB_PD_PORT_MAX_COUNT] = { [USB_PD_PORT_ANX74XX] = { .chip_enable_pin = GPIO_USB_C0_BC12_VBUS_ON_L, .chg_det_pin = GPIO_USB_C0_BC12_CHG_DET, .flags = MAX14637_FLAGS_ENABLE_ACTIVE_LOW, }, [USB_PD_PORT_PS8751] = { .chip_enable_pin = GPIO_USB_C1_BC12_VBUS_ON_L, .chg_det_pin = GPIO_USB_C1_BC12_CHG_DET, .flags = MAX14637_FLAGS_ENABLE_ACTIVE_LOW, }, }; /* Charger Chip Configuration */ const struct charger_config_t chg_chips[] = { { .i2c_port = I2C_PORT_CHARGER, .i2c_addr_flags = ISL923X_ADDR_FLAGS, .drv = &isl923x_drv, }, }; const unsigned int chg_cnt = ARRAY_SIZE(chg_chips); const int usb_port_enable[USB_PORT_COUNT] = { GPIO_EN_USB_A0_5V, GPIO_EN_USB_A1_5V, }; static void baseboard_chipset_suspend(void) { /* * Turn off display backlight. This ensures that the backlight stays off * in S3, no matter what the AP has it set to. The AP also controls it. * This is here more for legacy reasons. */ gpio_set_level(GPIO_ENABLE_BACKLIGHT_L, 1); } DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, baseboard_chipset_suspend, HOOK_PRIO_DEFAULT); static void baseboard_chipset_resume(void) { /* Allow display backlight to turn on. See above backlight comment */ gpio_set_level(GPIO_ENABLE_BACKLIGHT_L, 0); } DECLARE_HOOK(HOOK_CHIPSET_RESUME, baseboard_chipset_resume, HOOK_PRIO_DEFAULT); static void baseboard_chipset_startup(void) { /* * Enable sensor power (lid accel, gyro) in S3 for calculating the lid * angle (needed on convertibles to disable resume from keyboard in * tablet mode). */ gpio_set_level(GPIO_EN_PP1800_SENSOR, 1); } DECLARE_HOOK(HOOK_CHIPSET_STARTUP, baseboard_chipset_startup, HOOK_PRIO_DEFAULT); static void baseboard_chipset_shutdown(void) { /* Disable sensor power (lid accel, gyro) in S5. */ gpio_set_level(GPIO_EN_PP1800_SENSOR, 0); } DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, baseboard_chipset_shutdown, HOOK_PRIO_DEFAULT); int board_is_i2c_port_powered(int port) { if (port != I2C_PORT_SENSOR) return 1; /* Sensor power (lid accel, gyro) is off in S5 (and G3). */ return chipset_in_state(CHIPSET_STATE_ANY_OFF) ? 0 : 1; } int board_set_active_charge_port(int port) { int i; CPRINTS("New chg p%d", port); if (port == CHARGE_PORT_NONE) { /* Disable all ports. */ for (i = 0; i < ppc_cnt; i++) { if (ppc_vbus_sink_enable(i, 0)) CPRINTS("p%d: sink disable failed.", i); } return EC_SUCCESS; } /* Check if the port is sourcing VBUS. */ if (ppc_is_sourcing_vbus(port)) { CPRINTF("Skip enable p%d", port); return EC_ERROR_INVAL; } /* * Turn off the other ports' sink path FETs, before enabling the * requested charge port. */ for (i = 0; i < ppc_cnt; i++) { if (i == port) continue; if (ppc_vbus_sink_enable(i, 0)) CPRINTS("p%d: sink disable failed.", i); } /* Enable requested charge port. */ if (ppc_vbus_sink_enable(port, 1)) { CPRINTS("p%d: sink enable failed.", port); return EC_ERROR_UNKNOWN; } return EC_SUCCESS; } void board_set_charge_limit(int port, int supplier, int charge_ma, int max_ma, int charge_mv) { /* * Limit the input current to 95% negotiated limit, * to account for the charger chip margin. */ charge_ma = charge_ma * 95 / 100; charge_set_input_current_limit(MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT), charge_mv); } /* Keyboard scan setting */ struct keyboard_scan_config keyscan_config = { /* * F3 key scan cycle completed but scan input is not * charging to logic high when EC start scan next * column for "T" key, so we set .output_settle_us * to 80us */ .output_settle_us = 80, .debounce_down_us = 6 * MSEC, .debounce_up_us = 30 * MSEC, .scan_period_us = 1500, .min_post_scan_delay_us = 1000, .poll_timeout_us = SECOND, .actual_key_mask = { 0x3c, 0xff, 0xff, 0xff, 0xff, 0xf5, 0xff, 0xa4, 0xff, 0xfe, 0x55, 0xfa, 0xca /* full set */ }, }; /* * We use 11 as the scaling factor so that the maximum mV value below (2761) * can be compressed to fit in a uint8_t. */ #define THERMISTOR_SCALING_FACTOR 11 /* * Values are calculated from the "Resistance VS. Temperature" table on the * Murata page for part NCP15WB473F03RC. Vdd=3.3V, R=30.9Kohm. */ static const struct thermistor_data_pair thermistor_data[] = { { 2761 / THERMISTOR_SCALING_FACTOR, 0}, { 2492 / THERMISTOR_SCALING_FACTOR, 10}, { 2167 / THERMISTOR_SCALING_FACTOR, 20}, { 1812 / THERMISTOR_SCALING_FACTOR, 30}, { 1462 / THERMISTOR_SCALING_FACTOR, 40}, { 1146 / THERMISTOR_SCALING_FACTOR, 50}, { 878 / THERMISTOR_SCALING_FACTOR, 60}, { 665 / THERMISTOR_SCALING_FACTOR, 70}, { 500 / THERMISTOR_SCALING_FACTOR, 80}, { 434 / THERMISTOR_SCALING_FACTOR, 85}, { 376 / THERMISTOR_SCALING_FACTOR, 90}, { 326 / THERMISTOR_SCALING_FACTOR, 95}, { 283 / THERMISTOR_SCALING_FACTOR, 100} }; static const struct thermistor_info thermistor_info = { .scaling_factor = THERMISTOR_SCALING_FACTOR, .num_pairs = ARRAY_SIZE(thermistor_data), .data = thermistor_data, }; static int board_get_temp(int idx, int *temp_k) { /* idx is the sensor index set below in temp_sensors[] */ int mv = adc_read_channel( idx ? ADC_TEMP_SENSOR_SOC : ADC_TEMP_SENSOR_CHARGER); int temp_c; if (mv < 0) return -1; temp_c = thermistor_linear_interpolate(mv, &thermistor_info); *temp_k = C_TO_K(temp_c); return 0; } const struct temp_sensor_t temp_sensors[] = { {"Charger", TEMP_SENSOR_TYPE_BOARD, board_get_temp, 0}, {"SOC", TEMP_SENSOR_TYPE_BOARD, board_get_temp, 1}, {"CPU", TEMP_SENSOR_TYPE_CPU, sb_tsi_get_val, 0}, }; BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT); #ifdef HAS_TASK_MOTIONSENSE /* Motion sensors */ static struct mutex g_lid_mutex; static struct mutex g_base_mutex; /* sensor private data */ static struct kionix_accel_data g_kx022_data; static struct bmi_drv_data_t g_bmi160_data; /* TODO(gcc >= 5.0) Remove the casts to const pointer at rot_standard_ref */ struct motion_sensor_t motion_sensors[] = { [LID_ACCEL] = { .name = "Lid Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_KX022, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_LID, .drv = &kionix_accel_drv, .mutex = &g_lid_mutex, .drv_data = &g_kx022_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = KX022_ADDR1_FLAGS, .rot_standard_ref = NULL, .default_range = 2, /* g, enough for laptop. */ .min_frequency = KX022_ACCEL_MIN_FREQ, .max_frequency = KX022_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_ACCEL] = { .name = "Base Accel", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_ACCEL, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 2, /* g, enough for laptop */ .rot_standard_ref = NULL, .min_frequency = BMI_ACCEL_MIN_FREQ, .max_frequency = BMI_ACCEL_MAX_FREQ, .config = { /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S0] = { .odr = 10000 | ROUND_UP_FLAG, .ec_rate = 100, }, /* EC use accel for angle detection */ [SENSOR_CONFIG_EC_S3] = { .odr = 10000 | ROUND_UP_FLAG, }, }, }, [BASE_GYRO] = { .name = "Base Gyro", .active_mask = SENSOR_ACTIVE_S0_S3, .chip = MOTIONSENSE_CHIP_BMI160, .type = MOTIONSENSE_TYPE_GYRO, .location = MOTIONSENSE_LOC_BASE, .drv = &bmi160_drv, .mutex = &g_base_mutex, .drv_data = &g_bmi160_data, .port = I2C_PORT_SENSOR, .i2c_spi_addr_flags = BMI160_ADDR0_FLAGS, .default_range = 1000, /* dps */ .rot_standard_ref = NULL, .min_frequency = BMI_GYRO_MIN_FREQ, .max_frequency = BMI_GYRO_MAX_FREQ, }, }; unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors); #endif /* HAS_TASK_MOTIONSENSE */ #ifndef TEST_BUILD void lid_angle_peripheral_enable(int enable) { if (board_is_convertible()) keyboard_scan_enable(enable, KB_SCAN_DISABLE_LID_ANGLE); } #endif static const int sku_thresh_mv[] = { /* Vin = 3.3V, Ideal voltage, R2 values listed below */ /* R1 = 51.1 kOhm */ 200, /* 124 mV, 2.0 Kohm */ 366, /* 278 mV, 4.7 Kohm */ 550, /* 456 mV, 8.2 Kohm */ 752, /* 644 mV, 12.4 Kohm */ 927, /* 860 mV, 18.0 Kohm */ 1073, /* 993 mV, 22.0 Kohm */ 1235, /* 1152 mV, 27.4 Kohm */ 1386, /* 1318 mV, 34.0 Kohm */ 1552, /* 1453 mV, 40.2 Kohm */ /* R1 = 10.0 kOhm */ 1739, /* 1650 mV, 10.0 Kohm */ 1976, /* 1827 mV, 12.4 Kohm */ 2197, /* 2121 mV, 18.0 Kohm */ 2344, /* 2269 mV, 22.0 Kohm */ 2484, /* 2418 mV, 27.4 Kohm */ 2636, /* 2550 mV, 34.0 Kohm */ 2823, /* 2721 mV, 47.0 Kohm */ }; static int board_read_sku_adc(enum adc_channel chan) { int mv; int i; mv = adc_read_channel(chan); if (mv == ADC_READ_ERROR) return -1; for (i = 0; i < ARRAY_SIZE(sku_thresh_mv); i++) if (mv < sku_thresh_mv[i]) return i; return -1; } static uint32_t board_get_adc_sku_id(void) { int sku_id1, sku_id2; sku_id1 = board_read_sku_adc(ADC_SKU_ID1); sku_id2 = board_read_sku_adc(ADC_SKU_ID2); if (sku_id1 < 0 || sku_id2 < 0) return 0; return (sku_id2 << 4) | sku_id1; } static int board_get_gpio_board_version(void) { return (!!gpio_get_level(GPIO_BOARD_VERSION1) << 0) | (!!gpio_get_level(GPIO_BOARD_VERSION2) << 1) | (!!gpio_get_level(GPIO_BOARD_VERSION3) << 2); } static int board_version; static void cbi_init(void) { board_version = board_get_gpio_board_version(); sku_id = board_get_adc_sku_id(); /* * Use board version and SKU ID from CBI EEPROM if the board supports * it and the SKU ID set via resistors + ADC is not valid. */ #ifdef CONFIG_CROS_BOARD_INFO if (sku_id == 0 || sku_id == 0xff) { uint32_t val; if (cbi_get_board_version(&val) == EC_SUCCESS) board_version = val; if (cbi_get_sku_id(&val) == EC_SUCCESS) sku_id = val; } #endif #ifdef HAS_TASK_MOTIONSENSE board_update_sensor_config_from_sku(); #endif ccprints("Board Version: %d (0x%x)", board_version, board_version); ccprints("SKU: %d (0x%x)", sku_id, sku_id); } /* * Reading the SKU resistors requires the ADC module. If we are using EEPROM * then we also need the I2C module, but that is available before ADC. */ DECLARE_HOOK(HOOK_INIT, cbi_init, HOOK_PRIO_INIT_ADC + 1); uint32_t system_get_sku_id(void) { return sku_id; } int board_get_version(void) { return board_version; } /* * Returns 1 for boards that are convertible into tablet mode, and zero for * clamshells. */ int board_is_convertible(void) { /* Grunt: 6 */ /* Kasumi360: 82 */ /* Treeya360: a8-af */ return (sku_id == 6 || sku_id == 82 || ((sku_id >= 0xa8) && (sku_id <= 0xaf))); } int board_is_lid_angle_tablet_mode(void) { return board_is_convertible(); } __override uint32_t board_override_feature_flags0(uint32_t flags0) { /* * Remove keyboard backlight feature for devices that don't support it. * All Treeya and Treeya360 models do not support keyboard backlight. */ if (sku_id == 16 || sku_id == 17 || sku_id == 20 || sku_id == 21 || sku_id == 32 || sku_id == 33 || sku_id == 40 || sku_id == 41 || ((sku_id >= 0xa0) && (sku_id <= 0xaf))) return (flags0 & ~EC_FEATURE_MASK_0(EC_FEATURE_PWM_KEYB)); else return flags0; } void board_hibernate(void) { /* * Some versions of some boards keep the port 0 PPC powered on while * the EC hibernates (so Closed Case Debugging keeps working). * Make sure the source FET is off and turn on the sink FET, so that * plugging in AC will wake the EC. This matches the dead-battery * behavior of the powered off PPC. */ ppc_vbus_source_enable(0, 0); ppc_vbus_sink_enable(0, 1); }