/* * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved. * Copyright (c) 2022-2023, Advanced Micro Devices, Inc. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ /* * ZynqMP system level PM-API functions and communication with PMU via * IPI interrupts */ #include #include #include "pm_api_clock.h" #include "pm_api_ioctl.h" #include "pm_api_pinctrl.h" #include "pm_client.h" #include "pm_common.h" #include "pm_ipi.h" #include "zynqmp_pm_api_sys.h" #define PM_QUERY_FEATURE_BITMASK ( \ (1ULL << (uint64_t)PM_QID_CLOCK_GET_NAME) | \ (1ULL << (uint64_t)PM_QID_CLOCK_GET_TOPOLOGY) | \ (1ULL << (uint64_t)PM_QID_CLOCK_GET_FIXEDFACTOR_PARAMS) | \ (1ULL << (uint64_t)PM_QID_CLOCK_GET_PARENTS) | \ (1ULL << (uint64_t)PM_QID_CLOCK_GET_ATTRIBUTES) | \ (1ULL << (uint64_t)PM_QID_PINCTRL_GET_NUM_PINS) | \ (1ULL << (uint64_t)PM_QID_PINCTRL_GET_NUM_FUNCTIONS) | \ (1ULL << (uint64_t)PM_QID_PINCTRL_GET_NUM_FUNCTION_GROUPS) | \ (1ULL << (uint64_t)PM_QID_PINCTRL_GET_FUNCTION_NAME) | \ (1ULL << (uint64_t)PM_QID_PINCTRL_GET_FUNCTION_GROUPS) | \ (1ULL << (uint64_t)PM_QID_PINCTRL_GET_PIN_GROUPS) | \ (1ULL << (uint64_t)PM_QID_CLOCK_GET_NUM_CLOCKS) | \ (1ULL << (uint64_t)PM_QID_CLOCK_GET_MAX_DIVISOR)) /** * struct eemi_api_dependency - Dependent EEMI APIs which are implemented * on both the ATF and firmware * * @id: EEMI API id or IOCTL id to be checked * @api_id: Dependent EEMI API */ typedef struct __attribute__((packed)) { uint8_t id; uint8_t api_id; } eemi_api_dependency; /* Dependent APIs for ATF to check their version from firmware */ static const eemi_api_dependency api_dep_table[] = { { .id = PM_SELF_SUSPEND, .api_id = PM_SELF_SUSPEND, }, { .id = PM_REQ_WAKEUP, .api_id = PM_REQ_WAKEUP, }, { .id = PM_ABORT_SUSPEND, .api_id = PM_ABORT_SUSPEND, }, { .id = PM_SET_WAKEUP_SOURCE, .api_id = PM_SET_WAKEUP_SOURCE, }, { .id = PM_SYSTEM_SHUTDOWN, .api_id = PM_SYSTEM_SHUTDOWN, }, { .id = PM_GET_API_VERSION, .api_id = PM_GET_API_VERSION, }, { .id = PM_CLOCK_ENABLE, .api_id = PM_PLL_SET_MODE, }, { .id = PM_CLOCK_ENABLE, .api_id = PM_CLOCK_ENABLE, }, { .id = PM_CLOCK_DISABLE, .api_id = PM_PLL_SET_MODE, }, { .id = PM_CLOCK_DISABLE, .api_id = PM_CLOCK_DISABLE, }, { .id = PM_CLOCK_GETSTATE, .api_id = PM_PLL_GET_MODE, }, { .id = PM_CLOCK_GETSTATE, .api_id = PM_CLOCK_GETSTATE, }, { .id = PM_CLOCK_SETDIVIDER, .api_id = PM_PLL_SET_PARAMETER, }, { .id = PM_CLOCK_SETDIVIDER, .api_id = PM_CLOCK_SETDIVIDER, }, { .id = PM_CLOCK_GETDIVIDER, .api_id = PM_PLL_GET_PARAMETER, }, { .id = PM_CLOCK_GETDIVIDER, .api_id = PM_CLOCK_GETDIVIDER, }, { .id = PM_CLOCK_SETPARENT, .api_id = PM_PLL_SET_PARAMETER, }, { .id = PM_CLOCK_SETPARENT, .api_id = PM_CLOCK_SETPARENT, }, { .id = PM_CLOCK_GETPARENT, .api_id = PM_PLL_GET_PARAMETER, }, { .id = PM_CLOCK_GETPARENT, .api_id = PM_CLOCK_GETPARENT, }, { .id = PM_PLL_SET_PARAMETER, .api_id = PM_PLL_SET_PARAMETER, }, { .id = PM_PLL_GET_PARAMETER, .api_id = PM_PLL_GET_PARAMETER, }, { .id = PM_PLL_SET_MODE, .api_id = PM_PLL_SET_MODE, }, { .id = PM_PLL_GET_MODE, .api_id = PM_PLL_GET_MODE, }, { .id = PM_REGISTER_ACCESS, .api_id = PM_MMIO_WRITE, }, { .id = PM_REGISTER_ACCESS, .api_id = PM_MMIO_READ, }, { .id = PM_FEATURE_CHECK, .api_id = PM_FEATURE_CHECK, }, { .id = IOCTL_SET_TAPDELAY_BYPASS, .api_id = PM_MMIO_WRITE, }, { .id = IOCTL_SET_SGMII_MODE, .api_id = PM_MMIO_WRITE, }, { .id = IOCTL_SD_DLL_RESET, .api_id = PM_MMIO_WRITE, }, { .id = IOCTL_SET_SD_TAPDELAY, .api_id = PM_MMIO_WRITE, }, { .id = IOCTL_SET_SD_TAPDELAY, .api_id = PM_MMIO_READ, }, { .id = IOCTL_SET_PLL_FRAC_DATA, .api_id = PM_PLL_SET_PARAMETER, }, { .id = IOCTL_GET_PLL_FRAC_DATA, .api_id = PM_PLL_GET_PARAMETER, }, { .id = IOCTL_WRITE_GGS, .api_id = PM_MMIO_WRITE, }, { .id = IOCTL_READ_GGS, .api_id = PM_MMIO_READ, }, { .id = IOCTL_WRITE_PGGS, .api_id = PM_MMIO_WRITE, }, { .id = IOCTL_READ_PGGS, .api_id = PM_MMIO_READ, }, { .id = IOCTL_ULPI_RESET, .api_id = PM_MMIO_WRITE, }, { .id = IOCTL_SET_BOOT_HEALTH_STATUS, .api_id = PM_MMIO_WRITE, }, { .id = IOCTL_AFI, .api_id = PM_MMIO_WRITE, }, }; /* Expected firmware API version to ATF */ static const uint8_t atf_expected_ver_id[] = { [PM_SELF_SUSPEND] = FW_API_BASE_VERSION, [PM_REQ_WAKEUP] = FW_API_BASE_VERSION, [PM_ABORT_SUSPEND] = FW_API_BASE_VERSION, [PM_SET_WAKEUP_SOURCE] = FW_API_BASE_VERSION, [PM_SYSTEM_SHUTDOWN] = FW_API_BASE_VERSION, [PM_GET_API_VERSION] = FW_API_BASE_VERSION, [PM_PLL_SET_MODE] = FW_API_BASE_VERSION, [PM_PLL_GET_MODE] = FW_API_BASE_VERSION, [PM_CLOCK_ENABLE] = FW_API_BASE_VERSION, [PM_CLOCK_DISABLE] = FW_API_BASE_VERSION, [PM_CLOCK_GETSTATE] = FW_API_BASE_VERSION, [PM_PLL_SET_PARAMETER] = FW_API_BASE_VERSION, [PM_PLL_GET_PARAMETER] = FW_API_BASE_VERSION, [PM_CLOCK_SETDIVIDER] = FW_API_BASE_VERSION, [PM_CLOCK_GETDIVIDER] = FW_API_BASE_VERSION, [PM_CLOCK_SETPARENT] = FW_API_BASE_VERSION, [PM_CLOCK_GETPARENT] = FW_API_BASE_VERSION, [PM_MMIO_WRITE] = FW_API_BASE_VERSION, [PM_MMIO_READ] = FW_API_BASE_VERSION, [PM_FEATURE_CHECK] = FW_API_VERSION_2, }; /* default shutdown/reboot scope is system(2) */ static uint32_t pm_shutdown_scope = PMF_SHUTDOWN_SUBTYPE_SYSTEM; /** * pm_get_shutdown_scope() - Get the currently set shutdown scope * * @return Shutdown scope value */ uint32_t pm_get_shutdown_scope(void) { return pm_shutdown_scope; } /** * pm_self_suspend() - PM call for processor to suspend itself * @nid Node id of the processor or subsystem * @latency Requested maximum wakeup latency (not supported) * @state Requested state * @address Resume address * * This is a blocking call, it will return only once PMU has responded. * On a wakeup, resume address will be automatically set by PMU. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_self_suspend(enum pm_node_id nid, uint32_t latency, uint32_t state, uintptr_t address) { uint32_t payload[PAYLOAD_ARG_CNT]; uint32_t cpuid = plat_my_core_pos(); const struct pm_proc *proc = pm_get_proc(cpuid); /* * Do client specific suspend operations * (e.g. set powerdown request bit) */ pm_client_suspend(proc, state); /* Send request to the PMU */ PM_PACK_PAYLOAD6(payload, PM_SELF_SUSPEND, proc->node_id, latency, state, address, (address >> 32)); return pm_ipi_send_sync(proc, payload, NULL, 0); } /** * pm_req_suspend() - PM call to request for another PU or subsystem to * be suspended gracefully. * @target Node id of the targeted PU or subsystem * @ack Flag to specify whether acknowledge is requested * @latency Requested wakeup latency (not supported) * @state Requested state (not supported) * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_req_suspend(enum pm_node_id target, enum pm_request_ack ack, uint32_t latency, uint32_t state) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD5(payload, PM_REQ_SUSPEND, target, ack, latency, state); if (ack == REQ_ACK_BLOCKING) { return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } else { return pm_ipi_send(primary_proc, payload); } } /** * pm_req_wakeup() - PM call for processor to wake up selected processor * or subsystem * @target Node id of the processor or subsystem to wake up * @ack Flag to specify whether acknowledge requested * @set_address Resume address presence indicator * 1 resume address specified, 0 otherwise * @address Resume address * * This API function is either used to power up another APU core for SMP * (by PSCI) or to power up an entirely different PU or subsystem, such * as RPU0, RPU, or PL_CORE_xx. Resume address for the target PU will be * automatically set by PMU. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_req_wakeup(enum pm_node_id target, uint32_t set_address, uintptr_t address, enum pm_request_ack ack) { uint32_t payload[PAYLOAD_ARG_CNT]; uint64_t encoded_address; /* encode set Address into 1st bit of address */ encoded_address = address; encoded_address |= !!set_address; /* Send request to the PMU to perform the wake of the PU */ PM_PACK_PAYLOAD5(payload, PM_REQ_WAKEUP, target, encoded_address, encoded_address >> 32, ack); if (ack == REQ_ACK_BLOCKING) { return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } else { return pm_ipi_send(primary_proc, payload); } } /** * pm_force_powerdown() - PM call to request for another PU or subsystem to * be powered down forcefully * @target Node id of the targeted PU or subsystem * @ack Flag to specify whether acknowledge is requested * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_force_powerdown(enum pm_node_id target, enum pm_request_ack ack) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD3(payload, PM_FORCE_POWERDOWN, target, ack); if (ack == REQ_ACK_BLOCKING) { return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } else { return pm_ipi_send(primary_proc, payload); } } /** * pm_abort_suspend() - PM call to announce that a prior suspend request * is to be aborted. * @reason Reason for the abort * * Calling PU expects the PMU to abort the initiated suspend procedure. * This is a non-blocking call without any acknowledge. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_abort_suspend(enum pm_abort_reason reason) { uint32_t payload[PAYLOAD_ARG_CNT]; /* * Do client specific abort suspend operations * (e.g. enable interrupts and clear powerdown request bit) */ pm_client_abort_suspend(); /* Send request to the PMU */ /* TODO: allow passing the node ID of the affected CPU */ PM_PACK_PAYLOAD3(payload, PM_ABORT_SUSPEND, reason, primary_proc->node_id); return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } /** * pm_set_wakeup_source() - PM call to specify the wakeup source while suspended * @target Node id of the targeted PU or subsystem * @wkup_node Node id of the wakeup peripheral * @enable Enable or disable the specified peripheral as wake source * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_set_wakeup_source(enum pm_node_id target, enum pm_node_id wkup_node, uint32_t enable) { uint32_t payload[PAYLOAD_ARG_CNT]; PM_PACK_PAYLOAD4(payload, PM_SET_WAKEUP_SOURCE, target, wkup_node, enable); return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } /** * pm_system_shutdown() - PM call to request a system shutdown or restart * @type Shutdown or restart? 0=shutdown, 1=restart, 2=setscope * @subtype Scope: 0=APU-subsystem, 1=PS, 2=system * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_system_shutdown(uint32_t type, uint32_t subtype) { uint32_t payload[PAYLOAD_ARG_CNT]; if (type == PMF_SHUTDOWN_TYPE_SETSCOPE_ONLY) { /* Setting scope for subsequent PSCI reboot or shutdown */ pm_shutdown_scope = subtype; return PM_RET_SUCCESS; } PM_PACK_PAYLOAD3(payload, PM_SYSTEM_SHUTDOWN, type, subtype); return pm_ipi_send_non_blocking(primary_proc, payload); } /* APIs for managing PM slaves: */ /** * pm_req_node() - PM call to request a node with specific capabilities * @nid Node id of the slave * @capabilities Requested capabilities of the slave * @qos Quality of service (not supported) * @ack Flag to specify whether acknowledge is requested * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_req_node(enum pm_node_id nid, uint32_t capabilities, uint32_t qos, enum pm_request_ack ack) { uint32_t payload[PAYLOAD_ARG_CNT]; PM_PACK_PAYLOAD5(payload, PM_REQ_NODE, nid, capabilities, qos, ack); if (ack == REQ_ACK_BLOCKING) { return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } else { return pm_ipi_send(primary_proc, payload); } } /** * pm_set_requirement() - PM call to set requirement for PM slaves * @nid Node id of the slave * @capabilities Requested capabilities of the slave * @qos Quality of service (not supported) * @ack Flag to specify whether acknowledge is requested * * This API function is to be used for slaves a PU already has requested * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_set_requirement(enum pm_node_id nid, uint32_t capabilities, uint32_t qos, enum pm_request_ack ack) { uint32_t payload[PAYLOAD_ARG_CNT]; PM_PACK_PAYLOAD5(payload, PM_SET_REQUIREMENT, nid, capabilities, qos, ack); if (ack == REQ_ACK_BLOCKING) { return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } else { return pm_ipi_send(primary_proc, payload); } } /* Miscellaneous API functions */ /** * pm_get_api_version() - Get version number of PMU PM firmware * @version Returns 32-bit version number of PMU Power Management Firmware * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_get_api_version(uint32_t *version) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD1(payload, PM_GET_API_VERSION); return pm_ipi_send_sync(primary_proc, payload, version, 1); } /** * pm_get_node_status() - PM call to request a node's current status * @nid Node id * @ret_buff Buffer for the return values: * [0] - Current power state of the node * [1] - Current requirements for the node (slave nodes only) * [2] - Current usage status for the node (slave nodes only) * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_get_node_status(enum pm_node_id nid, uint32_t *ret_buff) { uint32_t payload[PAYLOAD_ARG_CNT]; PM_PACK_PAYLOAD2(payload, PM_GET_NODE_STATUS, nid); return pm_ipi_send_sync(primary_proc, payload, ret_buff, 3); } /** * pm_mmio_write() - Perform write to protected mmio * @address Address to write to * @mask Mask to apply * @value Value to write * * This function provides access to PM-related control registers * that may not be directly accessible by a particular PU. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_mmio_write(uintptr_t address, uint32_t mask, uint32_t value) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD4(payload, PM_MMIO_WRITE, address, mask, value); return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } /** * pm_mmio_read() - Read value from protected mmio * @address Address to write to * @value Value to write * * This function provides access to PM-related control registers * that may not be directly accessible by a particular PU. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_mmio_read(uintptr_t address, uint32_t *value) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD2(payload, PM_MMIO_READ, address); return pm_ipi_send_sync(primary_proc, payload, value, 1); } /** * pm_fpga_load() - Load the bitstream into the PL. * * This function provides access to the xilfpga library to load * the Bit-stream into PL. * * address_low: lower 32-bit Linear memory space address * * address_high: higher 32-bit Linear memory space address * * size: Number of 32bit words * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_fpga_load(uint32_t address_low, uint32_t address_high, uint32_t size, uint32_t flags) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD5(payload, PM_FPGA_LOAD, address_high, address_low, size, flags); return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } /** * pm_fpga_get_status() - Read value from fpga status register * @value Value to read * * This function provides access to the xilfpga library to get * the fpga status * @return Returns status, either success or error+reason */ enum pm_ret_status pm_fpga_get_status(uint32_t *value) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD1(payload, PM_FPGA_GET_STATUS); return pm_ipi_send_sync(primary_proc, payload, value, 1); } /** * pm_get_chipid() - Read silicon ID registers * @value Buffer for return values. Must be large enough * to hold 8 bytes. * * @return Returns silicon ID registers */ enum pm_ret_status pm_get_chipid(uint32_t *value) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD1(payload, PM_GET_CHIPID); return pm_ipi_send_sync(primary_proc, payload, value, 2); } /** * pm_secure_rsaaes() - Load the secure images. * * This function provides access to the xilsecure library to load * the authenticated, encrypted, and authenticated/encrypted images. * * address_low: lower 32-bit Linear memory space address * * address_high: higher 32-bit Linear memory space address * * size: Number of 32bit words * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_secure_rsaaes(uint32_t address_low, uint32_t address_high, uint32_t size, uint32_t flags) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD5(payload, PM_SECURE_RSA_AES, address_high, address_low, size, flags); return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } /** * pm_aes_engine() - Aes data blob encryption/decryption * This function provides access to the xilsecure library to * encrypt/decrypt data blobs. * * address_low: lower 32-bit address of the AesParams structure * * address_high: higher 32-bit address of the AesParams structure * * value: Returned output value * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_aes_engine(uint32_t address_high, uint32_t address_low, uint32_t *value) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD3(payload, PM_SECURE_AES, address_high, address_low); return pm_ipi_send_sync(primary_proc, payload, value, 1); } /** * pm_get_callbackdata() - Read from IPI response buffer * @data - array of PAYLOAD_ARG_CNT elements * * Read value from ipi buffer response buffer. * @return Returns status, either success or error */ enum pm_ret_status pm_get_callbackdata(uint32_t *data, size_t count) { enum pm_ret_status ret = PM_RET_SUCCESS; /* Return if interrupt is not from PMU */ if (!pm_ipi_irq_status(primary_proc)) { return ret; } ret = pm_ipi_buff_read_callb(data, count); pm_ipi_irq_clear(primary_proc); return ret; } /** * pm_ioctl() - PM IOCTL API for device control and configs * @node_id Node ID of the device * @ioctl_id ID of the requested IOCTL * @arg1 Argument 1 to requested IOCTL call * @arg2 Argument 2 to requested IOCTL call * @out Returned output value * * This function calls IOCTL to firmware for device control and configuration. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_ioctl(enum pm_node_id nid, uint32_t ioctl_id, uint32_t arg1, uint32_t arg2, uint32_t *value) { return pm_api_ioctl(nid, ioctl_id, arg1, arg2, value); } /** * fw_api_version() - Returns API version implemented in firmware * @api_id API ID to check * @version Returned supported API version * @len Number of words to be returned * * @return Returns status, either success or error+reason */ static enum pm_ret_status fw_api_version(uint32_t id, uint32_t *version, uint32_t len) { uint32_t payload[PAYLOAD_ARG_CNT]; PM_PACK_PAYLOAD2(payload, PM_FEATURE_CHECK, id); return pm_ipi_send_sync(primary_proc, payload, version, len); } /** * check_api_dependency() - API to check dependent EEMI API version * @id EEMI API ID to check * * @return Returns status, either success or error+reason */ enum pm_ret_status check_api_dependency(uint8_t id) { uint8_t i; uint32_t version; int ret; for (i = 0U; i < ARRAY_SIZE(api_dep_table); i++) { if (api_dep_table[i].id == id) { if (api_dep_table[i].api_id == 0U) { break; } ret = fw_api_version(api_dep_table[i].api_id, &version, 1); if (ret != PM_RET_SUCCESS) { return ret; } /* Check if fw version matches ATF expected version */ if (version != atf_expected_ver_id[api_dep_table[i].api_id]) { return PM_RET_ERROR_NOTSUPPORTED; } } } return PM_RET_SUCCESS; } /** * feature_check_atf() - These are API's completely implemented in ATF * @api_id API ID to check * @version Returned supported API version * * @return Returns status, either success or error+reason */ static enum pm_ret_status feature_check_atf(uint32_t api_id, uint32_t *version, uint32_t *bit_mask) { switch (api_id) { case PM_QUERY_DATA: *version = TFA_API_QUERY_DATA_VERSION; bit_mask[0] = (uint32_t)(PM_QUERY_FEATURE_BITMASK); bit_mask[1] = (uint32_t)(PM_QUERY_FEATURE_BITMASK >> 32); return PM_RET_SUCCESS; case PM_GET_CALLBACK_DATA: case PM_GET_TRUSTZONE_VERSION: case PM_SET_SUSPEND_MODE: *version = ATF_API_BASE_VERSION; return PM_RET_SUCCESS; default: return PM_RET_ERROR_NO_FEATURE; } } /** * get_atf_version_for_partial_apis() - Return ATF version for partially * implemented APIs * @api_id API ID to check * @version Returned supported API version * * @return Returns status, either success or error+reason */ static enum pm_ret_status get_atf_version_for_partial_apis(uint32_t api_id, uint32_t *version) { switch (api_id) { case PM_SELF_SUSPEND: case PM_REQ_WAKEUP: case PM_ABORT_SUSPEND: case PM_SET_WAKEUP_SOURCE: case PM_SYSTEM_SHUTDOWN: case PM_GET_API_VERSION: case PM_CLOCK_ENABLE: case PM_CLOCK_DISABLE: case PM_CLOCK_GETSTATE: case PM_CLOCK_SETDIVIDER: case PM_CLOCK_GETDIVIDER: case PM_CLOCK_SETPARENT: case PM_CLOCK_GETPARENT: case PM_PLL_SET_PARAMETER: case PM_PLL_GET_PARAMETER: case PM_PLL_SET_MODE: case PM_PLL_GET_MODE: case PM_REGISTER_ACCESS: *version = ATF_API_BASE_VERSION; return PM_RET_SUCCESS; case PM_FEATURE_CHECK: *version = FW_API_VERSION_2; return PM_RET_SUCCESS; default: return PM_RET_ERROR_ARGS; } } /** * feature_check_partial() - These are API's partially implemented in * ATF and firmware both * @api_id API ID to check * @version Returned supported API version * * @return Returns status, either success or error+reason */ static enum pm_ret_status feature_check_partial(uint32_t api_id, uint32_t *version) { uint32_t status; switch (api_id) { case PM_SELF_SUSPEND: case PM_REQ_WAKEUP: case PM_ABORT_SUSPEND: case PM_SET_WAKEUP_SOURCE: case PM_SYSTEM_SHUTDOWN: case PM_GET_API_VERSION: case PM_CLOCK_ENABLE: case PM_CLOCK_DISABLE: case PM_CLOCK_GETSTATE: case PM_CLOCK_SETDIVIDER: case PM_CLOCK_GETDIVIDER: case PM_CLOCK_SETPARENT: case PM_CLOCK_GETPARENT: case PM_PLL_SET_PARAMETER: case PM_PLL_GET_PARAMETER: case PM_PLL_SET_MODE: case PM_PLL_GET_MODE: case PM_REGISTER_ACCESS: case PM_FEATURE_CHECK: status = check_api_dependency(api_id); if (status != PM_RET_SUCCESS) { return status; } return get_atf_version_for_partial_apis(api_id, version); default: return PM_RET_ERROR_NO_FEATURE; } } /** * pm_feature_check() - Returns the supported API version if supported * @api_id API ID to check * @version Returned supported API version * @bit_mask Returned supported IOCTL id version * @len Number of bytes to be returned in bit_mask variable * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_feature_check(uint32_t api_id, uint32_t *version, uint32_t *bit_mask, uint8_t len) { uint32_t ret_payload[PAYLOAD_ARG_CNT] = {0U}; uint32_t status; /* Get API version implemented in ATF */ status = feature_check_atf(api_id, version, bit_mask); if (status != PM_RET_ERROR_NO_FEATURE) { return status; } /* Get API version implemented by firmware and ATF both */ status = feature_check_partial(api_id, version); if (status != PM_RET_ERROR_NO_FEATURE) { return status; } /* Get API version implemented by firmware */ status = fw_api_version(api_id, ret_payload, 3); /* IOCTL call may return failure whose ID is not implemented in * firmware but implemented in ATF */ if ((api_id != PM_IOCTL) && (status != PM_RET_SUCCESS)) { return status; } *version = ret_payload[0]; /* Update IOCTL bit mask which are implemented in ATF */ if ((api_id == PM_IOCTL) || (api_id == PM_GET_OP_CHARACTERISTIC)) { if (len < 2) { return PM_RET_ERROR_ARGS; } bit_mask[0] = ret_payload[1]; bit_mask[1] = ret_payload[2]; if (api_id == PM_IOCTL) { /* Get IOCTL's implemented by ATF */ status = atf_ioctl_bitmask(bit_mask); } } else { /* Requires for MISRA */ } return status; } /** * pm_clock_get_max_divisor - PM call to get max divisor * @clock_id Clock ID * @div_type Divisor ID (TYPE_DIV1 or TYPE_DIV2) * @max_div Maximum supported divisor * * This function is used by master to get maximum supported value. * * Return: Returns status, either success or error+reason. */ static enum pm_ret_status pm_clock_get_max_divisor(uint32_t clock_id, uint8_t div_type, uint32_t *max_div) { return pm_api_clock_get_max_divisor(clock_id, div_type, max_div); } /** * pm_clock_get_num_clocks - PM call to request number of clocks * @nclockss: Number of clocks * * This function is used by master to get number of clocks. * * Return: Returns status, either success or error+reason. */ static enum pm_ret_status pm_clock_get_num_clocks(uint32_t *nclocks) { return pm_api_clock_get_num_clocks(nclocks); } /** * pm_clock_get_name() - PM call to request a clock's name * @clock_id Clock ID * @name Name of clock (max 16 bytes) * * This function is used by master to get nmae of clock specified * by given clock ID. */ static void pm_clock_get_name(uint32_t clock_id, char *name) { pm_api_clock_get_name(clock_id, name); } /** * pm_clock_get_topology() - PM call to request a clock's topology * @clock_id Clock ID * @index Topology index for next toplogy node * @topology Buffer to store nodes in topology and flags * * This function is used by master to get topology information for the * clock specified by given clock ID. Each response would return 3 * topology nodes. To get next nodes, caller needs to call this API with * index of next node. Index starts from 0. * * @return Returns status, either success or error+reason */ static enum pm_ret_status pm_clock_get_topology(uint32_t clock_id, uint32_t index, uint32_t *topology) { return pm_api_clock_get_topology(clock_id, index, topology); } /** * pm_clock_get_fixedfactor_params() - PM call to request a clock's fixed factor * parameters for fixed clock * @clock_id Clock ID * @mul Multiplication value * @div Divisor value * * This function is used by master to get fixed factor parameers for the * fixed clock. This API is application only for the fixed clock. * * @return Returns status, either success or error+reason */ static enum pm_ret_status pm_clock_get_fixedfactor_params(uint32_t clock_id, uint32_t *mul, uint32_t *div) { return pm_api_clock_get_fixedfactor_params(clock_id, mul, div); } /** * pm_clock_get_parents() - PM call to request a clock's first 3 parents * @clock_id Clock ID * @index Index of next parent * @parents Parents of the given clock * * This function is used by master to get clock's parents information. * This API will return 3 parents with a single response. To get other * parents, master should call same API in loop with new parent index * till error is returned. * * E.g First call should have index 0 which will return parents 0, 1 and * 2. Next call, index should be 3 which will return parent 3,4 and 5 and * so on. * * @return Returns status, either success or error+reason */ static enum pm_ret_status pm_clock_get_parents(uint32_t clock_id, uint32_t index, uint32_t *parents) { return pm_api_clock_get_parents(clock_id, index, parents); } /** * pm_clock_get_attributes() - PM call to request a clock's attributes * @clock_id Clock ID * @attr Clock attributes * * This function is used by master to get clock's attributes * (e.g. valid, clock type, etc). * * @return Returns status, either success or error+reason */ static enum pm_ret_status pm_clock_get_attributes(uint32_t clock_id, uint32_t *attr) { return pm_api_clock_get_attributes(clock_id, attr); } /** * pm_clock_gate() - Configure clock gate * @clock_id Id of the clock to be configured * @enable Flag 0=disable (gate the clock), !0=enable (activate the clock) * * @return Error if an argument is not valid or status as returned by the * PM controller (PMU) */ static enum pm_ret_status pm_clock_gate(uint32_t clock_id, uint8_t enable) { uint32_t payload[PAYLOAD_ARG_CNT]; enum pm_ret_status status; enum pm_api_id api_id; /* Check if clock ID is valid and return an error if it is not */ status = pm_clock_id_is_valid(clock_id); if (status != PM_RET_SUCCESS) { return status; } if (enable) { api_id = PM_CLOCK_ENABLE; } else { api_id = PM_CLOCK_DISABLE; } /* Send request to the PMU */ PM_PACK_PAYLOAD2(payload, api_id, clock_id); status = pm_ipi_send_sync(primary_proc, payload, NULL, 0); /* If action fails due to the lack of permissions filter the error */ if (status == PM_RET_ERROR_ACCESS) { status = PM_RET_SUCCESS; } return status; } /** * pm_clock_enable() - Enable the clock for given id * @clock_id: Id of the clock to be enabled * * This function is used by master to enable the clock * including peripherals and PLL clocks. * * @return: Error if an argument is not valid or status as returned by the * pm_clock_gate */ enum pm_ret_status pm_clock_enable(uint32_t clock_id) { struct pm_pll *pll; /* First try to handle it as a PLL */ pll = pm_clock_get_pll(clock_id); if (pll) { return pm_clock_pll_enable(pll); } /* It's an on-chip clock, PMU should configure clock's gate */ return pm_clock_gate(clock_id, 1); } /** * pm_clock_disable - Disable the clock for given id * @clock_id: Id of the clock to be disable * * This function is used by master to disable the clock * including peripherals and PLL clocks. * * @return: Error if an argument is not valid or status as returned by the * pm_clock_gate */ enum pm_ret_status pm_clock_disable(uint32_t clock_id) { struct pm_pll *pll; /* First try to handle it as a PLL */ pll = pm_clock_get_pll(clock_id); if (pll) { return pm_clock_pll_disable(pll); } /* It's an on-chip clock, PMU should configure clock's gate */ return pm_clock_gate(clock_id, 0); } /** * pm_clock_getstate - Get the clock state for given id * @clock_id: Id of the clock to be queried * @state: 1/0 (Enabled/Disabled) * * This function is used by master to get the state of clock * including peripherals and PLL clocks. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_clock_getstate(uint32_t clock_id, uint32_t *state) { struct pm_pll *pll; uint32_t payload[PAYLOAD_ARG_CNT]; enum pm_ret_status status; /* First try to handle it as a PLL */ pll = pm_clock_get_pll(clock_id); if (pll) return pm_clock_pll_get_state(pll, state); /* Check if clock ID is a valid on-chip clock */ status = pm_clock_id_is_valid(clock_id); if (status != PM_RET_SUCCESS) { return status; } /* Send request to the PMU */ PM_PACK_PAYLOAD2(payload, PM_CLOCK_GETSTATE, clock_id); return pm_ipi_send_sync(primary_proc, payload, state, 1); } /** * pm_clock_setdivider - Set the clock divider for given id * @clock_id: Id of the clock * @divider: divider value * * This function is used by master to set divider for any clock * to achieve desired rate. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_clock_setdivider(uint32_t clock_id, uint32_t divider) { enum pm_ret_status status; enum pm_node_id nid; enum pm_clock_div_id div_id; uint32_t payload[PAYLOAD_ARG_CNT]; const uint32_t div0 = 0xFFFF0000; const uint32_t div1 = 0x0000FFFF; uint32_t val; /* Get PLL node ID using PLL clock ID */ status = pm_clock_get_pll_node_id(clock_id, &nid); if (status == PM_RET_SUCCESS) { return pm_pll_set_parameter(nid, PM_PLL_PARAM_FBDIV, divider); } /* Check if clock ID is a valid on-chip clock */ status = pm_clock_id_is_valid(clock_id); if (status != PM_RET_SUCCESS) { return status; } if (div0 == (divider & div0)) { div_id = PM_CLOCK_DIV0_ID; val = divider & ~div0; } else if (div1 == (divider & div1)) { div_id = PM_CLOCK_DIV1_ID; val = (divider & ~div1) >> 16; } else { return PM_RET_ERROR_ARGS; } /* Send request to the PMU */ PM_PACK_PAYLOAD4(payload, PM_CLOCK_SETDIVIDER, clock_id, div_id, val); return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } /** * pm_clock_getdivider - Get the clock divider for given id * @clock_id: Id of the clock * @divider: divider value * * This function is used by master to get divider values * for any clock. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_clock_getdivider(uint32_t clock_id, uint32_t *divider) { enum pm_ret_status status; enum pm_node_id nid; uint32_t payload[PAYLOAD_ARG_CNT]; uint32_t val; /* Get PLL node ID using PLL clock ID */ status = pm_clock_get_pll_node_id(clock_id, &nid); if (status == PM_RET_SUCCESS) { return pm_pll_get_parameter(nid, PM_PLL_PARAM_FBDIV, divider); } /* Check if clock ID is a valid on-chip clock */ status = pm_clock_id_is_valid(clock_id); if (status != PM_RET_SUCCESS) { return status; } if (pm_clock_has_div(clock_id, PM_CLOCK_DIV0_ID)) { /* Send request to the PMU to get div0 */ PM_PACK_PAYLOAD3(payload, PM_CLOCK_GETDIVIDER, clock_id, PM_CLOCK_DIV0_ID); status = pm_ipi_send_sync(primary_proc, payload, &val, 1); if (status != PM_RET_SUCCESS) { return status; } *divider = val; } if (pm_clock_has_div(clock_id, PM_CLOCK_DIV1_ID)) { /* Send request to the PMU to get div1 */ PM_PACK_PAYLOAD3(payload, PM_CLOCK_GETDIVIDER, clock_id, PM_CLOCK_DIV1_ID); status = pm_ipi_send_sync(primary_proc, payload, &val, 1); if (status != PM_RET_SUCCESS) { return status; } *divider |= val << 16; } return status; } /** * pm_clock_setrate - Set the clock rate for given id * @clock_id: Id of the clock * @rate: rate value in hz * * This function is used by master to set rate for any clock. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_clock_setrate(uint32_t clock_id, uint64_t rate) { return PM_RET_ERROR_NOTSUPPORTED; } /** * pm_clock_getrate - Get the clock rate for given id * @clock_id: Id of the clock * @rate: rate value in hz * * This function is used by master to get rate * for any clock. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_clock_getrate(uint32_t clock_id, uint64_t *rate) { return PM_RET_ERROR_NOTSUPPORTED; } /** * pm_clock_setparent - Set the clock parent for given id * @clock_id: Id of the clock * @parent_index: Index of the parent clock into clock's parents array * * This function is used by master to set parent for any clock. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_clock_setparent(uint32_t clock_id, uint32_t parent_index) { struct pm_pll *pll; uint32_t payload[PAYLOAD_ARG_CNT]; enum pm_ret_status status; /* First try to handle it as a PLL */ pll = pm_clock_get_pll_by_related_clk(clock_id); if (pll) { return pm_clock_pll_set_parent(pll, clock_id, parent_index); } /* Check if clock ID is a valid on-chip clock */ status = pm_clock_id_is_valid(clock_id); if (status != PM_RET_SUCCESS) { return status; } /* Send request to the PMU */ PM_PACK_PAYLOAD3(payload, PM_CLOCK_SETPARENT, clock_id, parent_index); return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } /** * pm_clock_getparent - Get the clock parent for given id * @clock_id: Id of the clock * @parent_index: parent index * * This function is used by master to get parent index * for any clock. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_clock_getparent(uint32_t clock_id, uint32_t *parent_index) { struct pm_pll *pll; uint32_t payload[PAYLOAD_ARG_CNT]; enum pm_ret_status status; /* First try to handle it as a PLL */ pll = pm_clock_get_pll_by_related_clk(clock_id); if (pll) { return pm_clock_pll_get_parent(pll, clock_id, parent_index); } /* Check if clock ID is a valid on-chip clock */ status = pm_clock_id_is_valid(clock_id); if (status != PM_RET_SUCCESS) { return status; } /* Send request to the PMU */ PM_PACK_PAYLOAD2(payload, PM_CLOCK_GETPARENT, clock_id); return pm_ipi_send_sync(primary_proc, payload, parent_index, 1); } /** * pm_pinctrl_get_num_pins - PM call to request number of pins * @npins: Number of pins * * This function is used by master to get number of pins * * Return: Returns status, either success or error+reason. */ static enum pm_ret_status pm_pinctrl_get_num_pins(uint32_t *npins) { return pm_api_pinctrl_get_num_pins(npins); } /** * pm_pinctrl_get_num_functions - PM call to request number of functions * @nfuncs: Number of functions * * This function is used by master to get number of functions * * Return: Returns status, either success or error+reason. */ static enum pm_ret_status pm_pinctrl_get_num_functions(uint32_t *nfuncs) { return pm_api_pinctrl_get_num_functions(nfuncs); } /** * pm_pinctrl_get_num_function_groups - PM call to request number of * function groups * @fid: Id of function * @ngroups: Number of function groups * * This function is used by master to get number of function groups specified * by given function Id * * Return: Returns status, either success or error+reason. */ static enum pm_ret_status pm_pinctrl_get_num_function_groups(uint32_t fid, uint32_t *ngroups) { return pm_api_pinctrl_get_num_func_groups(fid, ngroups); } /** * pm_pinctrl_get_function_name - PM call to request function name * @fid: Id of function * @name: Name of function * * This function is used by master to get name of function specified * by given function Id */ static void pm_pinctrl_get_function_name(uint32_t fid, char *name) { pm_api_pinctrl_get_function_name(fid, name); } /** * pm_pinctrl_get_function_groups - PM call to request function groups * @fid: Id of function * @index: Index of next function groups * @groups: Function groups * * This function is used by master to get function groups specified * by given function Id. This API will return 6 function groups with * a single response. To get other function groups, master should call * same API in loop with new function groups index till error is returned. * * E.g First call should have index 0 which will return function groups * 0, 1, 2, 3, 4 and 5. Next call, index should be 6 which will return * function groups 6, 7, 8, 9, 10 and 11 and so on. * * Return: Returns status, either success or error+reason. */ static enum pm_ret_status pm_pinctrl_get_function_groups(uint32_t fid, uint32_t index, uint16_t *groups) { return pm_api_pinctrl_get_function_groups(fid, index, groups); } /** * pm_pinctrl_get_pin_groups - PM call to request pin groups * @pin_id: Id of pin * @index: Index of next pin groups * @groups: pin groups * * This function is used by master to get pin groups specified * by given pin Id. This API will return 6 pin groups with * a single response. To get other pin groups, master should call * same API in loop with new pin groups index till error is returned. * * E.g First call should have index 0 which will return pin groups * 0, 1, 2, 3, 4 and 5. Next call, index should be 6 which will return * pin groups 6, 7, 8, 9, 10 and 11 and so on. * * Return: Returns status, either success or error+reason. */ static enum pm_ret_status pm_pinctrl_get_pin_groups(uint32_t pin_id, uint32_t index, uint16_t *groups) { return pm_api_pinctrl_get_pin_groups(pin_id, index, groups); } /** * pm_query_data() - PM API for querying firmware data * @arg1 Argument 1 to requested IOCTL call * @arg2 Argument 2 to requested IOCTL call * @arg3 Argument 3 to requested IOCTL call * @arg4 Argument 4 to requested IOCTL call * @data Returned output data * * This function returns requested data. */ void pm_query_data(enum pm_query_ids qid, uint32_t arg1, uint32_t arg2, uint32_t arg3, uint32_t *data) { switch (qid) { case PM_QID_CLOCK_GET_NAME: pm_clock_get_name(arg1, (char *)data); break; case PM_QID_CLOCK_GET_TOPOLOGY: data[0] = pm_clock_get_topology(arg1, arg2, &data[1]); break; case PM_QID_CLOCK_GET_FIXEDFACTOR_PARAMS: data[0] = pm_clock_get_fixedfactor_params(arg1, &data[1], &data[2]); break; case PM_QID_CLOCK_GET_PARENTS: data[0] = pm_clock_get_parents(arg1, arg2, &data[1]); break; case PM_QID_CLOCK_GET_ATTRIBUTES: data[0] = pm_clock_get_attributes(arg1, &data[1]); break; case PM_QID_PINCTRL_GET_NUM_PINS: data[0] = pm_pinctrl_get_num_pins(&data[1]); break; case PM_QID_PINCTRL_GET_NUM_FUNCTIONS: data[0] = pm_pinctrl_get_num_functions(&data[1]); break; case PM_QID_PINCTRL_GET_NUM_FUNCTION_GROUPS: data[0] = pm_pinctrl_get_num_function_groups(arg1, &data[1]); break; case PM_QID_PINCTRL_GET_FUNCTION_NAME: pm_pinctrl_get_function_name(arg1, (char *)data); break; case PM_QID_PINCTRL_GET_FUNCTION_GROUPS: data[0] = pm_pinctrl_get_function_groups(arg1, arg2, (uint16_t *)&data[1]); break; case PM_QID_PINCTRL_GET_PIN_GROUPS: data[0] = pm_pinctrl_get_pin_groups(arg1, arg2, (uint16_t *)&data[1]); break; case PM_QID_CLOCK_GET_NUM_CLOCKS: data[0] = pm_clock_get_num_clocks(&data[1]); break; case PM_QID_CLOCK_GET_MAX_DIVISOR: data[0] = pm_clock_get_max_divisor(arg1, arg2, &data[1]); break; default: data[0] = PM_RET_ERROR_ARGS; WARN("Unimplemented query service call: 0x%x\n", qid); break; } } enum pm_ret_status pm_sha_hash(uint32_t address_high, uint32_t address_low, uint32_t size, uint32_t flags) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD5(payload, PM_SECURE_SHA, address_high, address_low, size, flags); return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } enum pm_ret_status pm_rsa_core(uint32_t address_high, uint32_t address_low, uint32_t size, uint32_t flags) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD5(payload, PM_SECURE_RSA, address_high, address_low, size, flags); return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } enum pm_ret_status pm_secure_image(uint32_t address_low, uint32_t address_high, uint32_t key_lo, uint32_t key_hi, uint32_t *value) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD5(payload, PM_SECURE_IMAGE, address_high, address_low, key_hi, key_lo); return pm_ipi_send_sync(primary_proc, payload, value, 2); } /** * pm_fpga_read - Perform the fpga configuration readback * * @reg_numframes: Configuration register offset (or) Number of frames to read * @address_low: lower 32-bit Linear memory space address * @address_high: higher 32-bit Linear memory space address * @readback_type: Type of fpga readback operation * 0 -- Configuration Register readback * 1 -- Configuration Data readback * @value: Value to read * * This function provides access to the xilfpga library to read * the PL configuration. * * Return: Returns status, either success or error+reason. */ enum pm_ret_status pm_fpga_read(uint32_t reg_numframes, uint32_t address_low, uint32_t address_high, uint32_t readback_type, uint32_t *value) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD5(payload, PM_FPGA_READ, reg_numframes, address_low, address_high, readback_type); return pm_ipi_send_sync(primary_proc, payload, value, 1); } /* * pm_pll_set_parameter() - Set the PLL parameter value * @nid Node id of the target PLL * @param_id ID of the PLL parameter * @value Parameter value to be set * * Setting the parameter will have physical effect once the PLL mode is set to * integer or fractional. * * @return Error if an argument is not valid or status as returned by the * PM controller (PMU) */ enum pm_ret_status pm_pll_set_parameter(enum pm_node_id nid, enum pm_pll_param param_id, uint32_t value) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Check if given node ID is a PLL node */ if (nid < NODE_APLL || nid > NODE_IOPLL) { return PM_RET_ERROR_ARGS; } /* Check if parameter ID is valid and return an error if it's not */ if (param_id >= PM_PLL_PARAM_MAX) { return PM_RET_ERROR_ARGS; } /* Send request to the PMU */ PM_PACK_PAYLOAD4(payload, PM_PLL_SET_PARAMETER, nid, param_id, value); return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } /** * pm_pll_get_parameter() - Get the PLL parameter value * @nid Node id of the target PLL * @param_id ID of the PLL parameter * @value Location to store the parameter value * * @return Error if an argument is not valid or status as returned by the * PM controller (PMU) */ enum pm_ret_status pm_pll_get_parameter(enum pm_node_id nid, enum pm_pll_param param_id, uint32_t *value) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Check if given node ID is a PLL node */ if (nid < NODE_APLL || nid > NODE_IOPLL) { return PM_RET_ERROR_ARGS; } /* Check if parameter ID is valid and return an error if it's not */ if (param_id >= PM_PLL_PARAM_MAX) { return PM_RET_ERROR_ARGS; } /* Send request to the PMU */ PM_PACK_PAYLOAD3(payload, PM_PLL_GET_PARAMETER, nid, param_id); return pm_ipi_send_sync(primary_proc, payload, value, 1); } /** * pm_pll_set_mode() - Set the PLL mode * @nid Node id of the target PLL * @mode PLL mode to be set * * If reset mode is set the PM controller will first bypass the PLL and then * assert the reset. If integer or fractional mode is set the PM controller will * ensure that the complete PLL programming sequence is satisfied. After this * function returns success the PLL is locked and its bypass is deasserted. * * @return Error if an argument is not valid or status as returned by the * PM controller (PMU) */ enum pm_ret_status pm_pll_set_mode(enum pm_node_id nid, enum pm_pll_mode mode) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Check if given node ID is a PLL node */ if (nid < NODE_APLL || nid > NODE_IOPLL) { return PM_RET_ERROR_ARGS; } /* Check if PLL mode is valid */ if (mode >= PM_PLL_MODE_MAX) { return PM_RET_ERROR_ARGS; } /* Send request to the PMU */ PM_PACK_PAYLOAD3(payload, PM_PLL_SET_MODE, nid, mode); return pm_ipi_send_sync(primary_proc, payload, NULL, 0); } /** * pm_pll_get_mode() - Get the PLL mode * @nid Node id of the target PLL * @mode Location to store the mode of the PLL * * @return Error if an argument is not valid or status as returned by the * PM controller (PMU) */ enum pm_ret_status pm_pll_get_mode(enum pm_node_id nid, enum pm_pll_mode *mode) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Check if given node ID is a PLL node */ if (nid < NODE_APLL || nid > NODE_IOPLL) { return PM_RET_ERROR_ARGS; } /* Send request to the PMU */ PM_PACK_PAYLOAD2(payload, PM_PLL_GET_MODE, nid); return pm_ipi_send_sync(primary_proc, payload, mode, 1); } /** * pm_register_access() - PM API for register read/write access data * * @register_access_id Register_access_id which says register read/write * * @address Address of the register to be accessed * * @mask Mask value to be used while writing value * * @value Value to be written to register * * @out Returned output data * * This function returns requested data. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_register_access(uint32_t register_access_id, uint32_t address, uint32_t mask, uint32_t value, uint32_t *out) { enum pm_ret_status ret; if (((ZYNQMP_CSU_BASEADDR & address) != ZYNQMP_CSU_BASEADDR) && ((CSUDMA_BASE & address) != CSUDMA_BASE) && ((RSA_CORE_BASE & address) != RSA_CORE_BASE) && ((PMU_GLOBAL_BASE & address) != PMU_GLOBAL_BASE)) { return PM_RET_ERROR_ACCESS; } switch (register_access_id) { case CONFIG_REG_WRITE: ret = pm_mmio_write(address, mask, value); break; case CONFIG_REG_READ: ret = pm_mmio_read(address, out); break; default: ret = PM_RET_ERROR_ARGS; WARN("Unimplemented register_access call\n\r"); break; } return ret; } /** * pm_efuse_access() - To program or read efuse bits. * * This function provides access to the xilskey library to program/read * efuse bits. * * address_low: lower 32-bit Linear memory space address * address_high: higher 32-bit Linear memory space address * * value: Returned output value * * @return Returns status, either success or error+reason * */ enum pm_ret_status pm_efuse_access(uint32_t address_high, uint32_t address_low, uint32_t *value) { uint32_t payload[PAYLOAD_ARG_CNT]; /* Send request to the PMU */ PM_PACK_PAYLOAD3(payload, PM_EFUSE_ACCESS, address_high, address_low); return pm_ipi_send_sync(primary_proc, payload, value, 1); }