/* * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include /* * System Power Manager (SPM) is a hardware module, which controls cpu or * system power for different power scenarios using different firmware, i.e., * - spm_hotplug.c for cpu power control in cpu hotplug flow. * - spm_mcdi.c for cpu power control in cpu idle power saving state. * - spm_suspend.c for system power control in system suspend scenario. * * This file provide utility functions common to hotplug, mcdi(idle), suspend * power scenarios. A bakery lock (software lock) is incoporated to protect * certain critical sections to avoid kicking different SPM firmware * concurrently. */ #define SPM_SYSCLK_SETTLE 128 /* 3.9ms */ DEFINE_BAKERY_LOCK(spm_lock); static int spm_hotplug_ready __section(".tzfw_coherent_mem"); static int spm_mcdi_ready __section(".tzfw_coherent_mem"); static int spm_suspend_ready __section(".tzfw_coherent_mem"); void spm_lock_init(void) { bakery_lock_init(&spm_lock); } void spm_lock_get(void) { bakery_lock_get(&spm_lock); } void spm_lock_release(void) { bakery_lock_release(&spm_lock); } int is_mcdi_ready(void) { return spm_mcdi_ready; } int is_hotplug_ready(void) { return spm_hotplug_ready; } int is_suspend_ready(void) { return spm_suspend_ready; } void set_mcdi_ready(void) { spm_mcdi_ready = 1; spm_hotplug_ready = 0; spm_suspend_ready = 0; } void set_hotplug_ready(void) { spm_mcdi_ready = 0; spm_hotplug_ready = 1; spm_suspend_ready = 0; } void set_suspend_ready(void) { spm_mcdi_ready = 0; spm_hotplug_ready = 0; spm_suspend_ready = 1; } void clear_all_ready(void) { spm_mcdi_ready = 0; spm_hotplug_ready = 0; spm_suspend_ready = 0; } void spm_register_init(void) { mmio_write_32(SPM_POWERON_CONFIG_SET, SPM_REGWR_CFG_KEY | SPM_REGWR_EN); mmio_write_32(SPM_POWER_ON_VAL0, 0); mmio_write_32(SPM_POWER_ON_VAL1, POWER_ON_VAL1_DEF); mmio_write_32(SPM_PCM_PWR_IO_EN, 0); mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_PCM_SW_RESET); mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY); if (mmio_read_32(SPM_PCM_FSM_STA) != PCM_FSM_STA_DEF) WARN("PCM reset failed\n"); mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_IM_SLEEP_DVS); mmio_write_32(SPM_PCM_CON1, CON1_CFG_KEY | CON1_EVENT_LOCK_EN | CON1_SPM_SRAM_ISO_B | CON1_SPM_SRAM_SLP_B | CON1_MIF_APBEN); mmio_write_32(SPM_PCM_IM_PTR, 0); mmio_write_32(SPM_PCM_IM_LEN, 0); mmio_write_32(SPM_CLK_CON, CC_SYSCLK0_EN_1 | CC_SYSCLK0_EN_0 | CC_SYSCLK1_EN_0 | CC_SRCLKENA_MASK_0 | CC_CLKSQ1_SEL | CC_CXO32K_RM_EN_MD2 | CC_CXO32K_RM_EN_MD1 | CC_MD32_DCM_EN); mmio_write_32(SPM_SLEEP_ISR_MASK, 0xff0c); mmio_write_32(SPM_SLEEP_ISR_STATUS, 0xc); mmio_write_32(SPM_PCM_SW_INT_CLEAR, 0xff); mmio_write_32(SPM_MD32_SRAM_CON, 0xff0); } void spm_reset_and_init_pcm(void) { unsigned int con1; int i = 0; mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_PCM_SW_RESET); mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY); while (mmio_read_32(SPM_PCM_FSM_STA) != PCM_FSM_STA_DEF) { i++; if (i > 1000) { i = 0; WARN("PCM reset failed\n"); break; } } mmio_write_32(SPM_PCM_CON0, CON0_CFG_KEY | CON0_IM_SLEEP_DVS); con1 = mmio_read_32(SPM_PCM_CON1) & (CON1_PCM_WDT_WAKE_MODE | CON1_PCM_WDT_EN); mmio_write_32(SPM_PCM_CON1, con1 | CON1_CFG_KEY | CON1_EVENT_LOCK_EN | CON1_SPM_SRAM_ISO_B | CON1_SPM_SRAM_SLP_B | CON1_IM_NONRP_EN | CON1_MIF_APBEN); } void spm_init_pcm_register(void) { mmio_write_32(SPM_PCM_REG_DATA_INI, mmio_read_32(SPM_POWER_ON_VAL0)); mmio_write_32(SPM_PCM_PWR_IO_EN, PCM_RF_SYNC_R0); mmio_write_32(SPM_PCM_PWR_IO_EN, 0); mmio_write_32(SPM_PCM_REG_DATA_INI, mmio_read_32(SPM_POWER_ON_VAL1)); mmio_write_32(SPM_PCM_PWR_IO_EN, PCM_RF_SYNC_R7); mmio_write_32(SPM_PCM_PWR_IO_EN, 0); } void spm_set_power_control(const struct pwr_ctrl *pwrctrl) { mmio_write_32(SPM_AP_STANBY_CON, (!pwrctrl->md32_req_mask << 21) | (!pwrctrl->mfg_req_mask << 17) | (!pwrctrl->disp_req_mask << 16) | (!!pwrctrl->mcusys_idle_mask << 7) | (!!pwrctrl->ca15top_idle_mask << 6) | (!!pwrctrl->ca7top_idle_mask << 5) | (!!pwrctrl->wfi_op << 4)); mmio_write_32(SPM_PCM_SRC_REQ, (!!pwrctrl->pcm_apsrc_req << 0)); mmio_write_32(SPM_PCM_PASR_DPD_2, 0); mmio_clrsetbits_32(SPM_CLK_CON, CC_SRCLKENA_MASK_0, (pwrctrl->srclkenai_mask ? CC_SRCLKENA_MASK_0 : 0)); mmio_write_32(SPM_SLEEP_CA15_WFI0_EN, !!pwrctrl->ca15_wfi0_en); mmio_write_32(SPM_SLEEP_CA15_WFI1_EN, !!pwrctrl->ca15_wfi1_en); mmio_write_32(SPM_SLEEP_CA15_WFI2_EN, !!pwrctrl->ca15_wfi2_en); mmio_write_32(SPM_SLEEP_CA15_WFI3_EN, !!pwrctrl->ca15_wfi3_en); mmio_write_32(SPM_SLEEP_CA7_WFI0_EN, !!pwrctrl->ca7_wfi0_en); mmio_write_32(SPM_SLEEP_CA7_WFI1_EN, !!pwrctrl->ca7_wfi1_en); mmio_write_32(SPM_SLEEP_CA7_WFI2_EN, !!pwrctrl->ca7_wfi2_en); mmio_write_32(SPM_SLEEP_CA7_WFI3_EN, !!pwrctrl->ca7_wfi3_en); } void spm_set_wakeup_event(const struct pwr_ctrl *pwrctrl) { unsigned int val, mask; if (pwrctrl->timer_val_cust == 0) val = pwrctrl->timer_val ? pwrctrl->timer_val : PCM_TIMER_MAX; else val = pwrctrl->timer_val_cust; mmio_write_32(SPM_PCM_TIMER_VAL, val); mmio_setbits_32(SPM_PCM_CON1, CON1_CFG_KEY); if (pwrctrl->wake_src_cust == 0) mask = pwrctrl->wake_src; else mask = pwrctrl->wake_src_cust; if (pwrctrl->syspwreq_mask) mask &= ~WAKE_SRC_SYSPWREQ; mmio_write_32(SPM_SLEEP_WAKEUP_EVENT_MASK, ~mask); mmio_write_32(SPM_SLEEP_ISR_MASK, 0xfe04); } void spm_get_wakeup_status(struct wake_status *wakesta) { wakesta->assert_pc = mmio_read_32(SPM_PCM_REG_DATA_INI); wakesta->r12 = mmio_read_32(SPM_PCM_REG12_DATA); wakesta->raw_sta = mmio_read_32(SPM_SLEEP_ISR_RAW_STA); wakesta->wake_misc = mmio_read_32(SPM_SLEEP_WAKEUP_MISC); wakesta->timer_out = mmio_read_32(SPM_PCM_TIMER_OUT); wakesta->r13 = mmio_read_32(SPM_PCM_REG13_DATA); wakesta->idle_sta = mmio_read_32(SPM_SLEEP_SUBSYS_IDLE_STA); wakesta->debug_flag = mmio_read_32(SPM_PCM_PASR_DPD_3); wakesta->event_reg = mmio_read_32(SPM_PCM_EVENT_REG_STA); wakesta->isr = mmio_read_32(SPM_SLEEP_ISR_STATUS); } void spm_init_event_vector(const struct pcm_desc *pcmdesc) { /* init event vector register */ mmio_write_32(SPM_PCM_EVENT_VECTOR0, pcmdesc->vec0); mmio_write_32(SPM_PCM_EVENT_VECTOR1, pcmdesc->vec1); mmio_write_32(SPM_PCM_EVENT_VECTOR2, pcmdesc->vec2); mmio_write_32(SPM_PCM_EVENT_VECTOR3, pcmdesc->vec3); mmio_write_32(SPM_PCM_EVENT_VECTOR4, pcmdesc->vec4); mmio_write_32(SPM_PCM_EVENT_VECTOR5, pcmdesc->vec5); mmio_write_32(SPM_PCM_EVENT_VECTOR6, pcmdesc->vec6); mmio_write_32(SPM_PCM_EVENT_VECTOR7, pcmdesc->vec7); /* event vector will be enabled by PCM itself */ } void spm_kick_im_to_fetch(const struct pcm_desc *pcmdesc) { unsigned int ptr = 0, len, con0; ptr = (unsigned int)(unsigned long)(pcmdesc->base); len = pcmdesc->size - 1; if (mmio_read_32(SPM_PCM_IM_PTR) != ptr || mmio_read_32(SPM_PCM_IM_LEN) != len || pcmdesc->sess > 2) { mmio_write_32(SPM_PCM_IM_PTR, ptr); mmio_write_32(SPM_PCM_IM_LEN, len); } else { mmio_setbits_32(SPM_PCM_CON1, CON1_CFG_KEY | CON1_IM_SLAVE); } /* kick IM to fetch (only toggle IM_KICK) */ con0 = mmio_read_32(SPM_PCM_CON0) & ~(CON0_IM_KICK | CON0_PCM_KICK); mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY | CON0_IM_KICK); mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY); /* kick IM to fetch (only toggle PCM_KICK) */ con0 = mmio_read_32(SPM_PCM_CON0) & ~(CON0_IM_KICK | CON0_PCM_KICK); mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY | CON0_PCM_KICK); mmio_write_32(SPM_PCM_CON0, con0 | CON0_CFG_KEY); } void spm_set_sysclk_settle(void) { mmio_write_32(SPM_CLK_SETTLE, SPM_SYSCLK_SETTLE); INFO("settle = %u\n", mmio_read_32(SPM_CLK_SETTLE)); } void spm_kick_pcm_to_run(struct pwr_ctrl *pwrctrl) { unsigned int con1; con1 = mmio_read_32(SPM_PCM_CON1) & ~(CON1_PCM_WDT_WAKE_MODE | CON1_PCM_WDT_EN); mmio_write_32(SPM_PCM_CON1, CON1_CFG_KEY | con1); if (mmio_read_32(SPM_PCM_TIMER_VAL) > PCM_TIMER_MAX) mmio_write_32(SPM_PCM_TIMER_VAL, PCM_TIMER_MAX); mmio_write_32(SPM_PCM_WDT_TIMER_VAL, mmio_read_32(SPM_PCM_TIMER_VAL) + PCM_WDT_TIMEOUT); mmio_write_32(SPM_PCM_CON1, con1 | CON1_CFG_KEY | CON1_PCM_WDT_EN); mmio_write_32(SPM_PCM_PASR_DPD_0, 0); mmio_write_32(SPM_PCM_MAS_PAUSE_MASK, 0xffffffff); mmio_write_32(SPM_PCM_REG_DATA_INI, 0); mmio_clrbits_32(SPM_CLK_CON, CC_DISABLE_DORM_PWR); mmio_write_32(SPM_PCM_FLAGS, pwrctrl->pcm_flags); mmio_clrsetbits_32(SPM_CLK_CON, CC_LOCK_INFRA_DCM, (pwrctrl->infra_dcm_lock ? CC_LOCK_INFRA_DCM : 0)); mmio_write_32(SPM_PCM_PWR_IO_EN, (pwrctrl->r0_ctrl_en ? PCM_PWRIO_EN_R0 : 0) | (pwrctrl->r7_ctrl_en ? PCM_PWRIO_EN_R7 : 0)); } void spm_clean_after_wakeup(void) { mmio_clrsetbits_32(SPM_PCM_CON1, CON1_PCM_WDT_EN, CON1_CFG_KEY); mmio_write_32(SPM_PCM_PWR_IO_EN, 0); mmio_write_32(SPM_SLEEP_CPU_WAKEUP_EVENT, 0); mmio_clrsetbits_32(SPM_PCM_CON1, CON1_PCM_TIMER_EN, CON1_CFG_KEY); mmio_write_32(SPM_SLEEP_WAKEUP_EVENT_MASK, ~0); mmio_write_32(SPM_SLEEP_ISR_MASK, 0xFF0C); mmio_write_32(SPM_SLEEP_ISR_STATUS, 0xC); mmio_write_32(SPM_PCM_SW_INT_CLEAR, 0xFF); } enum wake_reason_t spm_output_wake_reason(struct wake_status *wakesta) { enum wake_reason_t wr; int i; wr = WR_UNKNOWN; if (wakesta->assert_pc != 0) { ERROR("PCM ASSERT AT %u, r12=0x%x, r13=0x%x, debug_flag=0x%x\n", wakesta->assert_pc, wakesta->r12, wakesta->r13, wakesta->debug_flag); return WR_PCM_ASSERT; } if (wakesta->r12 & WAKE_SRC_SPM_MERGE) { if (wakesta->wake_misc & WAKE_MISC_PCM_TIMER) wr = WR_PCM_TIMER; if (wakesta->wake_misc & WAKE_MISC_CPU_WAKE) wr = WR_WAKE_SRC; } for (i = 1; i < 32; i++) { if (wakesta->r12 & (1U << i)) wr = WR_WAKE_SRC; } if ((wakesta->event_reg & 0x100000) == 0) { INFO("pcm sleep abort!\n"); wr = WR_PCM_ABORT; } INFO("timer_out = %u, r12 = 0x%x, r13 = 0x%x, debug_flag = 0x%x\n", wakesta->timer_out, wakesta->r12, wakesta->r13, wakesta->debug_flag); INFO("raw_sta = 0x%x, idle_sta = 0x%x, event_reg = 0x%x, isr = 0x%x\n", wakesta->raw_sta, wakesta->idle_sta, wakesta->event_reg, wakesta->isr); return wr; } void spm_boot_init(void) { /* set spm transaction to secure mode */ mmio_write_32(DEVAPC0_APC_CON, 0x0); mmio_write_32(DEVAPC0_MAS_SEC_0, 0x200); /* Only CPU0 is online during boot, initialize cpu online reserve bit */ mmio_write_32(SPM_PCM_RESERVE, 0xFE); mmio_clrbits_32(AP_PLL_CON3, 0xFFFFF); mmio_clrbits_32(AP_PLL_CON4, 0xF); spm_lock_init(); spm_register_init(); }