//===-- xray_interface.cpp --------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of XRay, a dynamic runtime instrumentation system. // // Implementation of the API functions. // //===----------------------------------------------------------------------===// #include "xray_interface_internal.h" #include #include #include #include #include #include #if SANITIZER_FUCHSIA #include #include #include #include #endif #include "sanitizer_common/sanitizer_addrhashmap.h" #include "sanitizer_common/sanitizer_common.h" #include "xray_defs.h" #include "xray_flags.h" extern __sanitizer::SpinMutex XRayInstrMapMutex; extern __sanitizer::atomic_uint8_t XRayInitialized; extern __xray::XRaySledMap XRayInstrMap; namespace __xray { #if defined(__x86_64__) static const int16_t cSledLength = 12; #elif defined(__aarch64__) static const int16_t cSledLength = 32; #elif defined(__arm__) static const int16_t cSledLength = 28; #elif SANITIZER_MIPS32 static const int16_t cSledLength = 48; #elif SANITIZER_MIPS64 static const int16_t cSledLength = 64; #elif defined(__powerpc64__) static const int16_t cSledLength = 8; #else #error "Unsupported CPU Architecture" #endif /* CPU architecture */ // This is the function to call when we encounter the entry or exit sleds. atomic_uintptr_t XRayPatchedFunction{0}; // This is the function to call from the arg1-enabled sleds/trampolines. atomic_uintptr_t XRayArgLogger{0}; // This is the function to call when we encounter a custom event log call. atomic_uintptr_t XRayPatchedCustomEvent{0}; // This is the function to call when we encounter a typed event log call. atomic_uintptr_t XRayPatchedTypedEvent{0}; // This is the global status to determine whether we are currently // patching/unpatching. atomic_uint8_t XRayPatching{0}; struct TypeDescription { uint32_t type_id; std::size_t description_string_length; }; using TypeDescriptorMapType = AddrHashMap; // An address map from immutable descriptors to type ids. TypeDescriptorMapType TypeDescriptorAddressMap{}; atomic_uint32_t TypeEventDescriptorCounter{0}; // MProtectHelper is an RAII wrapper for calls to mprotect(...) that will // undo any successful mprotect(...) changes. This is used to make a page // writeable and executable, and upon destruction if it was successful in // doing so returns the page into a read-only and executable page. // // This is only used specifically for runtime-patching of the XRay // instrumentation points. This assumes that the executable pages are // originally read-and-execute only. class MProtectHelper { void *PageAlignedAddr; std::size_t MProtectLen; bool MustCleanup; public: explicit MProtectHelper(void *PageAlignedAddr, std::size_t MProtectLen, std::size_t PageSize) XRAY_NEVER_INSTRUMENT : PageAlignedAddr(PageAlignedAddr), MProtectLen(MProtectLen), MustCleanup(false) { #if SANITIZER_FUCHSIA MProtectLen = RoundUpTo(MProtectLen, PageSize); #endif } int MakeWriteable() XRAY_NEVER_INSTRUMENT { #if SANITIZER_FUCHSIA auto R = __sanitizer_change_code_protection( reinterpret_cast(PageAlignedAddr), MProtectLen, true); if (R != ZX_OK) { Report("XRay: cannot change code protection: %s\n", _zx_status_get_string(R)); return -1; } MustCleanup = true; return 0; #else auto R = mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_WRITE | PROT_EXEC); if (R != -1) MustCleanup = true; return R; #endif } ~MProtectHelper() XRAY_NEVER_INSTRUMENT { if (MustCleanup) { #if SANITIZER_FUCHSIA auto R = __sanitizer_change_code_protection( reinterpret_cast(PageAlignedAddr), MProtectLen, false); if (R != ZX_OK) { Report("XRay: cannot change code protection: %s\n", _zx_status_get_string(R)); } #else mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC); #endif } } }; namespace { bool patchSled(const XRaySledEntry &Sled, bool Enable, int32_t FuncId) XRAY_NEVER_INSTRUMENT { bool Success = false; switch (Sled.Kind) { case XRayEntryType::ENTRY: Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry); break; case XRayEntryType::EXIT: Success = patchFunctionExit(Enable, FuncId, Sled); break; case XRayEntryType::TAIL: Success = patchFunctionTailExit(Enable, FuncId, Sled); break; case XRayEntryType::LOG_ARGS_ENTRY: Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry); break; case XRayEntryType::CUSTOM_EVENT: Success = patchCustomEvent(Enable, FuncId, Sled); break; case XRayEntryType::TYPED_EVENT: Success = patchTypedEvent(Enable, FuncId, Sled); break; default: Report("Unsupported sled kind '%d' @%04x\n", Sled.Address, int(Sled.Kind)); return false; } return Success; } XRayPatchingStatus patchFunction(int32_t FuncId, bool Enable) XRAY_NEVER_INSTRUMENT { if (!atomic_load(&XRayInitialized, memory_order_acquire)) return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized. uint8_t NotPatching = false; if (!atomic_compare_exchange_strong( &XRayPatching, &NotPatching, true, memory_order_acq_rel)) return XRayPatchingStatus::ONGOING; // Already patching. // Next, we look for the function index. XRaySledMap InstrMap; { SpinMutexLock Guard(&XRayInstrMapMutex); InstrMap = XRayInstrMap; } // If we don't have an index, we can't patch individual functions. if (InstrMap.Functions == 0) return XRayPatchingStatus::NOT_INITIALIZED; // FuncId must be a positive number, less than the number of functions // instrumented. if (FuncId <= 0 || static_cast(FuncId) > InstrMap.Functions) { Report("Invalid function id provided: %d\n", FuncId); return XRayPatchingStatus::FAILED; } // Now we patch ths sleds for this specific function. auto SledRange = InstrMap.SledsIndex[FuncId - 1]; auto *f = SledRange.Begin; auto *e = SledRange.End; bool SucceedOnce = false; while (f != e) SucceedOnce |= patchSled(*f++, Enable, FuncId); atomic_store(&XRayPatching, false, memory_order_release); if (!SucceedOnce) { Report("Failed patching any sled for function '%d'.", FuncId); return XRayPatchingStatus::FAILED; } return XRayPatchingStatus::SUCCESS; } // controlPatching implements the common internals of the patching/unpatching // implementation. |Enable| defines whether we're enabling or disabling the // runtime XRay instrumentation. XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT { if (!atomic_load(&XRayInitialized, memory_order_acquire)) return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized. uint8_t NotPatching = false; if (!atomic_compare_exchange_strong( &XRayPatching, &NotPatching, true, memory_order_acq_rel)) return XRayPatchingStatus::ONGOING; // Already patching. uint8_t PatchingSuccess = false; auto XRayPatchingStatusResetter = at_scope_exit([&PatchingSuccess] { if (!PatchingSuccess) atomic_store(&XRayPatching, false, memory_order_release); }); XRaySledMap InstrMap; { SpinMutexLock Guard(&XRayInstrMapMutex); InstrMap = XRayInstrMap; } if (InstrMap.Entries == 0) return XRayPatchingStatus::NOT_INITIALIZED; uint32_t FuncId = 1; uint64_t CurFun = 0; // First we want to find the bounds for which we have instrumentation points, // and try to get as few calls to mprotect(...) as possible. We're assuming // that all the sleds for the instrumentation map are contiguous as a single // set of pages. When we do support dynamic shared object instrumentation, // we'll need to do this for each set of page load offsets per DSO loaded. For // now we're assuming we can mprotect the whole section of text between the // minimum sled address and the maximum sled address (+ the largest sled // size). auto MinSled = InstrMap.Sleds[0]; auto MaxSled = InstrMap.Sleds[InstrMap.Entries - 1]; for (std::size_t I = 0; I < InstrMap.Entries; I++) { const auto &Sled = InstrMap.Sleds[I]; if (Sled.Address < MinSled.Address) MinSled = Sled; if (Sled.Address > MaxSled.Address) MaxSled = Sled; } const size_t PageSize = flags()->xray_page_size_override > 0 ? flags()->xray_page_size_override : GetPageSizeCached(); if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) { Report("System page size is not a power of two: %lld\n", PageSize); return XRayPatchingStatus::FAILED; } void *PageAlignedAddr = reinterpret_cast(MinSled.Address & ~(PageSize - 1)); size_t MProtectLen = (MaxSled.Address - reinterpret_cast(PageAlignedAddr)) + cSledLength; MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize); if (Protector.MakeWriteable() == -1) { Report("Failed mprotect: %d\n", errno); return XRayPatchingStatus::FAILED; } for (std::size_t I = 0; I < InstrMap.Entries; ++I) { auto &Sled = InstrMap.Sleds[I]; auto F = Sled.Function; if (CurFun == 0) CurFun = F; if (F != CurFun) { ++FuncId; CurFun = F; } patchSled(Sled, Enable, FuncId); } atomic_store(&XRayPatching, false, memory_order_release); PatchingSuccess = true; return XRayPatchingStatus::SUCCESS; } XRayPatchingStatus mprotectAndPatchFunction(int32_t FuncId, bool Enable) XRAY_NEVER_INSTRUMENT { XRaySledMap InstrMap; { SpinMutexLock Guard(&XRayInstrMapMutex); InstrMap = XRayInstrMap; } // FuncId must be a positive number, less than the number of functions // instrumented. if (FuncId <= 0 || static_cast(FuncId) > InstrMap.Functions) { Report("Invalid function id provided: %d\n", FuncId); return XRayPatchingStatus::FAILED; } const size_t PageSize = flags()->xray_page_size_override > 0 ? flags()->xray_page_size_override : GetPageSizeCached(); if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) { Report("Provided page size is not a power of two: %lld\n", PageSize); return XRayPatchingStatus::FAILED; } // Here we compute the minumum sled and maximum sled associated with a // particular function ID. auto SledRange = InstrMap.SledsIndex[FuncId - 1]; auto *f = SledRange.Begin; auto *e = SledRange.End; auto MinSled = *f; auto MaxSled = *(SledRange.End - 1); while (f != e) { if (f->Address < MinSled.Address) MinSled = *f; if (f->Address > MaxSled.Address) MaxSled = *f; ++f; } void *PageAlignedAddr = reinterpret_cast(MinSled.Address & ~(PageSize - 1)); size_t MProtectLen = (MaxSled.Address - reinterpret_cast(PageAlignedAddr)) + cSledLength; MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize); if (Protector.MakeWriteable() == -1) { Report("Failed mprotect: %d\n", errno); return XRayPatchingStatus::FAILED; } return patchFunction(FuncId, Enable); } } // namespace } // namespace __xray using namespace __xray; // The following functions are declared `extern "C" {...}` in the header, hence // they're defined in the global namespace. int __xray_set_handler(void (*entry)(int32_t, XRayEntryType)) XRAY_NEVER_INSTRUMENT { if (atomic_load(&XRayInitialized, memory_order_acquire)) { atomic_store(&__xray::XRayPatchedFunction, reinterpret_cast(entry), memory_order_release); return 1; } return 0; } int __xray_set_customevent_handler(void (*entry)(void *, size_t)) XRAY_NEVER_INSTRUMENT { if (atomic_load(&XRayInitialized, memory_order_acquire)) { atomic_store(&__xray::XRayPatchedCustomEvent, reinterpret_cast(entry), memory_order_release); return 1; } return 0; } int __xray_set_typedevent_handler(void (*entry)( uint16_t, const void *, size_t)) XRAY_NEVER_INSTRUMENT { if (atomic_load(&XRayInitialized, memory_order_acquire)) { atomic_store(&__xray::XRayPatchedTypedEvent, reinterpret_cast(entry), memory_order_release); return 1; } return 0; } int __xray_remove_handler() XRAY_NEVER_INSTRUMENT { return __xray_set_handler(nullptr); } int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT { return __xray_set_customevent_handler(nullptr); } int __xray_remove_typedevent_handler() XRAY_NEVER_INSTRUMENT { return __xray_set_typedevent_handler(nullptr); } uint16_t __xray_register_event_type( const char *const event_type) XRAY_NEVER_INSTRUMENT { TypeDescriptorMapType::Handle h(&TypeDescriptorAddressMap, (uptr)event_type); if (h.created()) { h->type_id = atomic_fetch_add( &TypeEventDescriptorCounter, 1, memory_order_acq_rel); h->description_string_length = strnlen(event_type, 1024); } return h->type_id; } XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT { return controlPatching(true); } XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT { return controlPatching(false); } XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT { return mprotectAndPatchFunction(FuncId, true); } XRayPatchingStatus __xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT { return mprotectAndPatchFunction(FuncId, false); } int __xray_set_handler_arg1(void (*entry)(int32_t, XRayEntryType, uint64_t)) { if (!atomic_load(&XRayInitialized, memory_order_acquire)) return 0; // A relaxed write might not be visible even if the current thread gets // scheduled on a different CPU/NUMA node. We need to wait for everyone to // have this handler installed for consistency of collected data across CPUs. atomic_store(&XRayArgLogger, reinterpret_cast(entry), memory_order_release); return 1; } int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); } uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT { SpinMutexLock Guard(&XRayInstrMapMutex); if (FuncId <= 0 || static_cast(FuncId) > XRayInstrMap.Functions) return 0; return XRayInstrMap.SledsIndex[FuncId - 1].Begin->Function // On PPC, function entries are always aligned to 16 bytes. The beginning of a // sled might be a local entry, which is always +8 based on the global entry. // Always return the global entry. #ifdef __PPC__ & ~0xf #endif ; } size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT { SpinMutexLock Guard(&XRayInstrMapMutex); return XRayInstrMap.Functions; }