//===-- sanitizer_common.h --------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between run-time libraries of sanitizers. // // It declares common functions and classes that are used in both runtimes. // Implementation of some functions are provided in sanitizer_common, while // others must be defined by run-time library itself. //===----------------------------------------------------------------------===// #ifndef SANITIZER_COMMON_H #define SANITIZER_COMMON_H #include "sanitizer_flags.h" #include "sanitizer_interface_internal.h" #include "sanitizer_internal_defs.h" #include "sanitizer_libc.h" #include "sanitizer_list.h" #include "sanitizer_mutex.h" #if defined(_MSC_VER) && !defined(__clang__) extern "C" void _ReadWriteBarrier(); #pragma intrinsic(_ReadWriteBarrier) #endif namespace __sanitizer { struct StackTrace; struct AddressInfo; // Constants. const uptr kWordSize = SANITIZER_WORDSIZE / 8; const uptr kWordSizeInBits = 8 * kWordSize; #if defined(__powerpc__) || defined(__powerpc64__) const uptr kCacheLineSize = 128; #else const uptr kCacheLineSize = 64; #endif const uptr kMaxPathLength = 4096; const uptr kMaxThreadStackSize = 1 << 30; // 1Gb static const uptr kErrorMessageBufferSize = 1 << 16; // Denotes fake PC values that come from JIT/JAVA/etc. // For such PC values __tsan_symbolize_external() will be called. const u64 kExternalPCBit = 1ULL << 60; extern const char *SanitizerToolName; // Can be changed by the tool. extern atomic_uint32_t current_verbosity; INLINE void SetVerbosity(int verbosity) { atomic_store(¤t_verbosity, verbosity, memory_order_relaxed); } INLINE int Verbosity() { return atomic_load(¤t_verbosity, memory_order_relaxed); } uptr GetPageSize(); extern uptr PageSizeCached; INLINE uptr GetPageSizeCached() { if (!PageSizeCached) PageSizeCached = GetPageSize(); return PageSizeCached; } uptr GetMmapGranularity(); uptr GetMaxVirtualAddress(); // Threads uptr GetTid(); uptr GetThreadSelf(); void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, uptr *stack_bottom); void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, uptr *tls_addr, uptr *tls_size); // Memory management void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false); INLINE void *MmapOrDieQuietly(uptr size, const char *mem_type) { return MmapOrDie(size, mem_type, /*raw_report*/ true); } void UnmapOrDie(void *addr, uptr size); void *MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr); void *MmapNoReserveOrDie(uptr size, const char *mem_type); void *MmapFixedOrDie(uptr fixed_addr, uptr size); void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr); void *MmapNoAccess(uptr size); // Map aligned chunk of address space; size and alignment are powers of two. void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type); // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an // unaccessible memory. bool MprotectNoAccess(uptr addr, uptr size); bool MprotectReadOnly(uptr addr, uptr size); // Find an available address space. uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding); // Used to check if we can map shadow memory to a fixed location. bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); // Releases memory pages entirely within the [beg, end] address range. Noop if // the provided range does not contain at least one entire page. void ReleaseMemoryPagesToOS(uptr beg, uptr end); void IncreaseTotalMmap(uptr size); void DecreaseTotalMmap(uptr size); uptr GetRSS(); void NoHugePagesInRegion(uptr addr, uptr length); void DontDumpShadowMemory(uptr addr, uptr length); // Check if the built VMA size matches the runtime one. void CheckVMASize(); void RunMallocHooks(const void *ptr, uptr size); void RunFreeHooks(const void *ptr); // InternalScopedBuffer can be used instead of large stack arrays to // keep frame size low. // FIXME: use InternalAlloc instead of MmapOrDie once // InternalAlloc is made libc-free. template class InternalScopedBuffer { public: explicit InternalScopedBuffer(uptr cnt) { cnt_ = cnt; ptr_ = (T *)MmapOrDie(cnt * sizeof(T), "InternalScopedBuffer"); } ~InternalScopedBuffer() { UnmapOrDie(ptr_, cnt_ * sizeof(T)); } T &operator[](uptr i) { return ptr_[i]; } T *data() { return ptr_; } uptr size() { return cnt_ * sizeof(T); } private: T *ptr_; uptr cnt_; // Disallow copies and moves. InternalScopedBuffer(const InternalScopedBuffer &) = delete; InternalScopedBuffer &operator=(const InternalScopedBuffer &) = delete; InternalScopedBuffer(InternalScopedBuffer &&) = delete; InternalScopedBuffer &operator=(InternalScopedBuffer &&) = delete; }; class InternalScopedString : public InternalScopedBuffer { public: explicit InternalScopedString(uptr max_length) : InternalScopedBuffer(max_length), length_(0) { (*this)[0] = '\0'; } uptr length() { return length_; } void clear() { (*this)[0] = '\0'; length_ = 0; } void append(const char *format, ...); private: uptr length_; }; // Simple low-level (mmap-based) allocator for internal use. Doesn't have // constructor, so all instances of LowLevelAllocator should be // linker initialized. class LowLevelAllocator { public: // Requires an external lock. void *Allocate(uptr size); private: char *allocated_end_; char *allocated_current_; }; typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size); // Allows to register tool-specific callbacks for LowLevelAllocator. // Passing NULL removes the callback. void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback); // IO void RawWrite(const char *buffer); bool ColorizeReports(); void RemoveANSIEscapeSequencesFromString(char *buffer); void Printf(const char *format, ...); void Report(const char *format, ...); void SetPrintfAndReportCallback(void (*callback)(const char *)); #define VReport(level, ...) \ do { \ if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \ } while (0) #define VPrintf(level, ...) \ do { \ if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \ } while (0) // Can be used to prevent mixing error reports from different sanitizers. extern StaticSpinMutex CommonSanitizerReportMutex; struct ReportFile { void Write(const char *buffer, uptr length); bool SupportsColors(); void SetReportPath(const char *path); // Don't use fields directly. They are only declared public to allow // aggregate initialization. // Protects fields below. StaticSpinMutex *mu; // Opened file descriptor. Defaults to stderr. It may be equal to // kInvalidFd, in which case new file will be opened when necessary. fd_t fd; // Path prefix of report file, set via __sanitizer_set_report_path. char path_prefix[kMaxPathLength]; // Full path to report, obtained as .PID char full_path[kMaxPathLength]; // PID of the process that opened fd. If a fork() occurs, // the PID of child will be different from fd_pid. uptr fd_pid; private: void ReopenIfNecessary(); }; extern ReportFile report_file; extern uptr stoptheworld_tracer_pid; extern uptr stoptheworld_tracer_ppid; enum FileAccessMode { RdOnly, WrOnly, RdWr }; // Returns kInvalidFd on error. fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *errno_p = nullptr); void CloseFile(fd_t); // Return true on success, false on error. bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read = nullptr, error_t *error_p = nullptr); bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written = nullptr, error_t *error_p = nullptr); bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p = nullptr); // Scoped file handle closer. struct FileCloser { explicit FileCloser(fd_t fd) : fd(fd) {} ~FileCloser() { CloseFile(fd); } fd_t fd; }; bool SupportsColoredOutput(fd_t fd); // Opens the file 'file_name" and reads up to 'max_len' bytes. // The resulting buffer is mmaped and stored in '*buff'. // The size of the mmaped region is stored in '*buff_size'. // The total number of read bytes is stored in '*read_len'. // Returns true if file was successfully opened and read. bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, uptr *read_len, uptr max_len = 1 << 26, error_t *errno_p = nullptr); // Maps given file to virtual memory, and returns pointer to it // (or NULL if mapping fails). Stores the size of mmaped region // in '*buff_size'. void *MapFileToMemory(const char *file_name, uptr *buff_size); void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset); bool IsAccessibleMemoryRange(uptr beg, uptr size); // Error report formatting. const char *StripPathPrefix(const char *filepath, const char *strip_file_prefix); // Strip the directories from the module name. const char *StripModuleName(const char *module); // OS uptr ReadBinaryName(/*out*/char *buf, uptr buf_len); uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len); uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len); const char *GetProcessName(); void UpdateProcessName(); void CacheBinaryName(); void DisableCoreDumperIfNecessary(); void DumpProcessMap(); void PrintModuleMap(); bool FileExists(const char *filename); const char *GetEnv(const char *name); bool SetEnv(const char *name, const char *value); const char *GetPwd(); char *FindPathToBinary(const char *name); bool IsPathSeparator(const char c); bool IsAbsolutePath(const char *path); // Starts a subprocess and returs its pid. // If *_fd parameters are not kInvalidFd their corresponding input/output // streams will be redirect to the file. The files will always be closed // in parent process even in case of an error. // The child process will close all fds after STDERR_FILENO // before passing control to a program. pid_t StartSubprocess(const char *filename, const char *const argv[], fd_t stdin_fd = kInvalidFd, fd_t stdout_fd = kInvalidFd, fd_t stderr_fd = kInvalidFd); // Checks if specified process is still running bool IsProcessRunning(pid_t pid); // Waits for the process to finish and returns its exit code. // Returns -1 in case of an error. int WaitForProcess(pid_t pid); u32 GetUid(); void ReExec(); char **GetArgv(); void PrintCmdline(); bool StackSizeIsUnlimited(); uptr GetStackSizeLimitInBytes(); void SetStackSizeLimitInBytes(uptr limit); bool AddressSpaceIsUnlimited(); void SetAddressSpaceUnlimited(); void AdjustStackSize(void *attr); void PrepareForSandboxing(__sanitizer_sandbox_arguments *args); void CovPrepareForSandboxing(__sanitizer_sandbox_arguments *args); void SetSandboxingCallback(void (*f)()); void CoverageUpdateMapping(); void CovBeforeFork(); void CovAfterFork(int child_pid); void InitializeCoverage(bool enabled, const char *coverage_dir); void ReInitializeCoverage(bool enabled, const char *coverage_dir); void InitTlsSize(); uptr GetTlsSize(); // Other void SleepForSeconds(int seconds); void SleepForMillis(int millis); u64 NanoTime(); int Atexit(void (*function)(void)); void SortArray(uptr *array, uptr size); void SortArray(u32 *array, uptr size); bool TemplateMatch(const char *templ, const char *str); // Exit void NORETURN Abort(); void NORETURN Die(); void NORETURN CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2); void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type, const char *mmap_type, error_t err, bool raw_report = false); // Set the name of the current thread to 'name', return true on succees. // The name may be truncated to a system-dependent limit. bool SanitizerSetThreadName(const char *name); // Get the name of the current thread (no more than max_len bytes), // return true on succees. name should have space for at least max_len+1 bytes. bool SanitizerGetThreadName(char *name, int max_len); // Specific tools may override behavior of "Die" and "CheckFailed" functions // to do tool-specific job. typedef void (*DieCallbackType)(void); // It's possible to add several callbacks that would be run when "Die" is // called. The callbacks will be run in the opposite order. The tools are // strongly recommended to setup all callbacks during initialization, when there // is only a single thread. bool AddDieCallback(DieCallbackType callback); bool RemoveDieCallback(DieCallbackType callback); void SetUserDieCallback(DieCallbackType callback); typedef void (*CheckFailedCallbackType)(const char *, int, const char *, u64, u64); void SetCheckFailedCallback(CheckFailedCallbackType callback); // Callback will be called if soft_rss_limit_mb is given and the limit is // exceeded (exceeded==true) or if rss went down below the limit // (exceeded==false). // The callback should be registered once at the tool init time. void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded)); // Functions related to signal handling. typedef void (*SignalHandlerType)(int, void *, void *); bool IsHandledDeadlySignal(int signum); void InstallDeadlySignalHandlers(SignalHandlerType handler); const char *DescribeSignalOrException(int signo); // Alternative signal stack (POSIX-only). void SetAlternateSignalStack(); void UnsetAlternateSignalStack(); // We don't want a summary too long. const int kMaxSummaryLength = 1024; // Construct a one-line string: // SUMMARY: SanitizerToolName: error_message // and pass it to __sanitizer_report_error_summary. void ReportErrorSummary(const char *error_message); // Same as above, but construct error_message as: // error_type file:line[:column][ function] void ReportErrorSummary(const char *error_type, const AddressInfo &info); // Same as above, but obtains AddressInfo by symbolizing top stack trace frame. void ReportErrorSummary(const char *error_type, const StackTrace *trace); // Math #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__) extern "C" { unsigned char _BitScanForward(unsigned long *index, unsigned long mask); // NOLINT unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); // NOLINT #if defined(_WIN64) unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); // NOLINT unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); // NOLINT #endif } #endif INLINE uptr MostSignificantSetBitIndex(uptr x) { CHECK_NE(x, 0U); unsigned long up; // NOLINT #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) # ifdef _WIN64 up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x); # else up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x); # endif #elif defined(_WIN64) _BitScanReverse64(&up, x); #else _BitScanReverse(&up, x); #endif return up; } INLINE uptr LeastSignificantSetBitIndex(uptr x) { CHECK_NE(x, 0U); unsigned long up; // NOLINT #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) # ifdef _WIN64 up = __builtin_ctzll(x); # else up = __builtin_ctzl(x); # endif #elif defined(_WIN64) _BitScanForward64(&up, x); #else _BitScanForward(&up, x); #endif return up; } INLINE bool IsPowerOfTwo(uptr x) { return (x & (x - 1)) == 0; } INLINE uptr RoundUpToPowerOfTwo(uptr size) { CHECK(size); if (IsPowerOfTwo(size)) return size; uptr up = MostSignificantSetBitIndex(size); CHECK_LT(size, (1ULL << (up + 1))); CHECK_GT(size, (1ULL << up)); return 1ULL << (up + 1); } INLINE uptr RoundUpTo(uptr size, uptr boundary) { RAW_CHECK(IsPowerOfTwo(boundary)); return (size + boundary - 1) & ~(boundary - 1); } INLINE uptr RoundDownTo(uptr x, uptr boundary) { return x & ~(boundary - 1); } INLINE bool IsAligned(uptr a, uptr alignment) { return (a & (alignment - 1)) == 0; } INLINE uptr Log2(uptr x) { CHECK(IsPowerOfTwo(x)); return LeastSignificantSetBitIndex(x); } // Don't use std::min, std::max or std::swap, to minimize dependency // on libstdc++. template T Min(T a, T b) { return a < b ? a : b; } template T Max(T a, T b) { return a > b ? a : b; } template void Swap(T& a, T& b) { T tmp = a; a = b; b = tmp; } // Char handling INLINE bool IsSpace(int c) { return (c == ' ') || (c == '\n') || (c == '\t') || (c == '\f') || (c == '\r') || (c == '\v'); } INLINE bool IsDigit(int c) { return (c >= '0') && (c <= '9'); } INLINE int ToLower(int c) { return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c; } // A low-level vector based on mmap. May incur a significant memory overhead for // small vectors. // WARNING: The current implementation supports only POD types. template class InternalMmapVectorNoCtor { public: void Initialize(uptr initial_capacity) { capacity_ = Max(initial_capacity, (uptr)1); size_ = 0; data_ = (T *)MmapOrDie(capacity_ * sizeof(T), "InternalMmapVectorNoCtor"); } void Destroy() { UnmapOrDie(data_, capacity_ * sizeof(T)); } T &operator[](uptr i) { CHECK_LT(i, size_); return data_[i]; } const T &operator[](uptr i) const { CHECK_LT(i, size_); return data_[i]; } void push_back(const T &element) { CHECK_LE(size_, capacity_); if (size_ == capacity_) { uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1); Resize(new_capacity); } internal_memcpy(&data_[size_++], &element, sizeof(T)); } T &back() { CHECK_GT(size_, 0); return data_[size_ - 1]; } void pop_back() { CHECK_GT(size_, 0); size_--; } uptr size() const { return size_; } const T *data() const { return data_; } T *data() { return data_; } uptr capacity() const { return capacity_; } void resize(uptr new_size) { Resize(new_size); if (new_size > size_) { internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_)); } size_ = new_size; } void clear() { size_ = 0; } bool empty() const { return size() == 0; } const T *begin() const { return data(); } T *begin() { return data(); } const T *end() const { return data() + size(); } T *end() { return data() + size(); } private: void Resize(uptr new_capacity) { CHECK_GT(new_capacity, 0); CHECK_LE(size_, new_capacity); T *new_data = (T *)MmapOrDie(new_capacity * sizeof(T), "InternalMmapVector"); internal_memcpy(new_data, data_, size_ * sizeof(T)); T *old_data = data_; data_ = new_data; UnmapOrDie(old_data, capacity_ * sizeof(T)); capacity_ = new_capacity; } T *data_; uptr capacity_; uptr size_; }; template class InternalMmapVector : public InternalMmapVectorNoCtor { public: explicit InternalMmapVector(uptr initial_capacity) { InternalMmapVectorNoCtor::Initialize(initial_capacity); } ~InternalMmapVector() { InternalMmapVectorNoCtor::Destroy(); } // Disallow evil constructors. InternalMmapVector(const InternalMmapVector&); void operator=(const InternalMmapVector&); }; // HeapSort for arrays and InternalMmapVector. template void InternalSort(Container *v, uptr size, Compare comp) { if (size < 2) return; // Stage 1: insert elements to the heap. for (uptr i = 1; i < size; i++) { uptr j, p; for (j = i; j > 0; j = p) { p = (j - 1) / 2; if (comp((*v)[p], (*v)[j])) Swap((*v)[j], (*v)[p]); else break; } } // Stage 2: swap largest element with the last one, // and sink the new top. for (uptr i = size - 1; i > 0; i--) { Swap((*v)[0], (*v)[i]); uptr j, max_ind; for (j = 0; j < i; j = max_ind) { uptr left = 2 * j + 1; uptr right = 2 * j + 2; max_ind = j; if (left < i && comp((*v)[max_ind], (*v)[left])) max_ind = left; if (right < i && comp((*v)[max_ind], (*v)[right])) max_ind = right; if (max_ind != j) Swap((*v)[j], (*v)[max_ind]); else break; } } } // Works like std::lower_bound: finds the first element that is not less // than the val. template uptr InternalLowerBound(const Container &v, uptr first, uptr last, const Value &val, Compare comp) { while (last > first) { uptr mid = (first + last) / 2; if (comp(v[mid], val)) first = mid + 1; else last = mid; } return first; } enum ModuleArch { kModuleArchUnknown, kModuleArchI386, kModuleArchX86_64, kModuleArchX86_64H, kModuleArchARMV6, kModuleArchARMV7, kModuleArchARMV7S, kModuleArchARMV7K, kModuleArchARM64 }; // When adding a new architecture, don't forget to also update // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cc. inline const char *ModuleArchToString(ModuleArch arch) { switch (arch) { case kModuleArchUnknown: return ""; case kModuleArchI386: return "i386"; case kModuleArchX86_64: return "x86_64"; case kModuleArchX86_64H: return "x86_64h"; case kModuleArchARMV6: return "armv6"; case kModuleArchARMV7: return "armv7"; case kModuleArchARMV7S: return "armv7s"; case kModuleArchARMV7K: return "armv7k"; case kModuleArchARM64: return "arm64"; } CHECK(0 && "Invalid module arch"); return ""; } const uptr kModuleUUIDSize = 16; // Represents a binary loaded into virtual memory (e.g. this can be an // executable or a shared object). class LoadedModule { public: LoadedModule() : full_name_(nullptr), base_address_(0), max_executable_address_(0), arch_(kModuleArchUnknown), instrumented_(false) { internal_memset(uuid_, 0, kModuleUUIDSize); ranges_.clear(); } void set(const char *module_name, uptr base_address); void set(const char *module_name, uptr base_address, ModuleArch arch, u8 uuid[kModuleUUIDSize], bool instrumented); void clear(); void addAddressRange(uptr beg, uptr end, bool executable); bool containsAddress(uptr address) const; const char *full_name() const { return full_name_; } uptr base_address() const { return base_address_; } uptr max_executable_address() const { return max_executable_address_; } ModuleArch arch() const { return arch_; } const u8 *uuid() const { return uuid_; } bool instrumented() const { return instrumented_; } struct AddressRange { AddressRange *next; uptr beg; uptr end; bool executable; AddressRange(uptr beg, uptr end, bool executable) : next(nullptr), beg(beg), end(end), executable(executable) {} }; const IntrusiveList &ranges() const { return ranges_; } private: char *full_name_; // Owned. uptr base_address_; uptr max_executable_address_; ModuleArch arch_; u8 uuid_[kModuleUUIDSize]; bool instrumented_; IntrusiveList ranges_; }; // List of LoadedModules. OS-dependent implementation is responsible for // filling this information. class ListOfModules { public: ListOfModules() : modules_(kInitialCapacity) {} ~ListOfModules() { clear(); } void init(); const LoadedModule *begin() const { return modules_.begin(); } LoadedModule *begin() { return modules_.begin(); } const LoadedModule *end() const { return modules_.end(); } LoadedModule *end() { return modules_.end(); } uptr size() const { return modules_.size(); } const LoadedModule &operator[](uptr i) const { CHECK_LT(i, modules_.size()); return modules_[i]; } private: void clear() { for (auto &module : modules_) module.clear(); modules_.clear(); } InternalMmapVector modules_; // We rarely have more than 16K loaded modules. static const uptr kInitialCapacity = 1 << 14; }; // Callback type for iterating over a set of memory ranges. typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg); enum AndroidApiLevel { ANDROID_NOT_ANDROID = 0, ANDROID_KITKAT = 19, ANDROID_LOLLIPOP_MR1 = 22, ANDROID_POST_LOLLIPOP = 23 }; void WriteToSyslog(const char *buffer); #if SANITIZER_MAC void LogFullErrorReport(const char *buffer); #else INLINE void LogFullErrorReport(const char *buffer) {} #endif #if SANITIZER_LINUX || SANITIZER_MAC void WriteOneLineToSyslog(const char *s); void LogMessageOnPrintf(const char *str); #else INLINE void WriteOneLineToSyslog(const char *s) {} INLINE void LogMessageOnPrintf(const char *str) {} #endif #if SANITIZER_LINUX // Initialize Android logging. Any writes before this are silently lost. void AndroidLogInit(); #else INLINE void AndroidLogInit() {} #endif #if SANITIZER_ANDROID void SanitizerInitializeUnwinder(); AndroidApiLevel AndroidGetApiLevel(); #else INLINE void AndroidLogWrite(const char *buffer_unused) {} INLINE void SanitizerInitializeUnwinder() {} INLINE AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; } #endif INLINE uptr GetPthreadDestructorIterations() { #if SANITIZER_ANDROID return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4; #elif SANITIZER_POSIX return 4; #else // Unused on Windows. return 0; #endif } void *internal_start_thread(void(*func)(void*), void *arg); void internal_join_thread(void *th); void MaybeStartBackgroudThread(); // Make the compiler think that something is going on there. // Use this inside a loop that looks like memset/memcpy/etc to prevent the // compiler from recognising it and turning it into an actual call to // memset/memcpy/etc. static inline void SanitizerBreakOptimization(void *arg) { #if defined(_MSC_VER) && !defined(__clang__) _ReadWriteBarrier(); #else __asm__ __volatile__("" : : "r" (arg) : "memory"); #endif } struct SignalContext { void *context; uptr addr; uptr pc; uptr sp; uptr bp; bool is_memory_access; enum WriteFlag { UNKNOWN, READ, WRITE } write_flag; SignalContext(void *context, uptr addr, uptr pc, uptr sp, uptr bp, bool is_memory_access, WriteFlag write_flag) : context(context), addr(addr), pc(pc), sp(sp), bp(bp), is_memory_access(is_memory_access), write_flag(write_flag) {} static void DumpAllRegisters(void *context); // Creates signal context in a platform-specific manner. static SignalContext Create(void *siginfo, void *context); // Returns true if the "context" indicates a memory write. static WriteFlag GetWriteFlag(void *context); }; void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp); void MaybeReexec(); template class RunOnDestruction { public: explicit RunOnDestruction(Fn fn) : fn_(fn) {} ~RunOnDestruction() { fn_(); } private: Fn fn_; }; // A simple scope guard. Usage: // auto cleanup = at_scope_exit([]{ do_cleanup; }); template RunOnDestruction at_scope_exit(Fn fn) { return RunOnDestruction(fn); } // Linux on 64-bit s390 had a nasty bug that crashes the whole machine // if a process uses virtual memory over 4TB (as many sanitizers like // to do). This function will abort the process if running on a kernel // that looks vulnerable. #if SANITIZER_LINUX && SANITIZER_S390_64 void AvoidCVE_2016_2143(); #else INLINE void AvoidCVE_2016_2143() {} #endif struct StackDepotStats { uptr n_uniq_ids; uptr allocated; }; // The default value for allocator_release_to_os_interval_ms common flag to // indicate that sanitizer allocator should not attempt to release memory to OS. const s32 kReleaseToOSIntervalNever = -1; } // namespace __sanitizer inline void *operator new(__sanitizer::operator_new_size_type size, __sanitizer::LowLevelAllocator &alloc) { return alloc.Allocate(size); } #endif // SANITIZER_COMMON_H