// RUN: %clang_cc1 -std=c++11 -verify %s typedef int (*fp)(int); int surrogate(int); struct Incomplete; // expected-note{{forward declaration of 'Incomplete'}} \ // expected-note {{forward declaration of 'Incomplete'}} struct X { X() = default; // expected-note{{candidate constructor not viable: requires 0 arguments, but 1 was provided}} X(const X&) = default; // expected-note{{candidate constructor not viable: no known conversion from 'bool' to 'const X' for 1st argument}} X(bool b) __attribute__((enable_if(b, "chosen when 'b' is true"))); // expected-note{{candidate disabled: chosen when 'b' is true}} void f(int n) __attribute__((enable_if(n == 0, "chosen when 'n' is zero"))); void f(int n) __attribute__((enable_if(n == 1, "chosen when 'n' is one"))); // expected-note{{member declaration nearly matches}} expected-note 2{{candidate disabled: chosen when 'n' is one}} void g(int n) __attribute__((enable_if(n == 0, "chosen when 'n' is zero"))); // expected-note{{candidate disabled: chosen when 'n' is zero}} void h(int n, int m = 0) __attribute__((enable_if(m == 0, "chosen when 'm' is zero"))); // expected-note{{candidate disabled: chosen when 'm' is zero}} static void s(int n) __attribute__((enable_if(n == 0, "chosen when 'n' is zero"))); // expected-note2{{candidate disabled: chosen when 'n' is zero}} void conflict(int n) __attribute__((enable_if(n+n == 10, "chosen when 'n' is five"))); // expected-note{{candidate function}} void conflict(int n) __attribute__((enable_if(n*2 == 10, "chosen when 'n' is five"))); // expected-note{{candidate function}} void hidden_by_argument_conversion(Incomplete n, int m = 0) __attribute__((enable_if(m == 10, "chosen when 'm' is ten"))); Incomplete hidden_by_incomplete_return_value(int n = 0) __attribute__((enable_if(n == 10, "chosen when 'n' is ten"))); // expected-note{{'hidden_by_incomplete_return_value' declared here}} operator long() __attribute__((enable_if(true, "chosen on your platform"))); operator int() __attribute__((enable_if(false, "chosen on other platform"))); operator fp() __attribute__((enable_if(false, "never enabled"))) { return surrogate; } // expected-note{{conversion candidate of type 'int (*)(int)'}} // FIXME: the message is not displayed }; void X::f(int n) __attribute__((enable_if(n == 0, "chosen when 'n' is zero"))) // expected-note{{member declaration nearly matches}} expected-note 2{{candidate disabled: chosen when 'n' is zero}} { } void X::f(int n) __attribute__((enable_if(n == 2, "chosen when 'n' is two"))) // expected-error{{out-of-line definition of 'f' does not match any declaration in 'X'}} { } X x1(true); X x2(false); // expected-error{{no matching constructor for initialization of 'X'}} __attribute__((deprecated)) constexpr int old() { return 0; } // expected-note2{{'old' has been explicitly marked deprecated here}} void deprec1(int i) __attribute__((enable_if(old() == 0, "chosen when old() is zero"))); // expected-warning{{'old' is deprecated}} void deprec2(int i) __attribute__((enable_if(old() == 0, "chosen when old() is zero"))); // expected-warning{{'old' is deprecated}} void overloaded(int); void overloaded(long); struct Int { constexpr Int(int i) : i(i) { } constexpr operator int() const { return i; } int i; }; void default_argument(int n, int m = 0) __attribute__((enable_if(m == 0, "chosen when 'm' is zero"))); // expected-note{{candidate disabled: chosen when 'm' is zero}} void default_argument_promotion(int n, int m = Int(0)) __attribute__((enable_if(m == 0, "chosen when 'm' is zero"))); // expected-note{{candidate disabled: chosen when 'm' is zero}} struct Nothing { }; template void typedep(T t) __attribute__((enable_if(t, ""))); // expected-note{{candidate disabled:}} expected-error{{value of type 'Nothing' is not contextually convertible to 'bool'}} template void valuedep() __attribute__((enable_if(N == 1, ""))); // FIXME: we skip potential constant expression evaluation on value dependent // enable-if expressions int not_constexpr(); template void valuedep() __attribute__((enable_if(N == not_constexpr(), ""))); template void instantiationdep() __attribute__((enable_if(sizeof(sizeof(T)) != 0, ""))); void test() { X x; x.f(0); x.f(1); x.f(2); // expected-error{{no matching member function for call to 'f'}} x.f(3); // expected-error{{no matching member function for call to 'f'}} x.g(0); x.g(1); // expected-error{{no matching member function for call to 'g'}} x.h(0); x.h(1, 2); // expected-error{{no matching member function for call to 'h'}} x.s(0); x.s(1); // expected-error{{no matching member function for call to 's'}} X::s(0); X::s(1); // expected-error{{no matching member function for call to 's'}} x.conflict(5); // expected-error{{call to member function 'conflict' is ambiguous}} x.hidden_by_argument_conversion(10); // expected-error{{argument type 'Incomplete' is incomplete}} x.hidden_by_incomplete_return_value(10); // expected-error{{calling 'hidden_by_incomplete_return_value' with incomplete return type 'Incomplete'}} deprec2(0); overloaded(x); default_argument(0); default_argument(1, 2); // expected-error{{no matching function for call to 'default_argument'}} default_argument_promotion(0); default_argument_promotion(1, 2); // expected-error{{no matching function for call to 'default_argument_promotion'}} int i = x(1); // expected-error{{no matching function for call to object of type 'X'}} Nothing n; typedep(0); // expected-error{{no matching function for call to 'typedep'}} typedep(1); typedep(n); // expected-note{{in instantiation of function template specialization 'typedep' requested here}} } template class C { void f() __attribute__((enable_if(T::expr == 0, ""))) {} void g() { f(); } }; int fn3(bool b) __attribute__((enable_if(b, ""))); // FIXME: This test should net 0 error messages. template void test3() { fn3(sizeof(T) == 1); // expected-error{{no matching function for call to 'fn3'}} expected-note@-2{{candidate disabled}} } template struct Y { T h(int n, int m = 0) __attribute__((enable_if(m == 0, "chosen when 'm' is zero"))); // expected-note{{candidate disabled: chosen when 'm' is zero}} }; void test4() { Y y; int t0 = y.h(0); int t1 = y.h(1, 2); // expected-error{{no matching member function for call to 'h'}} } // FIXME: issue an error (without instantiation) because ::h(T()) is not // convertible to bool, because return types aren't overloadable. void h(int); template void outer() { void local_function() __attribute__((enable_if(::h(T()), ""))); local_function(); // expected-error{{no matching function for call to 'local_function'}} expected-note@-1{{candidate disabled}} }; namespace PR20988 { struct Integer { Integer(int); }; int fn1(const Integer &) __attribute__((enable_if(true, ""))); template void test1() { int &expr = T::expr(); fn1(expr); } int fn2(const Integer &) __attribute__((enable_if(false, ""))); // expected-note{{candidate disabled}} template void test2() { int &expr = T::expr(); fn2(expr); // expected-error{{no matching function for call to 'fn2'}} } int fn3(bool b) __attribute__((enable_if(b, ""))); // FIXME: This test should net 0 error messages. template void test3() { fn3(sizeof(T) == 1); // expected-error{{no matching function for call to 'fn3'}} expected-note@-2{{candidate disabled}} } } namespace FnPtrs { int ovlFoo(int m) __attribute__((enable_if(m > 0, ""))); int ovlFoo(int m); void test() { // Assignment gives us a different code path than declarations, and `&foo` // gives us a different code path than `foo` int (*p)(int) = ovlFoo; int (*p2)(int) = &ovlFoo; int (*a)(int); a = ovlFoo; a = &ovlFoo; } int ovlBar(int) __attribute__((enable_if(true, ""))); int ovlBar(int m) __attribute__((enable_if(false, ""))); void test2() { int (*p)(int) = ovlBar; int (*p2)(int) = &ovlBar; int (*a)(int); a = ovlBar; a = &ovlBar; } int ovlConflict(int m) __attribute__((enable_if(true, ""))); int ovlConflict(int m) __attribute__((enable_if(1, ""))); void test3() { int (*p)(int) = ovlConflict; // expected-error{{address of overloaded function 'ovlConflict' is ambiguous}} expected-note@191{{candidate function}} expected-note@192{{candidate function}} int (*p2)(int) = &ovlConflict; // expected-error{{address of overloaded function 'ovlConflict' is ambiguous}} expected-note@191{{candidate function}} expected-note@192{{candidate function}} int (*a)(int); a = ovlConflict; // expected-error{{assigning to 'int (*)(int)' from incompatible type ''}} expected-note@191{{candidate function}} expected-note@192{{candidate function}} a = &ovlConflict; // expected-error{{assigning to 'int (*)(int)' from incompatible type ''}} expected-note@191{{candidate function}} expected-note@192{{candidate function}} } template T templated(T m) __attribute__((enable_if(true, ""))) { return T(); } template T templated(T m) __attribute__((enable_if(false, ""))) { return T(); } void test4() { int (*p)(int) = templated; int (*p2)(int) = &templated; int (*a)(int); a = templated; a = &templated; } template T templatedBar(T m) __attribute__((enable_if(m > 0, ""))) { return T(); } void test5() { int (*p)(int) = templatedBar; // expected-error{{address of overloaded function 'templatedBar' does not match required type 'int (int)'}} expected-note@214{{candidate function made ineligible by enable_if}} int (*p2)(int) = &templatedBar; // expected-error{{address of overloaded function 'templatedBar' does not match required type 'int (int)'}} expected-note@214{{candidate function made ineligible by enable_if}} int (*a)(int); a = templatedBar; // expected-error{{assigning to 'int (*)(int)' from incompatible type ''}} expected-note@214{{candidate function made ineligible by enable_if}} a = &templatedBar; // expected-error{{assigning to 'int (*)(int)' from incompatible type ''}} expected-note@214{{candidate function made ineligible by enable_if}} } template T templatedConflict(T m) __attribute__((enable_if(false, ""))) { return T(); } template T templatedConflict(T m) __attribute__((enable_if(true, ""))) { return T(); } template T templatedConflict(T m) __attribute__((enable_if(1, ""))) { return T(); } void test6() { int (*p)(int) = templatedConflict; // expected-error{{address of overloaded function 'templatedConflict' is ambiguous}} expected-note@224{{candidate function made ineligible by enable_if}} expected-note@226{{candidate function}} expected-note@228{{candidate function}} int (*p0)(int) = &templatedConflict; // expected-error{{address of overloaded function 'templatedConflict' is ambiguous}} expected-note@224{{candidate function made ineligible by enable_if}} expected-note@226{{candidate function}} expected-note@228{{candidate function}} int (*a)(int); a = templatedConflict; // expected-error{{assigning to 'int (*)(int)' from incompatible type ''}} expected-note@226{{candidate function}} expected-note@228{{candidate function}} a = &templatedConflict; // expected-error{{assigning to 'int (*)(int)' from incompatible type ''}} expected-note@226{{candidate function}} expected-note@228{{candidate function}} } int ovlNoCandidate(int m) __attribute__((enable_if(false, ""))); int ovlNoCandidate(int m) __attribute__((enable_if(0, ""))); void test7() { int (*p)(int) = ovlNoCandidate; // expected-error{{address of overloaded function 'ovlNoCandidate' does not match required type}} expected-note@237{{made ineligible by enable_if}} expected-note@238{{made ineligible by enable_if}} int (*p2)(int) = &ovlNoCandidate; // expected-error{{address of overloaded function 'ovlNoCandidate' does not match required type}} expected-note@237{{made ineligible by enable_if}} expected-note@238{{made ineligible by enable_if}} int (*a)(int); a = ovlNoCandidate; // expected-error{{assigning to 'int (*)(int)' from incompatible type ''}} expected-note@237{{made ineligible by enable_if}} expected-note@238{{made ineligible by enable_if}} a = &ovlNoCandidate; // expected-error{{assigning to 'int (*)(int)' from incompatible type ''}} expected-note@237{{made ineligible by enable_if}} expected-note@238{{made ineligible by enable_if}} } int noOvlNoCandidate(int m) __attribute__((enable_if(false, ""))); void test8() { int (*p)(int) = noOvlNoCandidate; // expected-error{{cannot take address of function 'noOvlNoCandidate' because it has one or more non-tautological enable_if conditions}} int (*p2)(int) = &noOvlNoCandidate; // expected-error{{cannot take address of function 'noOvlNoCandidate' because it has one or more non-tautological enable_if conditions}} int (*a)(int); a = noOvlNoCandidate; // expected-error{{cannot take address of function 'noOvlNoCandidate' because it has one or more non-tautological enable_if conditions}} a = &noOvlNoCandidate; // expected-error{{cannot take address of function 'noOvlNoCandidate' because it has one or more non-tautological enable_if conditions}} } } namespace casting { using VoidFnTy = void (*)(); void foo(void *c) __attribute__((enable_if(0, ""))); void foo(int *c) __attribute__((enable_if(c, ""))); void foo(char *c) __attribute__((enable_if(1, ""))); void testIt() { auto A = reinterpret_cast(foo); auto AAmp = reinterpret_cast(&foo); using VoidFooTy = void (*)(void *); auto B = reinterpret_cast(foo); auto BAmp = reinterpret_cast(&foo); using IntFooTy = void (*)(int *); auto C = reinterpret_cast(foo); auto CAmp = reinterpret_cast(&foo); using CharFooTy = void (*)(void *); auto D = reinterpret_cast(foo); auto DAmp = reinterpret_cast(&foo); } void testItCStyle() { auto A = (VoidFnTy)foo; auto AAmp = (VoidFnTy)&foo; using VoidFooTy = void (*)(void *); auto B = (VoidFooTy)foo; auto BAmp = (VoidFooTy)&foo; using IntFooTy = void (*)(int *); auto C = (IntFooTy)foo; auto CAmp = (IntFooTy)&foo; using CharFooTy = void (*)(void *); auto D = (CharFooTy)foo; auto DAmp = (CharFooTy)&foo; } } namespace casting_templates { template void foo(T) {} // expected-note 4 {{candidate function}} void foo(int *c) __attribute__((enable_if(c, ""))); //expected-note 4 {{candidate function}} void foo(char *c) __attribute__((enable_if(c, ""))); //expected-note 4 {{candidate function}} void testIt() { using IntFooTy = void (*)(int *); auto A = reinterpret_cast(foo); // expected-error{{reinterpret_cast cannot resolve overloaded function 'foo' to type}} auto ARef = reinterpret_cast(&foo); // expected-error{{reinterpret_cast cannot resolve overloaded function 'foo' to type}} auto AExplicit = reinterpret_cast(foo); using CharFooTy = void (*)(char *); auto B = reinterpret_cast(foo); // expected-error{{reinterpret_cast cannot resolve overloaded function 'foo' to type}} auto BRef = reinterpret_cast(&foo); // expected-error{{reinterpret_cast cannot resolve overloaded function 'foo' to type}} auto BExplicit = reinterpret_cast(foo); } void testItCStyle() { // constexpr is usable here because all of these should become static_casts. using IntFooTy = void (*)(int *); constexpr auto A = (IntFooTy)foo; constexpr auto ARef = (IntFooTy)&foo; constexpr auto AExplicit = (IntFooTy)foo; using CharFooTy = void (*)(char *); constexpr auto B = (CharFooTy)foo; constexpr auto BRef = (CharFooTy)&foo; constexpr auto BExplicit = (CharFooTy)foo; static_assert(A == ARef && ARef == AExplicit, ""); static_assert(B == BRef && BRef == BExplicit, ""); } } namespace multiple_matches { using NoMatchTy = void (*)(); void foo(float *c); //expected-note 4 {{candidate function}} void foo(int *c) __attribute__((enable_if(1, ""))); //expected-note 4 {{candidate function}} void foo(char *c) __attribute__((enable_if(1, ""))); //expected-note 4 {{candidate function}} void testIt() { auto A = reinterpret_cast(foo); // expected-error{{reinterpret_cast cannot resolve overloaded function 'foo' to type}} auto ARef = reinterpret_cast(&foo); // expected-error{{reinterpret_cast cannot resolve overloaded function 'foo' to type}} auto C = (NoMatchTy)foo; // expected-error{{address of overloaded function 'foo' does not match required type 'void ()'}} auto CRef = (NoMatchTy)&foo; // expected-error{{address of overloaded function 'foo' does not match required type 'void ()'}} } } namespace PR27122 { // (slightly reduced) code that motivated the bug... namespace ns { void Function(int num) __attribute__((enable_if(num != 0, ""))); void Function(int num, int a0) __attribute__((enable_if(num != 1, ""))); } // namespace ns using ns::Function; // expected-note 3{{declared here}} void Run() { Functioon(0); // expected-error{{use of undeclared identifier}} expected-error{{too few arguments}} Functioon(0, 1); // expected-error{{use of undeclared identifier}} Functioon(0, 1, 2); // expected-error{{use of undeclared identifier}} } // Extra tests void regularEnableIf(int a) __attribute__((enable_if(a, ""))); // expected-note 3{{declared here}} expected-note 3{{candidate function not viable}} void runRegularEnableIf() { regularEnableIf(0, 2); // expected-error{{no matching function}} regularEnableIf(1, 2); // expected-error{{no matching function}} regularEnableIf(); // expected-error{{no matching function}} // Test without getting overload resolution involved ::PR27122::regularEnableIf(0, 2); // expected-error{{too many arguments}} ::PR27122::regularEnableIf(1, 2); // expected-error{{too many arguments}} ::PR27122::regularEnableIf(); // expected-error{{too few arguments}} } struct Foo { void bar(int i) __attribute__((enable_if(i, ""))); // expected-note 2{{declared here}} }; void runFoo() { Foo f; f.bar(); // expected-error{{too few arguments}} f.bar(1, 2); // expected-error{{too many arguments}} } } // Ideally, we should be able to handle value-dependent expressions sanely. // Sadly, that isn't the case at the moment. namespace dependent { int error(int N) __attribute__((enable_if(N, ""))); // expected-note{{candidate disabled}} int error(int N) __attribute__((enable_if(!N, ""))); // expected-note{{candidate disabled}} template int callUnavailable() { return error(N); // expected-error{{no matching function for call to 'error'}} } constexpr int noError(int N) __attribute__((enable_if(N, ""))) { return -1; } constexpr int noError(int N) __attribute__((enable_if(!N, ""))) { return -1; } constexpr int noError(int N) { return 0; } template constexpr int callNoError() { return noError(N); } static_assert(callNoError<0>() == 0, ""); static_assert(callNoError<1>() == 0, ""); template constexpr int templated() __attribute__((enable_if(N, ""))) { return 1; } constexpr int A = templated<0>(); // expected-error{{no matching function for call to 'templated'}} expected-note@-4{{candidate disabled}} static_assert(templated<1>() == 1, ""); template constexpr int callTemplated() { return templated(); } constexpr int B = 10 + // the carat for the error should be pointing to the problematic call (on the next line), not here. callTemplated<0>(); // expected-error{{initialized by a constant expression}} expected-error@-3{{no matching function for call to 'templated'}} expected-note{{in instantiation of function template}} expected-note@-10{{candidate disabled}} static_assert(callTemplated<1>() == 1, ""); } namespace variadic { void foo(int a, int b = 0, ...) __attribute__((enable_if(a && b, ""))); // expected-note 6{{disabled}} void testFoo() { foo(1, 1); foo(1, 1, 2); foo(1, 1, 2, 3); foo(1, 0); // expected-error{{no matching}} foo(1, 0, 2); // expected-error{{no matching}} foo(1, 0, 2, 3); // expected-error{{no matching}} int m; foo(1, 1); foo(1, 1, m); foo(1, 1, m, 3); foo(1, 0); // expected-error{{no matching}} foo(1, 0, m); // expected-error{{no matching}} foo(1, 0, m, 3); // expected-error{{no matching}} } } // Tests that we emit errors at the point of the method call, rather than the // beginning of the expression that happens to be a member call. namespace member_loc { struct Foo { void bar() __attribute__((enable_if(0, ""))); }; // expected-note{{disabled}} void testFoo() { Foo() .bar(); // expected-error{{no matching member function}} } } // Prior bug: we wouldn't properly convert conditions to bools when // instantiating templates in some cases. namespace template_instantiation { template struct Foo { void bar(int a) __attribute__((enable_if(a, ""))); // expected-note{{disabled}} }; void runFoo() { Foo().bar(0); // expected-error{{no matching}} Foo().bar(1); } } namespace instantiate_constexpr_in_enable_if { template struct X { static constexpr bool ok() { return true; } void f() __attribute__((enable_if(ok(), ""))); }; void g() { X().f(); } } namespace PR31934 { int foo(int a) __attribute__((enable_if(a, ""))); int runFn(int (&)(int)); void run() { { int (&bar)(int) = foo; // expected-error{{cannot take address of function 'foo'}} int baz = runFn(foo); // expected-error{{cannot take address of function 'foo'}} } { int (&bar)(int) = (foo); // expected-error{{cannot take address of function 'foo'}} int baz = runFn((foo)); // expected-error{{cannot take address of function 'foo'}} } { int (&bar)(int) = static_cast(foo); // expected-error{{cannot take address of function 'foo'}} int baz = runFn(static_cast(foo)); // expected-error{{cannot take address of function 'foo'}} } { int (&bar)(int) = static_cast((foo)); // expected-error{{cannot take address of function 'foo'}} int baz = runFn(static_cast((foo))); // expected-error{{cannot take address of function 'foo'}} } } } namespace TypeOfFn { template struct is_same; template struct is_same { enum { value = 1 }; }; void foo(int a) __attribute__((enable_if(a, ""))); void foo(float a) __attribute__((enable_if(1, ""))); static_assert(is_same<__typeof__(foo)*, decltype(&foo)>::value, ""); } namespace InConstantContext { void foo(const char *s) __attribute__((enable_if(((void)__builtin_constant_p(*s), true), "trap"))) {} void test() { InConstantContext::foo("abc"); } } // namespace InConstantContext namespace StringLiteralDetector { void need_string_literal(const char *p) __attribute__((enable_if(__builtin_constant_p(p), "argument is not a string literal"))); // expected-note 2{{not a string literal}} void test(const char *unknown) { need_string_literal("foo"); need_string_literal(unknown); // expected-error {{no matching function}} constexpr char str[] = "bar"; need_string_literal(str); // expected-error {{no matching function}} } }