// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s // This must obviously come before the definition of std::initializer_list. void missing_initializerlist() { auto l = {1, 2, 3, 4}; // expected-error {{std::initializer_list was not found}} } namespace std { typedef decltype(sizeof(int)) size_t; // libc++'s implementation template class initializer_list { const _E* __begin_; size_t __size_; initializer_list(const _E* __b, size_t __s) : __begin_(__b), __size_(__s) {} public: typedef _E value_type; typedef const _E& reference; typedef const _E& const_reference; typedef size_t size_type; typedef const _E* iterator; typedef const _E* const_iterator; constexpr initializer_list() : __begin_(nullptr), __size_(0) {} constexpr size_t size() const {return __size_;} const _E* begin() const {return __begin_;} const _E* end() const {return __begin_ + __size_;} }; } template struct same_type { static const bool value = false; }; template struct same_type { static const bool value = true; }; struct one { char c[1]; }; struct two { char c[2]; }; struct A { int a, b; }; struct B { B(); B(int, int); }; void simple_list() { std::initializer_list il = { 1, 2, 3 }; std::initializer_list dl = { 1.0, 2.0, 3 }; std::initializer_list al = { {1, 2}, {2, 3}, {3, 4} }; std::initializer_list bl = { {1, 2}, {2, 3}, {} }; } void function_call() { void f(std::initializer_list); f({1, 2, 3}); void g(std::initializer_list); g({ {1, 2}, {2, 3}, {} }); } struct C { C(int); }; struct D { D(); operator int(); operator C(); }; void overloaded_call() { one overloaded(std::initializer_list); two overloaded(std::initializer_list); static_assert(sizeof(overloaded({1, 2, 3})) == sizeof(one), "bad overload"); static_assert(sizeof(overloaded({ {1, 2}, {2, 3}, {} })) == sizeof(two), "bad overload"); void ambiguous(std::initializer_list); // expected-note {{candidate}} void ambiguous(std::initializer_list); // expected-note {{candidate}} ambiguous({ {1, 2}, {2, 3}, {3, 4} }); // expected-error {{ambiguous}} one ov2(std::initializer_list); // expected-note {{candidate}} two ov2(std::initializer_list); // expected-note {{candidate}} // Worst sequence to int is identity, whereas to C it's user-defined. static_assert(sizeof(ov2({1, 2, 3})) == sizeof(one), "bad overload"); // But here, user-defined is worst in both cases. ov2({1, 2, D()}); // expected-error {{ambiguous}} } template T deduce(std::initializer_list); // expected-note {{conflicting types for parameter 'T' ('int' vs. 'double')}} template T deduce_ref(const std::initializer_list&); // expected-note {{conflicting types for parameter 'T' ('int' vs. 'double')}} template struct pair { pair(...); }; template void deduce_pairs(std::initializer_list>); // expected-note@-1 {{deduced type 'pair<[...], typename WithIntType::type>' of element of 1st parameter does not match adjusted type 'pair<[...], float>' of element of argument [with T = WithIntType]}} struct WithIntType { typedef int type; }; template void deduce_after_init_list_in_pack(void (*)(T...), T...); // expected-note {{ vs. <(no value), double>}} void argument_deduction() { static_assert(same_type::value, "bad deduction"); static_assert(same_type::value, "bad deduction"); deduce({1, 2.0}); // expected-error {{no matching function}} static_assert(same_type::value, "bad deduction"); static_assert(same_type::value, "bad deduction"); deduce_ref({1, 2.0}); // expected-error {{no matching function}} pair pi; pair pf; deduce_pairs({pi, pi, pi}); // ok deduce_pairs({pi, pf, pi}); // expected-error {{no matching function}} deduce_after_init_list_in_pack((void(*)(int,int))0, {}, 0); deduce_after_init_list_in_pack((void(*)(int,int))0, {}, 0.0); // expected-error {{no matching function}} } void auto_deduction() { auto l = {1, 2, 3, 4}; auto l2 {1, 2, 3, 4}; // expected-error {{initializer for variable 'l2' with type 'auto' contains multiple expressions}} auto l3 {1}; static_assert(same_type>::value, ""); static_assert(same_type::value, ""); auto bl = {1, 2.0}; // expected-error {{deduced conflicting types ('int' vs 'double') for initializer list element type}} void f1(int), f1(float), f2(int), f3(float); auto fil = {f1, f2}; auto ffl = {f1, f3}; auto fl = {f1, f2, f3}; // expected-error {{deduced conflicting types ('void (*)(int)' vs 'void (*)(float)') for initializer list element type}} for (int i : {1, 2, 3, 4}) {} for (int j : {1.0, 2.0, 3.0f, 4.0}) {} // expected-error {{deduced conflicting types ('double' vs 'float') for initializer list element type}} } void dangle() { new auto{1, 2, 3}; // expected-error {{new expression for type 'auto' contains multiple constructor arguments}} new std::initializer_list{1, 2, 3}; // expected-warning {{at the end of the full-expression}} } struct haslist1 { std::initializer_list il // expected-note {{declared here}} = {1, 2, 3}; // ok, unused std::initializer_list jl{1, 2, 3}; // expected-note {{default member init}} haslist1(); }; haslist1::haslist1() // expected-error {{backing array for 'std::initializer_list' member 'jl' is a temporary object}} : il{1, 2, 3} // expected-error {{backing array for 'std::initializer_list' member 'il' is a temporary object}} {} namespace PR12119 { // Deduction with nested initializer lists. template void f(std::initializer_list); template void g(std::initializer_list>); void foo() { f({0, {1}}); // expected-warning{{braces around scalar initializer}} g({{0, 1}, {2, 3}}); std::initializer_list il = {1, 2}; g({il, {2, 3}}); } } namespace Decay { template void f(std::initializer_list) { T x = 1; // expected-error{{cannot initialize a variable of type 'const char *' with an rvalue of type 'int'}} } void g() { f({"A", "BB", "CCC"}); // expected-note{{in instantiation of function template specialization 'Decay::f' requested here}} auto x = { "A", "BB", "CCC" }; std::initializer_list *il = &x; for( auto s : {"A", "BB", "CCC", "DDD"}) { } } } namespace PR12436 { struct X { template X(std::initializer_list, T); }; X x({}, 17); } namespace rdar11948732 { template struct X {}; struct XCtorInit { XCtorInit(std::initializer_list>); }; void f(X &xi) { XCtorInit xc = { xi, xi }; } } namespace PR14272 { auto x { { 0, 0 } }; // expected-error {{cannot deduce type for variable 'x' with type 'auto' from nested initializer list}} } namespace initlist_of_array { void f(std::initializer_list) {} void f(std::initializer_list) = delete; void h() { f({{1,2},{3,4}}); } } namespace init_list_deduction_failure { void f(); void f(int); // FIXME: It'd be nice to track that 'T' became a non-deduced context due to // overload resolution failure for 'f'. template void g(std::initializer_list); // expected-note@-1 {{candidate template ignored: couldn't infer template argument 'T'}} void h() { g({f}); // expected-error {{no matching function for call to 'g'}} g({f, h}); // ok } } namespace deleted_copy { struct X { X(int i) {} X(const X& x) = delete; // expected-note {{here}} void operator=(const X& x) = delete; }; std::initializer_list x{1}; // expected-error {{invokes deleted constructor}} } namespace RefVersusInitList { struct S {}; void f(const S &) = delete; void f(std::initializer_list); void g(S s) { f({S()}); } } namespace PR18013 { int f(); std::initializer_list x = {f}; // expected-error {{cannot initialize an array element of type 'long (*const)()' with an lvalue of type 'int ()': different return type ('long' vs 'int')}} } namespace DR1070 { struct S { S(std::initializer_list); }; S s[3] = { {1, 2, 3}, {4, 5} }; // ok S *p = new S[3] { {1, 2, 3}, {4, 5} }; // ok } namespace ListInitInstantiate { struct A { A(std::initializer_list); A(std::initializer_list); }; struct B : A { B(int); }; template struct X { X(); A a; }; template X::X() : a{B{0}, B{1}} {} X x; int f(const A&); template void g() { int k = f({0}); } template void g(); } namespace TemporaryInitListSourceRange_PR22367 { struct A { constexpr A() {} A(std::initializer_list); // expected-note {{here}} }; constexpr int f(A) { return 0; } constexpr int k = f( // expected-error {{must be initialized by a constant expression}} // The point of this test is to check that the caret points to // 'std::initializer_list', not to '{0}'. std::initializer_list // expected-note {{constructor}} {0} ); } namespace ParameterPackNestedInitializerLists_PR23904c3 { template void f(std::initializer_list> ...tt); // expected-note 2{{conflicting}} expected-note {{incomplete pack}} void foo() { f({{0}}, {{'\0'}}); // ok, T = f({{0}, {'\0'}}); // expected-error {{no match}} f({{0, '\0'}}); // expected-error {{no match}} f({{0}}, {{{}}}); // expected-error {{no match}} f({{0}}, {{{}, '\0'}}); // ok, T = f({{0}, {{}}}); // ok, T = f({{0, {}}}); // ok, T = } } namespace update_rbrace_loc_crash { // We used to crash-on-invalid on this example when updating the right brace // location. template struct A {}; template std::initializer_list ExplodeImpl(F p1, A) { // expected-error@+1 {{reference to incomplete type 'const update_rbrace_loc_crash::Incomplete' could not bind to an rvalue of type 'void'}} return {p1(I)...}; } template void Explode(F p1) { // expected-note@+1 {{in instantiation of function template specialization}} ExplodeImpl(p1, A()); } class Incomplete; struct ContainsIncomplete { const Incomplete &obstacle; }; void f() { // expected-note@+1 {{in instantiation of function template specialization}} Explode([](int) {}); } } namespace no_conversion_after_auto_list_deduction { // We used to deduce 'auto' == 'std::initializer_list' here, and then // incorrectly accept the declaration of 'x'. struct X { using T = std::initializer_list X::*; operator T(); }; auto X::*x = { X() }; // expected-error {{from initializer list}} struct Y { using T = std::initializer_list(*)(); operator T(); }; auto (*y)() = { Y() }; // expected-error {{from initializer list}} } namespace designated_init { constexpr auto a = {.a = 1, .b = 2}; // expected-error {{cannot deduce}} constexpr auto b = {[0] = 1, [4] = 2}; // expected-error {{cannot deduce}} expected-warning {{C99}} constexpr auto c = {1, [4] = 2}; // expected-error {{cannot deduce}} expected-warning 2{{C99}} expected-note {{here}} constexpr auto d = {1, [0] = 2}; // expected-error {{cannot deduce}} expected-warning 2{{C99}} expected-note {{here}} // If we ever start accepting the above, these assertions should pass. static_assert(c.size() == 5, ""); static_assert(d.size() == 1, ""); }