// RUN: %clang_cc1 -ffreestanding -triple armv8-eabi -target-cpu cortex-a57 -O2 -fno-experimental-new-pass-manager -S -emit-llvm -o - %s | FileCheck %s -check-prefix=ARM -check-prefix=AArch32 -check-prefix=ARM-LEGACY -check-prefix=AArch32-LEGACY // RUN: %clang_cc1 -ffreestanding -triple armv8-eabi -target-cpu cortex-a57 -O2 -fexperimental-new-pass-manager -S -emit-llvm -o - %s | FileCheck %s -check-prefix=ARM -check-prefix=AArch32 -check-prefix=ARM-NEWPM -check-prefix=AArch32-NEWPM // RUN: %clang_cc1 -ffreestanding -triple aarch64-eabi -target-cpu cortex-a57 -target-feature +neon -target-feature +crc -target-feature +crypto -O2 -fno-experimental-new-pass-manager -S -emit-llvm -o - %s | FileCheck %s -check-prefix=ARM -check-prefix=AArch64 -check-prefix=ARM-LEGACY -check-prefix=AArch64-LEGACY // RUN: %clang_cc1 -ffreestanding -triple aarch64-eabi -target-cpu cortex-a57 -target-feature +neon -target-feature +crc -target-feature +crypto -O2 -fexperimental-new-pass-manager -S -emit-llvm -o - %s | FileCheck %s -check-prefix=ARM -check-prefix=AArch64 -check-prefix=ARM-NEWPM -check-prefix=AArch64-NEWPM // RUN: %clang_cc1 -ffreestanding -triple aarch64-eabi -target-cpu cortex-a57 -target-feature +v8.3a -O2 -fexperimental-new-pass-manager -S -emit-llvm -o - %s | FileCheck %s -check-prefix=AArch64-v8_3 // RUN: %clang_cc1 -ffreestanding -triple aarch64-eabi -target-cpu cortex-a57 -target-feature +v8.4a -O2 -fexperimental-new-pass-manager -S -emit-llvm -o - %s | FileCheck %s -check-prefix=AArch64-v8_3 // RUN: %clang_cc1 -ffreestanding -triple aarch64-eabi -target-cpu cortex-a57 -target-feature +v8.5a -O2 -fexperimental-new-pass-manager -S -emit-llvm -o - %s | FileCheck %s -check-prefix=AArch64-v8_3 #include /* 8 SYNCHRONIZATION, BARRIER AND HINT INTRINSICS */ /* 8.3 Memory Barriers */ // ARM-LABEL: test_dmb // AArch32: call void @llvm.arm.dmb(i32 1) // AArch64: call void @llvm.aarch64.dmb(i32 1) void test_dmb(void) { __dmb(1); } // ARM-LABEL: test_dsb // AArch32: call void @llvm.arm.dsb(i32 2) // AArch64: call void @llvm.aarch64.dsb(i32 2) void test_dsb(void) { __dsb(2); } // ARM-LABEL: test_isb // AArch32: call void @llvm.arm.isb(i32 3) // AArch64: call void @llvm.aarch64.isb(i32 3) void test_isb(void) { __isb(3); } /* 8.4 Hints */ // ARM-LABEL: test_yield // AArch32: call void @llvm.arm.hint(i32 1) // AArch64: call void @llvm.aarch64.hint(i32 1) void test_yield(void) { __yield(); } // ARM-LABEL: test_wfe // AArch32: call void @llvm.arm.hint(i32 2) // AArch64: call void @llvm.aarch64.hint(i32 2) void test_wfe(void) { __wfe(); } // ARM-LABEL: test_wfi // AArch32: call void @llvm.arm.hint(i32 3) // AArch64: call void @llvm.aarch64.hint(i32 3) void test_wfi(void) { __wfi(); } // ARM-LABEL: test_sev // AArch32: call void @llvm.arm.hint(i32 4) // AArch64: call void @llvm.aarch64.hint(i32 4) void test_sev(void) { __sev(); } // ARM-LABEL: test_sevl // AArch32: call void @llvm.arm.hint(i32 5) // AArch64: call void @llvm.aarch64.hint(i32 5) void test_sevl(void) { __sevl(); } #if __ARM_32BIT_STATE // AArch32-LABEL: test_dbg // AArch32: call void @llvm.arm.dbg(i32 0) void test_dbg(void) { __dbg(0); } #endif /* 8.5 Swap */ // ARM-LABEL: test_swp // AArch32: call i32 @llvm.arm.ldrex // AArch32: call i32 @llvm.arm.strex // AArch64: call i64 @llvm.aarch64.ldxr // AArch64: call i32 @llvm.aarch64.stxr void test_swp(uint32_t x, volatile void *p) { __swp(x, p); } /* 8.6 Memory prefetch intrinsics */ /* 8.6.1 Data prefetch */ // ARM-LABEL: test_pld // ARM: call void @llvm.prefetch.p0i8(i8* null, i32 0, i32 3, i32 1) void test_pld() { __pld(0); } // ARM-LABEL: test_pldx // AArch32: call void @llvm.prefetch.p0i8(i8* null, i32 1, i32 3, i32 1) // AArch64: call void @llvm.prefetch.p0i8(i8* null, i32 1, i32 1, i32 1) void test_pldx() { __pldx(1, 2, 0, 0); } /* 8.6.2 Instruction prefetch */ // ARM-LABEL: test_pli // ARM: call void @llvm.prefetch.p0i8(i8* null, i32 0, i32 3, i32 0) void test_pli() { __pli(0); } // ARM-LABEL: test_plix // AArch32: call void @llvm.prefetch.p0i8(i8* null, i32 0, i32 3, i32 0) // AArch64: call void @llvm.prefetch.p0i8(i8* null, i32 0, i32 1, i32 0) void test_plix() { __plix(2, 0, 0); } /* 8.7 NOP */ // ARM-LABEL: test_nop // AArch32: call void @llvm.arm.hint(i32 0) // AArch64: call void @llvm.aarch64.hint(i32 0) void test_nop(void) { __nop(); } /* 9 DATA-PROCESSING INTRINSICS */ /* 9.2 Miscellaneous data-processing intrinsics */ // ARM-LABEL: test_ror // ARM-LEGACY: lshr // ARM-LEGACY: sub // ARM-LEGACY: shl // ARM-LEGACY: or // ARM-NEWPM: call i32 @llvm.fshr.i32(i32 %x, i32 %x, i32 %y) uint32_t test_ror(uint32_t x, uint32_t y) { return __ror(x, y); } // ARM-LABEL: test_rorl // ARM-LEGACY: lshr // ARM-LEGACY: sub // ARM-LEGACY: shl // ARM-LEGACY: or // AArch32-NEWPM: call i32 @llvm.fshr.i32(i32 %x, i32 %x, i32 %y) unsigned long test_rorl(unsigned long x, uint32_t y) { return __rorl(x, y); } // ARM-LABEL: test_rorll // ARM: lshr // ARM: sub // ARM: shl // ARM: or uint64_t test_rorll(uint64_t x, uint32_t y) { return __rorll(x, y); } // ARM-LABEL: test_clz // ARM: call i32 @llvm.ctlz.i32(i32 %t, i1 false) uint32_t test_clz(uint32_t t) { return __clz(t); } // ARM-LABEL: test_clzl // AArch32: call i32 @llvm.ctlz.i32(i32 %t, i1 false) // AArch64: call i64 @llvm.ctlz.i64(i64 %t, i1 false) long test_clzl(long t) { return __clzl(t); } // ARM-LABEL: test_clzll // ARM: call i64 @llvm.ctlz.i64(i64 %t, i1 false) uint64_t test_clzll(uint64_t t) { return __clzll(t); } // ARM-LABEL: test_rev // ARM: call i32 @llvm.bswap.i32(i32 %t) uint32_t test_rev(uint32_t t) { return __rev(t); } // ARM-LABEL: test_revl // AArch32: call i32 @llvm.bswap.i32(i32 %t) // AArch64: call i64 @llvm.bswap.i64(i64 %t) long test_revl(long t) { return __revl(t); } // ARM-LABEL: test_revll // ARM: call i64 @llvm.bswap.i64(i64 %t) uint64_t test_revll(uint64_t t) { return __revll(t); } // ARM-LABEL: test_rev16 // ARM: llvm.bswap // ARM-LEGACY: lshr {{.*}}, 16 // ARM-LEGACY: shl {{.*}}, 16 // ARM-LEGACY: or // ARM-NEWPM: call i32 @llvm.fshl.i32(i32 %0, i32 %0, i32 16) uint32_t test_rev16(uint32_t t) { return __rev16(t); } // ARM-LABEL: test_rev16l // AArch32: llvm.bswap // AArch32-LEGACY: lshr {{.*}}, 16 // AArch32-LEGACY: shl {{.*}}, 16 // AArch32-LEGACY: or // AArch32-NEWPM: call i32 @llvm.fshl.i32(i32 %0, i32 %0, i32 16) // AArch64: [[T1:%.*]] = lshr i64 [[IN:%.*]], 32 // AArch64: [[T2:%.*]] = trunc i64 [[T1]] to i32 // AArch64: [[T3:%.*]] = tail call i32 @llvm.bswap.i32(i32 [[T2]]) // AArch64-LEGACY: [[T4:%.*]] = lshr i32 [[T3]], 16 // AArch64-LEGACY: [[T5:%.*]] = shl i32 [[T3]], 16 // AArch64-LEGACY: [[T6:%.*]] = or i32 [[T5]], [[T4]] // AArch64-NEWPM: [[T6:%.*]] = tail call i32 @llvm.fshl.i32(i32 [[T3]], i32 [[T3]], i32 16) // AArch64: [[T7:%.*]] = zext i32 [[T6]] to i64 // AArch64: [[T8:%.*]] = shl nuw i64 [[T7]], 32 // AArch64: [[T9:%.*]] = trunc i64 [[IN]] to i32 // AArch64: [[T10:%.*]] = tail call i32 @llvm.bswap.i32(i32 [[T9]]) // AArch64-LEGACY: [[T11:%.*]] = lshr i32 [[T10]], 16 // AArch64-LEGACY: [[T12:%.*]] = shl i32 [[T10]], 16 // AArch64-LEGACY: [[T13:%.*]] = or i32 [[T12]], [[T11]] // AArch64-NEWPM: [[T13:%.*]] = tail call i32 @llvm.fshl.i32(i32 [[T10]], i32 [[T10]], i32 16) // AArch64: [[T14:%.*]] = zext i32 [[T13]] to i64 // AArch64: [[T15:%.*]] = or i64 [[T8]], [[T14]] long test_rev16l(long t) { return __rev16l(t); } // ARM-LABEL: test_rev16ll // ARM: [[T1:%.*]] = lshr i64 [[IN:%.*]], 32 // ARM: [[T2:%.*]] = trunc i64 [[T1]] to i32 // ARM: [[T3:%.*]] = tail call i32 @llvm.bswap.i32(i32 [[T2]]) // ARM-LEGACY: [[T4:%.*]] = lshr i32 [[T3]], 16 // ARM-LEGACY: [[T5:%.*]] = shl i32 [[T3]], 16 // ARM-LEGACY: [[T6:%.*]] = or i32 [[T5]], [[T4]] // ARM-NEWPM: [[T6:%.*]] = tail call i32 @llvm.fshl.i32(i32 [[T3]], i32 [[T3]], i32 16) // ARM: [[T7:%.*]] = zext i32 [[T6]] to i64 // ARM: [[T8:%.*]] = shl nuw i64 [[T7]], 32 // ARM: [[T9:%.*]] = trunc i64 [[IN]] to i32 // ARM: [[T10:%.*]] = tail call i32 @llvm.bswap.i32(i32 [[T9]]) // ARM-LEGACY: [[T11:%.*]] = lshr i32 [[T10]], 16 // ARM-LEGACY: [[T12:%.*]] = shl i32 [[T10]], 16 // ARM-LEGACY: [[T13:%.*]] = or i32 [[T12]], [[T11]] // ARM-NEWPM: [[T13:%.*]] = tail call i32 @llvm.fshl.i32(i32 [[T10]], i32 [[T10]], i32 16) // ARM: [[T14:%.*]] = zext i32 [[T13]] to i64 // ARM: [[T15:%.*]] = or i64 [[T8]], [[T14]] uint64_t test_rev16ll(uint64_t t) { return __rev16ll(t); } // ARM-LABEL: test_revsh // ARM: call i16 @llvm.bswap.i16(i16 %t) int16_t test_revsh(int16_t t) { return __revsh(t); } // ARM-LABEL: test_rbit // AArch32: call i32 @llvm.bitreverse.i32 // AArch64: call i32 @llvm.bitreverse.i32 uint32_t test_rbit(uint32_t t) { return __rbit(t); } // ARM-LABEL: test_rbitl // AArch32: call i32 @llvm.bitreverse.i32 // AArch64: call i64 @llvm.bitreverse.i64 long test_rbitl(long t) { return __rbitl(t); } // ARM-LABEL: test_rbitll // AArch32: call i32 @llvm.bitreverse.i32 // AArch32: call i32 @llvm.bitreverse.i32 // AArch64: call i64 @llvm.bitreverse.i64 uint64_t test_rbitll(uint64_t t) { return __rbitll(t); } /* 9.4 Saturating intrinsics */ #ifdef __ARM_FEATURE_SAT /* 9.4.1 Width-specified saturation intrinsics */ // AArch32-LABEL: test_ssat // AArch32: call i32 @llvm.arm.ssat(i32 %t, i32 1) int32_t test_ssat(int32_t t) { return __ssat(t, 1); } // AArch32-LABEL: test_usat // AArch32: call i32 @llvm.arm.usat(i32 %t, i32 2) uint32_t test_usat(int32_t t) { return __usat(t, 2); } #endif /* 9.4.2 Saturating addition and subtraction intrinsics */ #ifdef __ARM_FEATURE_DSP // AArch32-LABEL: test_qadd // AArch32: call i32 @llvm.arm.qadd(i32 %a, i32 %b) int32_t test_qadd(int32_t a, int32_t b) { return __qadd(a, b); } // AArch32-LABEL: test_qsub // AArch32: call i32 @llvm.arm.qsub(i32 %a, i32 %b) int32_t test_qsub(int32_t a, int32_t b) { return __qsub(a, b); } extern int32_t f(); // AArch32-LABEL: test_qdbl // AArch32: [[VAR:%[a-z0-9]+]] = {{.*}} call {{.*}} @f // AArch32-NOT: call {{.*}} @f // AArch32: call i32 @llvm.arm.qadd(i32 [[VAR]], i32 [[VAR]]) int32_t test_qdbl() { return __qdbl(f()); } #endif /* * 9.3 16-bit multiplications */ #if __ARM_FEATURE_DSP // AArch32-LABEL: test_smulbb // AArch32: call i32 @llvm.arm.smulbb int32_t test_smulbb(int32_t a, int32_t b) { return __smulbb(a, b); } // AArch32-LABEL: test_smulbt // AArch32: call i32 @llvm.arm.smulbt int32_t test_smulbt(int32_t a, int32_t b) { return __smulbt(a, b); } // AArch32-LABEL: test_smultb // AArch32: call i32 @llvm.arm.smultb int32_t test_smultb(int32_t a, int32_t b) { return __smultb(a, b); } // AArch32-LABEL: test_smultt // AArch32: call i32 @llvm.arm.smultt int32_t test_smultt(int32_t a, int32_t b) { return __smultt(a, b); } // AArch32-LABEL: test_smulwb // AArch32: call i32 @llvm.arm.smulwb int32_t test_smulwb(int32_t a, int32_t b) { return __smulwb(a, b); } // AArch32-LABEL: test_smulwt // AArch32: call i32 @llvm.arm.smulwt int32_t test_smulwt(int32_t a, int32_t b) { return __smulwt(a, b); } #endif /* 9.4.3 Accumultating multiplications */ #if __ARM_FEATURE_DSP // AArch32-LABEL: test_smlabb // AArch32: call i32 @llvm.arm.smlabb(i32 %a, i32 %b, i32 %c) int32_t test_smlabb(int32_t a, int32_t b, int32_t c) { return __smlabb(a, b, c); } // AArch32-LABEL: test_smlabt // AArch32: call i32 @llvm.arm.smlabt(i32 %a, i32 %b, i32 %c) int32_t test_smlabt(int32_t a, int32_t b, int32_t c) { return __smlabt(a, b, c); } // AArch32-LABEL: test_smlatb // AArch32: call i32 @llvm.arm.smlatb(i32 %a, i32 %b, i32 %c) int32_t test_smlatb(int32_t a, int32_t b, int32_t c) { return __smlatb(a, b, c); } // AArch32-LABEL: test_smlatt // AArch32: call i32 @llvm.arm.smlatt(i32 %a, i32 %b, i32 %c) int32_t test_smlatt(int32_t a, int32_t b, int32_t c) { return __smlatt(a, b, c); } // AArch32-LABEL: test_smlawb // AArch32: call i32 @llvm.arm.smlawb(i32 %a, i32 %b, i32 %c) int32_t test_smlawb(int32_t a, int32_t b, int32_t c) { return __smlawb(a, b, c); } // AArch32-LABEL: test_smlawt // AArch32: call i32 @llvm.arm.smlawt(i32 %a, i32 %b, i32 %c) int32_t test_smlawt(int32_t a, int32_t b, int32_t c) { return __smlawt(a, b, c); } #endif /* 9.5.4 Parallel 16-bit saturation */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: test_ssat16 // AArch32: call i32 @llvm.arm.ssat16 int16x2_t test_ssat16(int16x2_t a) { return __ssat16(a, 15); } // AArch32-LABEL: test_usat16 // AArch32: call i32 @llvm.arm.usat16 uint16x2_t test_usat16(int16x2_t a) { return __usat16(a, 15); } #endif /* 9.5.5 Packing and unpacking */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: test_sxtab16 // AArch32: call i32 @llvm.arm.sxtab16 int16x2_t test_sxtab16(int16x2_t a, int8x4_t b) { return __sxtab16(a, b); } // AArch32-LABEL: test_sxtb16 // AArch32: call i32 @llvm.arm.sxtb16 int16x2_t test_sxtb16(int8x4_t a) { return __sxtb16(a); } // AArch32-LABEL: test_uxtab16 // AArch32: call i32 @llvm.arm.uxtab16 int16x2_t test_uxtab16(int16x2_t a, int8x4_t b) { return __uxtab16(a, b); } // AArch32-LABEL: test_uxtb16 // AArch32: call i32 @llvm.arm.uxtb16 int16x2_t test_uxtb16(int8x4_t a) { return __uxtb16(a); } #endif /* 9.5.6 Parallel selection */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: test_sel // AArch32: call i32 @llvm.arm.sel uint8x4_t test_sel(uint8x4_t a, uint8x4_t b) { return __sel(a, b); } #endif /* 9.5.7 Parallel 8-bit addition and subtraction */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: test_qadd8 // AArch32: call i32 @llvm.arm.qadd8 int16x2_t test_qadd8(int8x4_t a, int8x4_t b) { return __qadd8(a, b); } // AArch32-LABEL: test_qsub8 // AArch32: call i32 @llvm.arm.qsub8 int8x4_t test_qsub8(int8x4_t a, int8x4_t b) { return __qsub8(a, b); } // AArch32-LABEL: test_sadd8 // AArch32: call i32 @llvm.arm.sadd8 int8x4_t test_sadd8(int8x4_t a, int8x4_t b) { return __sadd8(a, b); } // AArch32-LABEL: test_shadd8 // AArch32: call i32 @llvm.arm.shadd8 int8x4_t test_shadd8(int8x4_t a, int8x4_t b) { return __shadd8(a, b); } // AArch32-LABEL: test_shsub8 // AArch32: call i32 @llvm.arm.shsub8 int8x4_t test_shsub8(int8x4_t a, int8x4_t b) { return __shsub8(a, b); } // AArch32-LABEL: test_ssub8 // AArch32: call i32 @llvm.arm.ssub8 int8x4_t test_ssub8(int8x4_t a, int8x4_t b) { return __ssub8(a, b); } // AArch32-LABEL: test_uadd8 // AArch32: call i32 @llvm.arm.uadd8 uint8x4_t test_uadd8(uint8x4_t a, uint8x4_t b) { return __uadd8(a, b); } // AArch32-LABEL: test_uhadd8 // AArch32: call i32 @llvm.arm.uhadd8 uint8x4_t test_uhadd8(uint8x4_t a, uint8x4_t b) { return __uhadd8(a, b); } // AArch32-LABEL: test_uhsub8 // AArch32: call i32 @llvm.arm.uhsub8 uint8x4_t test_uhsub8(uint8x4_t a, uint8x4_t b) { return __uhsub8(a, b); } // AArch32-LABEL: test_uqadd8 // AArch32: call i32 @llvm.arm.uqadd8 uint8x4_t test_uqadd8(uint8x4_t a, uint8x4_t b) { return __uqadd8(a, b); } // AArch32-LABEL: test_uqsub8 // AArch32: call i32 @llvm.arm.uqsub8 uint8x4_t test_uqsub8(uint8x4_t a, uint8x4_t b) { return __uqsub8(a, b); } // AArch32-LABEL: test_usub8 // AArch32: call i32 @llvm.arm.usub8 uint8x4_t test_usub8(uint8x4_t a, uint8x4_t b) { return __usub8(a, b); } #endif /* 9.5.8 Sum of 8-bit absolute differences */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: test_usad8 // AArch32: call i32 @llvm.arm.usad8 uint32_t test_usad8(uint8x4_t a, uint8x4_t b) { return __usad8(a, b); } // AArch32-LABEL: test_usada8 // AArch32: call i32 @llvm.arm.usada8 uint32_t test_usada8(uint8_t a, uint8_t b, uint8_t c) { return __usada8(a, b, c); } #endif /* 9.5.9 Parallel 16-bit addition and subtraction */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: test_qadd16 // AArch32: call i32 @llvm.arm.qadd16 int16x2_t test_qadd16(int16x2_t a, int16x2_t b) { return __qadd16(a, b); } // AArch32-LABEL: test_qasx // AArch32: call i32 @llvm.arm.qasx int16x2_t test_qasx(int16x2_t a, int16x2_t b) { return __qasx(a, b); } // AArch32-LABEL: test_qsax // AArch32: call i32 @llvm.arm.qsax int16x2_t test_qsax(int16x2_t a, int16x2_t b) { return __qsax(a, b); } // AArch32-LABEL: test_qsub16 // AArch32: call i32 @llvm.arm.qsub16 int16x2_t test_qsub16(int16x2_t a, int16x2_t b) { return __qsub16(a, b); } // AArch32-LABEL: test_sadd16 // AArch32: call i32 @llvm.arm.sadd16 int16x2_t test_sadd16(int16x2_t a, int16x2_t b) { return __sadd16(a, b); } // AArch32-LABEL: test_sasx // AArch32: call i32 @llvm.arm.sasx int16x2_t test_sasx(int16x2_t a, int16x2_t b) { return __sasx(a, b); } // AArch32-LABEL: test_shadd16 // AArch32: call i32 @llvm.arm.shadd16 int16x2_t test_shadd16(int16x2_t a, int16x2_t b) { return __shadd16(a, b); } // AArch32-LABEL: test_shasx // AArch32: call i32 @llvm.arm.shasx int16x2_t test_shasx(int16x2_t a, int16x2_t b) { return __shasx(a, b); } // AArch32-LABEL: test_shsax // AArch32: call i32 @llvm.arm.shsax int16x2_t test_shsax(int16x2_t a, int16x2_t b) { return __shsax(a, b); } // AArch32-LABEL: test_shsub16 // AArch32: call i32 @llvm.arm.shsub16 int16x2_t test_shsub16(int16x2_t a, int16x2_t b) { return __shsub16(a, b); } // AArch32-LABEL: test_ssax // AArch32: call i32 @llvm.arm.ssax int16x2_t test_ssax(int16x2_t a, int16x2_t b) { return __ssax(a, b); } // AArch32-LABEL: test_ssub16 // AArch32: call i32 @llvm.arm.ssub16 int16x2_t test_ssub16(int16x2_t a, int16x2_t b) { return __ssub16(a, b); } // AArch32-LABEL: test_uadd16 // AArch32: call i32 @llvm.arm.uadd16 uint16x2_t test_uadd16(uint16x2_t a, uint16x2_t b) { return __uadd16(a, b); } // AArch32-LABEL: test_uasx // AArch32: call i32 @llvm.arm.uasx uint16x2_t test_uasx(uint16x2_t a, uint16x2_t b) { return __uasx(a, b); } // AArch32-LABEL: test_uhadd16 // AArch32: call i32 @llvm.arm.uhadd16 uint16x2_t test_uhadd16(uint16x2_t a, uint16x2_t b) { return __uhadd16(a, b); } // AArch32-LABEL: test_uhasx // AArch32: call i32 @llvm.arm.uhasx uint16x2_t test_uhasx(uint16x2_t a, uint16x2_t b) { return __uhasx(a, b); } // AArch32-LABEL: test_uhsax // AArch32: call i32 @llvm.arm.uhsax uint16x2_t test_uhsax(uint16x2_t a, uint16x2_t b) { return __uhsax(a, b); } // AArch32-LABEL: test_uhsub16 // AArch32: call i32 @llvm.arm.uhsub16 uint16x2_t test_uhsub16(uint16x2_t a, uint16x2_t b) { return __uhsub16(a, b); } // AArch32-LABEL: test_uqadd16 // AArch32: call i32 @llvm.arm.uqadd16 uint16x2_t test_uqadd16(uint16x2_t a, uint16x2_t b) { return __uqadd16(a, b); } // AArch32-LABEL: test_uqasx // AArch32: call i32 @llvm.arm.uqasx uint16x2_t test_uqasx(uint16x2_t a, uint16x2_t b) { return __uqasx(a, b); } // AArch32-LABEL: test_uqsax // AArch32: call i32 @llvm.arm.uqsax uint16x2_t test_uqsax(uint16x2_t a, uint16x2_t b) { return __uqsax(a, b); } // AArch32-LABEL: test_uqsub16 // AArch32: call i32 @llvm.arm.uqsub16 uint16x2_t test_uqsub16(uint16x2_t a, uint16x2_t b) { return __uqsub16(a, b); } // AArch32-LABEL: test_usax // AArch32: call i32 @llvm.arm.usax uint16x2_t test_usax(uint16x2_t a, uint16x2_t b) { return __usax(a, b); } // AArch32-LABEL: test_usub16 // AArch32: call i32 @llvm.arm.usub16 uint16x2_t test_usub16(uint16x2_t a, uint16x2_t b) { return __usub16(a, b); } #endif /* 9.5.10 Parallel 16-bit multiplications */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: test_smlad // AArch32: call i32 @llvm.arm.smlad int32_t test_smlad(int16x2_t a, int16x2_t b, int32_t c) { return __smlad(a, b, c); } // AArch32-LABEL: test_smladx // AArch32: call i32 @llvm.arm.smladx int32_t test_smladx(int16x2_t a, int16x2_t b, int32_t c) { return __smladx(a, b, c); } // AArch32-LABEL: test_smlald // AArch32: call i64 @llvm.arm.smlald int64_t test_smlald(int16x2_t a, int16x2_t b, int64_t c) { return __smlald(a, b, c); } // AArch32-LABEL: test_smlaldx // AArch32: call i64 @llvm.arm.smlaldx int64_t test_smlaldx(int16x2_t a, int16x2_t b, int64_t c) { return __smlaldx(a, b, c); } // AArch32-LABEL: test_smlsd // AArch32: call i32 @llvm.arm.smlsd int32_t test_smlsd(int16x2_t a, int16x2_t b, int32_t c) { return __smlsd(a, b, c); } // AArch32-LABEL: test_smlsdx // AArch32: call i32 @llvm.arm.smlsdx int32_t test_smlsdx(int16x2_t a, int16x2_t b, int32_t c) { return __smlsdx(a, b, c); } // AArch32-LABEL: test_smlsld // AArch32: call i64 @llvm.arm.smlsld int64_t test_smlsld(int16x2_t a, int16x2_t b, int64_t c) { return __smlsld(a, b, c); } // AArch32-LABEL: test_smlsldx // AArch32: call i64 @llvm.arm.smlsldx int64_t test_smlsldx(int16x2_t a, int16x2_t b, int64_t c) { return __smlsldx(a, b, c); } // AArch32-LABEL: test_smuad // AArch32: call i32 @llvm.arm.smuad int32_t test_smuad(int16x2_t a, int16x2_t b) { return __smuad(a, b); } // AArch32-LABEL: test_smuadx // AArch32: call i32 @llvm.arm.smuadx int32_t test_smuadx(int16x2_t a, int16x2_t b) { return __smuadx(a, b); } // AArch32-LABEL: test_smusd // AArch32: call i32 @llvm.arm.smusd int32_t test_smusd(int16x2_t a, int16x2_t b) { return __smusd(a, b); } // AArch32-LABEL: test_smusdx // AArch32: call i32 @llvm.arm.smusdx int32_t test_smusdx(int16x2_t a, int16x2_t b) { return __smusdx(a, b); } #endif /* 9.7 CRC32 intrinsics */ // ARM-LABEL: test_crc32b // AArch32: call i32 @llvm.arm.crc32b // AArch64: call i32 @llvm.aarch64.crc32b uint32_t test_crc32b(uint32_t a, uint8_t b) { return __crc32b(a, b); } // ARM-LABEL: test_crc32h // AArch32: call i32 @llvm.arm.crc32h // AArch64: call i32 @llvm.aarch64.crc32h uint32_t test_crc32h(uint32_t a, uint16_t b) { return __crc32h(a, b); } // ARM-LABEL: test_crc32w // AArch32: call i32 @llvm.arm.crc32w // AArch64: call i32 @llvm.aarch64.crc32w uint32_t test_crc32w(uint32_t a, uint32_t b) { return __crc32w(a, b); } // ARM-LABEL: test_crc32d // AArch32: call i32 @llvm.arm.crc32w // AArch32: call i32 @llvm.arm.crc32w // AArch64: call i32 @llvm.aarch64.crc32x uint32_t test_crc32d(uint32_t a, uint64_t b) { return __crc32d(a, b); } // ARM-LABEL: test_crc32cb // AArch32: call i32 @llvm.arm.crc32cb // AArch64: call i32 @llvm.aarch64.crc32cb uint32_t test_crc32cb(uint32_t a, uint8_t b) { return __crc32cb(a, b); } // ARM-LABEL: test_crc32ch // AArch32: call i32 @llvm.arm.crc32ch // AArch64: call i32 @llvm.aarch64.crc32ch uint32_t test_crc32ch(uint32_t a, uint16_t b) { return __crc32ch(a, b); } // ARM-LABEL: test_crc32cw // AArch32: call i32 @llvm.arm.crc32cw // AArch64: call i32 @llvm.aarch64.crc32cw uint32_t test_crc32cw(uint32_t a, uint32_t b) { return __crc32cw(a, b); } // ARM-LABEL: test_crc32cd // AArch32: call i32 @llvm.arm.crc32cw // AArch32: call i32 @llvm.arm.crc32cw // AArch64: call i32 @llvm.aarch64.crc32cx uint32_t test_crc32cd(uint32_t a, uint64_t b) { return __crc32cd(a, b); } /* 10.1 Special register intrinsics */ // ARM-LABEL: test_rsr // AArch64: call i64 @llvm.read_register.i64(metadata ![[M0:[0-9]]]) // AArch32: call i32 @llvm.read_register.i32(metadata ![[M2:[0-9]]]) uint32_t test_rsr() { #ifdef __ARM_32BIT_STATE return __arm_rsr("cp1:2:c3:c4:5"); #else return __arm_rsr("1:2:3:4:5"); #endif } // ARM-LABEL: test_rsr64 // AArch64: call i64 @llvm.read_register.i64(metadata ![[M0:[0-9]]]) // AArch32: call i64 @llvm.read_register.i64(metadata ![[M3:[0-9]]]) uint64_t test_rsr64() { #ifdef __ARM_32BIT_STATE return __arm_rsr64("cp1:2:c3"); #else return __arm_rsr64("1:2:3:4:5"); #endif } // ARM-LABEL: test_rsrp // AArch64: call i64 @llvm.read_register.i64(metadata ![[M1:[0-9]]]) // AArch32: call i32 @llvm.read_register.i32(metadata ![[M4:[0-9]]]) void *test_rsrp() { return __arm_rsrp("sysreg"); } // ARM-LABEL: test_wsr // AArch64: call void @llvm.write_register.i64(metadata ![[M0:[0-9]]], i64 %{{.*}}) // AArch32: call void @llvm.write_register.i32(metadata ![[M2:[0-9]]], i32 %{{.*}}) void test_wsr(uint32_t v) { #ifdef __ARM_32BIT_STATE __arm_wsr("cp1:2:c3:c4:5", v); #else __arm_wsr("1:2:3:4:5", v); #endif } // ARM-LABEL: test_wsr64 // AArch64: call void @llvm.write_register.i64(metadata ![[M0:[0-9]]], i64 %{{.*}}) // AArch32: call void @llvm.write_register.i64(metadata ![[M3:[0-9]]], i64 %{{.*}}) void test_wsr64(uint64_t v) { #ifdef __ARM_32BIT_STATE __arm_wsr64("cp1:2:c3", v); #else __arm_wsr64("1:2:3:4:5", v); #endif } // ARM-LABEL: test_wsrp // AArch64: call void @llvm.write_register.i64(metadata ![[M1:[0-9]]], i64 %{{.*}}) // AArch32: call void @llvm.write_register.i32(metadata ![[M4:[0-9]]], i32 %{{.*}}) void test_wsrp(void *v) { __arm_wsrp("sysreg", v); } // AArch32: ![[M2]] = !{!"cp1:2:c3:c4:5"} // AArch32: ![[M3]] = !{!"cp1:2:c3"} // AArch32: ![[M4]] = !{!"sysreg"} // AArch64: ![[M0]] = !{!"1:2:3:4:5"} // AArch64: ![[M1]] = !{!"sysreg"} // AArch64-v8_3-LABEL: @test_jcvt( // AArch64-v8_3: call i32 @llvm.aarch64.fjcvtzs #ifdef __ARM_64BIT_STATE int32_t test_jcvt(double v) { return __jcvt(v); } #endif