//===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the top level handling of macro expansion for the // preprocessor. // //===----------------------------------------------------------------------===// #include "clang/Basic/Attributes.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/ObjCRuntime.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/CodeCompletionHandler.h" #include "clang/Lex/DirectoryLookup.h" #include "clang/Lex/ExternalPreprocessorSource.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/LexDiagnostic.h" #include "clang/Lex/MacroArgs.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/PreprocessorLexer.h" #include "clang/Lex/Token.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include using namespace clang; MacroDirective * Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const { if (!II->hadMacroDefinition()) return nullptr; auto Pos = CurSubmoduleState->Macros.find(II); return Pos == CurSubmoduleState->Macros.end() ? nullptr : Pos->second.getLatest(); } void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){ assert(MD && "MacroDirective should be non-zero!"); assert(!MD->getPrevious() && "Already attached to a MacroDirective history."); MacroState &StoredMD = CurSubmoduleState->Macros[II]; auto *OldMD = StoredMD.getLatest(); MD->setPrevious(OldMD); StoredMD.setLatest(MD); StoredMD.overrideActiveModuleMacros(*this, II); if (needModuleMacros()) { // Track that we created a new macro directive, so we know we should // consider building a ModuleMacro for it when we get to the end of // the module. PendingModuleMacroNames.push_back(II); } // Set up the identifier as having associated macro history. II->setHasMacroDefinition(true); if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end()) II->setHasMacroDefinition(false); if (II->isFromAST()) II->setChangedSinceDeserialization(); } void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II, MacroDirective *ED, MacroDirective *MD) { // Normally, when a macro is defined, it goes through appendMacroDirective() // above, which chains a macro to previous defines, undefs, etc. // However, in a pch, the whole macro history up to the end of the pch is // stored, so ASTReader goes through this function instead. // However, built-in macros are already registered in the Preprocessor // ctor, and ASTWriter stops writing the macro chain at built-in macros, // so in that case the chain from the pch needs to be spliced to the existing // built-in. assert(II && MD); MacroState &StoredMD = CurSubmoduleState->Macros[II]; if (auto *OldMD = StoredMD.getLatest()) { // shouldIgnoreMacro() in ASTWriter also stops at macros from the // predefines buffer in module builds. However, in module builds, modules // are loaded completely before predefines are processed, so StoredMD // will be nullptr for them when they're loaded. StoredMD should only be // non-nullptr for builtins read from a pch file. assert(OldMD->getMacroInfo()->isBuiltinMacro() && "only built-ins should have an entry here"); assert(!OldMD->getPrevious() && "builtin should only have a single entry"); ED->setPrevious(OldMD); StoredMD.setLatest(MD); } else { StoredMD = MD; } // Setup the identifier as having associated macro history. II->setHasMacroDefinition(true); if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end()) II->setHasMacroDefinition(false); } ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II, MacroInfo *Macro, ArrayRef Overrides, bool &New) { llvm::FoldingSetNodeID ID; ModuleMacro::Profile(ID, Mod, II); void *InsertPos; if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) { New = false; return MM; } auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides); ModuleMacros.InsertNode(MM, InsertPos); // Each overridden macro is now overridden by one more macro. bool HidAny = false; for (auto *O : Overrides) { HidAny |= (O->NumOverriddenBy == 0); ++O->NumOverriddenBy; } // If we were the first overrider for any macro, it's no longer a leaf. auto &LeafMacros = LeafModuleMacros[II]; if (HidAny) { LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(), [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; }), LeafMacros.end()); } // The new macro is always a leaf macro. LeafMacros.push_back(MM); // The identifier now has defined macros (that may or may not be visible). II->setHasMacroDefinition(true); New = true; return MM; } ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) { llvm::FoldingSetNodeID ID; ModuleMacro::Profile(ID, Mod, II); void *InsertPos; return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos); } void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II, ModuleMacroInfo &Info) { assert(Info.ActiveModuleMacrosGeneration != CurSubmoduleState->VisibleModules.getGeneration() && "don't need to update this macro name info"); Info.ActiveModuleMacrosGeneration = CurSubmoduleState->VisibleModules.getGeneration(); auto Leaf = LeafModuleMacros.find(II); if (Leaf == LeafModuleMacros.end()) { // No imported macros at all: nothing to do. return; } Info.ActiveModuleMacros.clear(); // Every macro that's locally overridden is overridden by a visible macro. llvm::DenseMap NumHiddenOverrides; for (auto *O : Info.OverriddenMacros) NumHiddenOverrides[O] = -1; // Collect all macros that are not overridden by a visible macro. llvm::SmallVector Worklist; for (auto *LeafMM : Leaf->second) { assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden"); if (NumHiddenOverrides.lookup(LeafMM) == 0) Worklist.push_back(LeafMM); } while (!Worklist.empty()) { auto *MM = Worklist.pop_back_val(); if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) { // We only care about collecting definitions; undefinitions only act // to override other definitions. if (MM->getMacroInfo()) Info.ActiveModuleMacros.push_back(MM); } else { for (auto *O : MM->overrides()) if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros()) Worklist.push_back(O); } } // Our reverse postorder walk found the macros in reverse order. std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end()); // Determine whether the macro name is ambiguous. MacroInfo *MI = nullptr; bool IsSystemMacro = true; bool IsAmbiguous = false; if (auto *MD = Info.MD) { while (MD && isa(MD)) MD = MD->getPrevious(); if (auto *DMD = dyn_cast_or_null(MD)) { MI = DMD->getInfo(); IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation()); } } for (auto *Active : Info.ActiveModuleMacros) { auto *NewMI = Active->getMacroInfo(); // Before marking the macro as ambiguous, check if this is a case where // both macros are in system headers. If so, we trust that the system // did not get it wrong. This also handles cases where Clang's own // headers have a different spelling of certain system macros: // #define LONG_MAX __LONG_MAX__ (clang's limits.h) // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h) // // FIXME: Remove the defined-in-system-headers check. clang's limits.h // overrides the system limits.h's macros, so there's no conflict here. if (MI && NewMI != MI && !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true)) IsAmbiguous = true; IsSystemMacro &= Active->getOwningModule()->IsSystem || SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc()); MI = NewMI; } Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro; } void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) { ArrayRef Leaf; auto LeafIt = LeafModuleMacros.find(II); if (LeafIt != LeafModuleMacros.end()) Leaf = LeafIt->second; const MacroState *State = nullptr; auto Pos = CurSubmoduleState->Macros.find(II); if (Pos != CurSubmoduleState->Macros.end()) State = &Pos->second; llvm::errs() << "MacroState " << State << " " << II->getNameStart(); if (State && State->isAmbiguous(*this, II)) llvm::errs() << " ambiguous"; if (State && !State->getOverriddenMacros().empty()) { llvm::errs() << " overrides"; for (auto *O : State->getOverriddenMacros()) llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); } llvm::errs() << "\n"; // Dump local macro directives. for (auto *MD = State ? State->getLatest() : nullptr; MD; MD = MD->getPrevious()) { llvm::errs() << " "; MD->dump(); } // Dump module macros. llvm::DenseSet Active; for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None) Active.insert(MM); llvm::DenseSet Visited; llvm::SmallVector Worklist(Leaf.begin(), Leaf.end()); while (!Worklist.empty()) { auto *MM = Worklist.pop_back_val(); llvm::errs() << " ModuleMacro " << MM << " " << MM->getOwningModule()->getFullModuleName(); if (!MM->getMacroInfo()) llvm::errs() << " undef"; if (Active.count(MM)) llvm::errs() << " active"; else if (!CurSubmoduleState->VisibleModules.isVisible( MM->getOwningModule())) llvm::errs() << " hidden"; else if (MM->getMacroInfo()) llvm::errs() << " overridden"; if (!MM->overrides().empty()) { llvm::errs() << " overrides"; for (auto *O : MM->overrides()) { llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); if (Visited.insert(O).second) Worklist.push_back(O); } } llvm::errs() << "\n"; if (auto *MI = MM->getMacroInfo()) { llvm::errs() << " "; MI->dump(); llvm::errs() << "\n"; } } } /// RegisterBuiltinMacro - Register the specified identifier in the identifier /// table and mark it as a builtin macro to be expanded. static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){ // Get the identifier. IdentifierInfo *Id = PP.getIdentifierInfo(Name); // Mark it as being a macro that is builtin. MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation()); MI->setIsBuiltinMacro(); PP.appendDefMacroDirective(Id, MI); return Id; } /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the /// identifier table. void Preprocessor::RegisterBuiltinMacros() { Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__"); Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__"); Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__"); Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__"); Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__"); Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma"); // C++ Standing Document Extensions. if (LangOpts.CPlusPlus) Ident__has_cpp_attribute = RegisterBuiltinMacro(*this, "__has_cpp_attribute"); else Ident__has_cpp_attribute = nullptr; // GCC Extensions. Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__"); Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__"); Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__"); // Microsoft Extensions. if (LangOpts.MicrosoftExt) { Ident__identifier = RegisterBuiltinMacro(*this, "__identifier"); Ident__pragma = RegisterBuiltinMacro(*this, "__pragma"); } else { Ident__identifier = nullptr; Ident__pragma = nullptr; } // Clang Extensions. Ident__FILE_NAME__ = RegisterBuiltinMacro(*this, "__FILE_NAME__"); Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature"); Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension"); Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin"); Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute"); Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute"); Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute"); Ident__has_include = RegisterBuiltinMacro(*this, "__has_include"); Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next"); Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning"); Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier"); Ident__is_target_arch = RegisterBuiltinMacro(*this, "__is_target_arch"); Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor"); Ident__is_target_os = RegisterBuiltinMacro(*this, "__is_target_os"); Ident__is_target_environment = RegisterBuiltinMacro(*this, "__is_target_environment"); // Modules. Ident__building_module = RegisterBuiltinMacro(*this, "__building_module"); if (!LangOpts.CurrentModule.empty()) Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__"); else Ident__MODULE__ = nullptr; } /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token /// in its expansion, currently expands to that token literally. static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, const IdentifierInfo *MacroIdent, Preprocessor &PP) { IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); // If the token isn't an identifier, it's always literally expanded. if (!II) return true; // If the information about this identifier is out of date, update it from // the external source. if (II->isOutOfDate()) PP.getExternalSource()->updateOutOfDateIdentifier(*II); // If the identifier is a macro, and if that macro is enabled, it may be // expanded so it's not a trivial expansion. if (auto *ExpansionMI = PP.getMacroInfo(II)) if (ExpansionMI->isEnabled() && // Fast expanding "#define X X" is ok, because X would be disabled. II != MacroIdent) return false; // If this is an object-like macro invocation, it is safe to trivially expand // it. if (MI->isObjectLike()) return true; // If this is a function-like macro invocation, it's safe to trivially expand // as long as the identifier is not a macro argument. return std::find(MI->param_begin(), MI->param_end(), II) == MI->param_end(); } /// isNextPPTokenLParen - Determine whether the next preprocessor token to be /// lexed is a '('. If so, consume the token and return true, if not, this /// method should have no observable side-effect on the lexed tokens. bool Preprocessor::isNextPPTokenLParen() { // Do some quick tests for rejection cases. unsigned Val; if (CurLexer) Val = CurLexer->isNextPPTokenLParen(); else Val = CurTokenLexer->isNextTokenLParen(); if (Val == 2) { // We have run off the end. If it's a source file we don't // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the // macro stack. if (CurPPLexer) return false; for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) { if (Entry.TheLexer) Val = Entry.TheLexer->isNextPPTokenLParen(); else Val = Entry.TheTokenLexer->isNextTokenLParen(); if (Val != 2) break; // Ran off the end of a source file? if (Entry.ThePPLexer) return false; } } // Okay, if we know that the token is a '(', lex it and return. Otherwise we // have found something that isn't a '(' or we found the end of the // translation unit. In either case, return false. return Val == 1; } /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be /// expanded as a macro, handle it and return the next token as 'Identifier'. bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, const MacroDefinition &M) { MacroInfo *MI = M.getMacroInfo(); // If this is a macro expansion in the "#if !defined(x)" line for the file, // then the macro could expand to different things in other contexts, we need // to disable the optimization in this case. if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. if (MI->isBuiltinMacro()) { if (Callbacks) Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(), /*Args=*/nullptr); ExpandBuiltinMacro(Identifier); return true; } /// Args - If this is a function-like macro expansion, this contains, /// for each macro argument, the list of tokens that were provided to the /// invocation. MacroArgs *Args = nullptr; // Remember where the end of the expansion occurred. For an object-like // macro, this is the identifier. For a function-like macro, this is the ')'. SourceLocation ExpansionEnd = Identifier.getLocation(); // If this is a function-like macro, read the arguments. if (MI->isFunctionLike()) { // Remember that we are now parsing the arguments to a macro invocation. // Preprocessor directives used inside macro arguments are not portable, and // this enables the warning. InMacroArgs = true; ArgMacro = &Identifier; Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd); // Finished parsing args. InMacroArgs = false; ArgMacro = nullptr; // If there was an error parsing the arguments, bail out. if (!Args) return true; ++NumFnMacroExpanded; } else { ++NumMacroExpanded; } // Notice that this macro has been used. markMacroAsUsed(MI); // Remember where the token is expanded. SourceLocation ExpandLoc = Identifier.getLocation(); SourceRange ExpansionRange(ExpandLoc, ExpansionEnd); if (Callbacks) { if (InMacroArgs) { // We can have macro expansion inside a conditional directive while // reading the function macro arguments. To ensure, in that case, that // MacroExpands callbacks still happen in source order, queue this // callback to have it happen after the function macro callback. DelayedMacroExpandsCallbacks.push_back( MacroExpandsInfo(Identifier, M, ExpansionRange)); } else { Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args); if (!DelayedMacroExpandsCallbacks.empty()) { for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) { // FIXME: We lose macro args info with delayed callback. Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, /*Args=*/nullptr); } DelayedMacroExpandsCallbacks.clear(); } } } // If the macro definition is ambiguous, complain. if (M.isAmbiguous()) { Diag(Identifier, diag::warn_pp_ambiguous_macro) << Identifier.getIdentifierInfo(); Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen) << Identifier.getIdentifierInfo(); M.forAllDefinitions([&](const MacroInfo *OtherMI) { if (OtherMI != MI) Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other) << Identifier.getIdentifierInfo(); }); } // If we started lexing a macro, enter the macro expansion body. // If this macro expands to no tokens, don't bother to push it onto the // expansion stack, only to take it right back off. if (MI->getNumTokens() == 0) { // No need for arg info. if (Args) Args->destroy(*this); // Propagate whitespace info as if we had pushed, then popped, // a macro context. Identifier.setFlag(Token::LeadingEmptyMacro); PropagateLineStartLeadingSpaceInfo(Identifier); ++NumFastMacroExpanded; return false; } else if (MI->getNumTokens() == 1 && isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), *this)) { // Otherwise, if this macro expands into a single trivially-expanded // token: expand it now. This handles common cases like // "#define VAL 42". // No need for arg info. if (Args) Args->destroy(*this); // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro // identifier to the expanded token. bool isAtStartOfLine = Identifier.isAtStartOfLine(); bool hasLeadingSpace = Identifier.hasLeadingSpace(); // Replace the result token. Identifier = MI->getReplacementToken(0); // Restore the StartOfLine/LeadingSpace markers. Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); // Update the tokens location to include both its expansion and physical // locations. SourceLocation Loc = SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc, ExpansionEnd,Identifier.getLength()); Identifier.setLocation(Loc); // If this is a disabled macro or #define X X, we must mark the result as // unexpandable. if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { if (MacroInfo *NewMI = getMacroInfo(NewII)) if (!NewMI->isEnabled() || NewMI == MI) { Identifier.setFlag(Token::DisableExpand); // Don't warn for "#define X X" like "#define bool bool" from // stdbool.h. if (NewMI != MI || MI->isFunctionLike()) Diag(Identifier, diag::pp_disabled_macro_expansion); } } // Since this is not an identifier token, it can't be macro expanded, so // we're done. ++NumFastMacroExpanded; return true; } // Start expanding the macro. EnterMacro(Identifier, ExpansionEnd, MI, Args); return false; } enum Bracket { Brace, Paren }; /// CheckMatchedBrackets - Returns true if the braces and parentheses in the /// token vector are properly nested. static bool CheckMatchedBrackets(const SmallVectorImpl &Tokens) { SmallVector Brackets; for (SmallVectorImpl::const_iterator I = Tokens.begin(), E = Tokens.end(); I != E; ++I) { if (I->is(tok::l_paren)) { Brackets.push_back(Paren); } else if (I->is(tok::r_paren)) { if (Brackets.empty() || Brackets.back() == Brace) return false; Brackets.pop_back(); } else if (I->is(tok::l_brace)) { Brackets.push_back(Brace); } else if (I->is(tok::r_brace)) { if (Brackets.empty() || Brackets.back() == Paren) return false; Brackets.pop_back(); } } return Brackets.empty(); } /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new /// vector of tokens in NewTokens. The new number of arguments will be placed /// in NumArgs and the ranges which need to surrounded in parentheses will be /// in ParenHints. /// Returns false if the token stream cannot be changed. If this is because /// of an initializer list starting a macro argument, the range of those /// initializer lists will be place in InitLists. static bool GenerateNewArgTokens(Preprocessor &PP, SmallVectorImpl &OldTokens, SmallVectorImpl &NewTokens, unsigned &NumArgs, SmallVectorImpl &ParenHints, SmallVectorImpl &InitLists) { if (!CheckMatchedBrackets(OldTokens)) return false; // Once it is known that the brackets are matched, only a simple count of the // braces is needed. unsigned Braces = 0; // First token of a new macro argument. SmallVectorImpl::iterator ArgStartIterator = OldTokens.begin(); // First closing brace in a new macro argument. Used to generate // SourceRanges for InitLists. SmallVectorImpl::iterator ClosingBrace = OldTokens.end(); NumArgs = 0; Token TempToken; // Set to true when a macro separator token is found inside a braced list. // If true, the fixed argument spans multiple old arguments and ParenHints // will be updated. bool FoundSeparatorToken = false; for (SmallVectorImpl::iterator I = OldTokens.begin(), E = OldTokens.end(); I != E; ++I) { if (I->is(tok::l_brace)) { ++Braces; } else if (I->is(tok::r_brace)) { --Braces; if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken) ClosingBrace = I; } else if (I->is(tok::eof)) { // EOF token is used to separate macro arguments if (Braces != 0) { // Assume comma separator is actually braced list separator and change // it back to a comma. FoundSeparatorToken = true; I->setKind(tok::comma); I->setLength(1); } else { // Braces == 0 // Separator token still separates arguments. ++NumArgs; // If the argument starts with a brace, it can't be fixed with // parentheses. A different diagnostic will be given. if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) { InitLists.push_back( SourceRange(ArgStartIterator->getLocation(), PP.getLocForEndOfToken(ClosingBrace->getLocation()))); ClosingBrace = E; } // Add left paren if (FoundSeparatorToken) { TempToken.startToken(); TempToken.setKind(tok::l_paren); TempToken.setLocation(ArgStartIterator->getLocation()); TempToken.setLength(0); NewTokens.push_back(TempToken); } // Copy over argument tokens NewTokens.insert(NewTokens.end(), ArgStartIterator, I); // Add right paren and store the paren locations in ParenHints if (FoundSeparatorToken) { SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation()); TempToken.startToken(); TempToken.setKind(tok::r_paren); TempToken.setLocation(Loc); TempToken.setLength(0); NewTokens.push_back(TempToken); ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(), Loc)); } // Copy separator token NewTokens.push_back(*I); // Reset values ArgStartIterator = I + 1; FoundSeparatorToken = false; } } } return !ParenHints.empty() && InitLists.empty(); } /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next /// token is the '(' of the macro, this method is invoked to read all of the /// actual arguments specified for the macro invocation. This returns null on /// error. MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName, MacroInfo *MI, SourceLocation &MacroEnd) { // The number of fixed arguments to parse. unsigned NumFixedArgsLeft = MI->getNumParams(); bool isVariadic = MI->isVariadic(); // Outer loop, while there are more arguments, keep reading them. Token Tok; // Read arguments as unexpanded tokens. This avoids issues, e.g., where // an argument value in a macro could expand to ',' or '(' or ')'. LexUnexpandedToken(Tok); assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); // ArgTokens - Build up a list of tokens that make up each argument. Each // argument is separated by an EOF token. Use a SmallVector so we can avoid // heap allocations in the common case. SmallVector ArgTokens; bool ContainsCodeCompletionTok = false; bool FoundElidedComma = false; SourceLocation TooManyArgsLoc; unsigned NumActuals = 0; while (Tok.isNot(tok::r_paren)) { if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod)) break; assert(Tok.isOneOf(tok::l_paren, tok::comma) && "only expect argument separators here"); size_t ArgTokenStart = ArgTokens.size(); SourceLocation ArgStartLoc = Tok.getLocation(); // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note // that we already consumed the first one. unsigned NumParens = 0; while (true) { // Read arguments as unexpanded tokens. This avoids issues, e.g., where // an argument value in a macro could expand to ',' or '(' or ')'. LexUnexpandedToken(Tok); if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(" & "#if f(\n" if (!ContainsCodeCompletionTok) { Diag(MacroName, diag::err_unterm_macro_invoc); Diag(MI->getDefinitionLoc(), diag::note_macro_here) << MacroName.getIdentifierInfo(); // Do not lose the EOF/EOD. Return it to the client. MacroName = Tok; return nullptr; } // Do not lose the EOF/EOD. auto Toks = std::make_unique(1); Toks[0] = Tok; EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false); break; } else if (Tok.is(tok::r_paren)) { // If we found the ) token, the macro arg list is done. if (NumParens-- == 0) { MacroEnd = Tok.getLocation(); if (!ArgTokens.empty() && ArgTokens.back().commaAfterElided()) { FoundElidedComma = true; } break; } } else if (Tok.is(tok::l_paren)) { ++NumParens; } else if (Tok.is(tok::comma) && NumParens == 0 && !(Tok.getFlags() & Token::IgnoredComma)) { // In Microsoft-compatibility mode, single commas from nested macro // expansions should not be considered as argument separators. We test // for this with the IgnoredComma token flag above. // Comma ends this argument if there are more fixed arguments expected. // However, if this is a variadic macro, and this is part of the // variadic part, then the comma is just an argument token. if (!isVariadic) break; if (NumFixedArgsLeft > 1) break; } else if (Tok.is(tok::comment) && !KeepMacroComments) { // If this is a comment token in the argument list and we're just in // -C mode (not -CC mode), discard the comment. continue; } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) { // Reading macro arguments can cause macros that we are currently // expanding from to be popped off the expansion stack. Doing so causes // them to be reenabled for expansion. Here we record whether any // identifiers we lex as macro arguments correspond to disabled macros. // If so, we mark the token as noexpand. This is a subtle aspect of // C99 6.10.3.4p2. if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) if (!MI->isEnabled()) Tok.setFlag(Token::DisableExpand); } else if (Tok.is(tok::code_completion)) { ContainsCodeCompletionTok = true; if (CodeComplete) CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(), MI, NumActuals); // Don't mark that we reached the code-completion point because the // parser is going to handle the token and there will be another // code-completion callback. } ArgTokens.push_back(Tok); } // If this was an empty argument list foo(), don't add this as an empty // argument. if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) break; // If this is not a variadic macro, and too many args were specified, emit // an error. if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) { if (ArgTokens.size() != ArgTokenStart) TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation(); else TooManyArgsLoc = ArgStartLoc; } // Empty arguments are standard in C99 and C++0x, and are supported as an // extension in other modes. if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99) Diag(Tok, LangOpts.CPlusPlus11 ? diag::warn_cxx98_compat_empty_fnmacro_arg : diag::ext_empty_fnmacro_arg); // Add a marker EOF token to the end of the token list for this argument. Token EOFTok; EOFTok.startToken(); EOFTok.setKind(tok::eof); EOFTok.setLocation(Tok.getLocation()); EOFTok.setLength(0); ArgTokens.push_back(EOFTok); ++NumActuals; if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0) --NumFixedArgsLeft; } // Okay, we either found the r_paren. Check to see if we parsed too few // arguments. unsigned MinArgsExpected = MI->getNumParams(); // If this is not a variadic macro, and too many args were specified, emit // an error. if (!isVariadic && NumActuals > MinArgsExpected && !ContainsCodeCompletionTok) { // Emit the diagnostic at the macro name in case there is a missing ). // Emitting it at the , could be far away from the macro name. Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc); Diag(MI->getDefinitionLoc(), diag::note_macro_here) << MacroName.getIdentifierInfo(); // Commas from braced initializer lists will be treated as argument // separators inside macros. Attempt to correct for this with parentheses. // TODO: See if this can be generalized to angle brackets for templates // inside macro arguments. SmallVector FixedArgTokens; unsigned FixedNumArgs = 0; SmallVector ParenHints, InitLists; if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs, ParenHints, InitLists)) { if (!InitLists.empty()) { DiagnosticBuilder DB = Diag(MacroName, diag::note_init_list_at_beginning_of_macro_argument); for (SourceRange Range : InitLists) DB << Range; } return nullptr; } if (FixedNumArgs != MinArgsExpected) return nullptr; DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro); for (SourceRange ParenLocation : ParenHints) { DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "("); DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")"); } ArgTokens.swap(FixedArgTokens); NumActuals = FixedNumArgs; } // See MacroArgs instance var for description of this. bool isVarargsElided = false; if (ContainsCodeCompletionTok) { // Recover from not-fully-formed macro invocation during code-completion. Token EOFTok; EOFTok.startToken(); EOFTok.setKind(tok::eof); EOFTok.setLocation(Tok.getLocation()); EOFTok.setLength(0); for (; NumActuals < MinArgsExpected; ++NumActuals) ArgTokens.push_back(EOFTok); } if (NumActuals < MinArgsExpected) { // There are several cases where too few arguments is ok, handle them now. if (NumActuals == 0 && MinArgsExpected == 1) { // #define A(X) or #define A(...) ---> A() // If there is exactly one argument, and that argument is missing, // then we have an empty "()" argument empty list. This is fine, even if // the macro expects one argument (the argument is just empty). isVarargsElided = MI->isVariadic(); } else if ((FoundElidedComma || MI->isVariadic()) && (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() // Varargs where the named vararg parameter is missing: OK as extension. // #define A(x, ...) // A("blah") // // If the macro contains the comma pasting extension, the diagnostic // is suppressed; we know we'll get another diagnostic later. if (!MI->hasCommaPasting()) { Diag(Tok, diag::ext_missing_varargs_arg); Diag(MI->getDefinitionLoc(), diag::note_macro_here) << MacroName.getIdentifierInfo(); } // Remember this occurred, allowing us to elide the comma when used for // cases like: // #define A(x, foo...) blah(a, ## foo) // #define B(x, ...) blah(a, ## __VA_ARGS__) // #define C(...) blah(a, ## __VA_ARGS__) // A(x) B(x) C() isVarargsElided = true; } else if (!ContainsCodeCompletionTok) { // Otherwise, emit the error. Diag(Tok, diag::err_too_few_args_in_macro_invoc); Diag(MI->getDefinitionLoc(), diag::note_macro_here) << MacroName.getIdentifierInfo(); return nullptr; } // Add a marker EOF token to the end of the token list for this argument. SourceLocation EndLoc = Tok.getLocation(); Tok.startToken(); Tok.setKind(tok::eof); Tok.setLocation(EndLoc); Tok.setLength(0); ArgTokens.push_back(Tok); // If we expect two arguments, add both as empty. if (NumActuals == 0 && MinArgsExpected == 2) ArgTokens.push_back(Tok); } else if (NumActuals > MinArgsExpected && !MI->isVariadic() && !ContainsCodeCompletionTok) { // Emit the diagnostic at the macro name in case there is a missing ). // Emitting it at the , could be far away from the macro name. Diag(MacroName, diag::err_too_many_args_in_macro_invoc); Diag(MI->getDefinitionLoc(), diag::note_macro_here) << MacroName.getIdentifierInfo(); return nullptr; } return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this); } /// Keeps macro expanded tokens for TokenLexers. // /// Works like a stack; a TokenLexer adds the macro expanded tokens that is /// going to lex in the cache and when it finishes the tokens are removed /// from the end of the cache. Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, ArrayRef tokens) { assert(tokLexer); if (tokens.empty()) return nullptr; size_t newIndex = MacroExpandedTokens.size(); bool cacheNeedsToGrow = tokens.size() > MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); MacroExpandedTokens.append(tokens.begin(), tokens.end()); if (cacheNeedsToGrow) { // Go through all the TokenLexers whose 'Tokens' pointer points in the // buffer and update the pointers to the (potential) new buffer array. for (const auto &Lexer : MacroExpandingLexersStack) { TokenLexer *prevLexer; size_t tokIndex; std::tie(prevLexer, tokIndex) = Lexer; prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; } } MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex)); return MacroExpandedTokens.data() + newIndex; } void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { assert(!MacroExpandingLexersStack.empty()); size_t tokIndex = MacroExpandingLexersStack.back().second; assert(tokIndex < MacroExpandedTokens.size()); // Pop the cached macro expanded tokens from the end. MacroExpandedTokens.resize(tokIndex); MacroExpandingLexersStack.pop_back(); } /// ComputeDATE_TIME - Compute the current time, enter it into the specified /// scratch buffer, then return DATELoc/TIMELoc locations with the position of /// the identifier tokens inserted. static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, Preprocessor &PP) { time_t TT = time(nullptr); struct tm *TM = localtime(&TT); static const char * const Months[] = { "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" }; { SmallString<32> TmpBuffer; llvm::raw_svector_ostream TmpStream(TmpBuffer); TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon], TM->tm_mday, TM->tm_year + 1900); Token TmpTok; TmpTok.startToken(); PP.CreateString(TmpStream.str(), TmpTok); DATELoc = TmpTok.getLocation(); } { SmallString<32> TmpBuffer; llvm::raw_svector_ostream TmpStream(TmpBuffer); TmpStream << llvm::format("\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, TM->tm_sec); Token TmpTok; TmpTok.startToken(); PP.CreateString(TmpStream.str(), TmpTok); TIMELoc = TmpTok.getLocation(); } } /// HasFeature - Return true if we recognize and implement the feature /// specified by the identifier as a standard language feature. static bool HasFeature(const Preprocessor &PP, StringRef Feature) { const LangOptions &LangOpts = PP.getLangOpts(); // Normalize the feature name, __foo__ becomes foo. if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4) Feature = Feature.substr(2, Feature.size() - 4); #define FEATURE(Name, Predicate) .Case(#Name, Predicate) return llvm::StringSwitch(Feature) #include "clang/Basic/Features.def" .Default(false); #undef FEATURE } /// HasExtension - Return true if we recognize and implement the feature /// specified by the identifier, either as an extension or a standard language /// feature. static bool HasExtension(const Preprocessor &PP, StringRef Extension) { if (HasFeature(PP, Extension)) return true; // If the use of an extension results in an error diagnostic, extensions are // effectively unavailable, so just return false here. if (PP.getDiagnostics().getExtensionHandlingBehavior() >= diag::Severity::Error) return false; const LangOptions &LangOpts = PP.getLangOpts(); // Normalize the extension name, __foo__ becomes foo. if (Extension.startswith("__") && Extension.endswith("__") && Extension.size() >= 4) Extension = Extension.substr(2, Extension.size() - 4); // Because we inherit the feature list from HasFeature, this string switch // must be less restrictive than HasFeature's. #define EXTENSION(Name, Predicate) .Case(#Name, Predicate) return llvm::StringSwitch(Extension) #include "clang/Basic/Features.def" .Default(false); #undef EXTENSION } /// EvaluateHasIncludeCommon - Process a '__has_include("path")' /// or '__has_include_next("path")' expression. /// Returns true if successful. static bool EvaluateHasIncludeCommon(Token &Tok, IdentifierInfo *II, Preprocessor &PP, const DirectoryLookup *LookupFrom, const FileEntry *LookupFromFile) { // Save the location of the current token. If a '(' is later found, use // that location. If not, use the end of this location instead. SourceLocation LParenLoc = Tok.getLocation(); // These expressions are only allowed within a preprocessor directive. if (!PP.isParsingIfOrElifDirective()) { PP.Diag(LParenLoc, diag::err_pp_directive_required) << II; // Return a valid identifier token. assert(Tok.is(tok::identifier)); Tok.setIdentifierInfo(II); return false; } // Get '('. If we don't have a '(', try to form a header-name token. do { if (PP.LexHeaderName(Tok)) return false; } while (Tok.getKind() == tok::comment); // Ensure we have a '('. if (Tok.isNot(tok::l_paren)) { // No '(', use end of last token. LParenLoc = PP.getLocForEndOfToken(LParenLoc); PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren; // If the next token looks like a filename or the start of one, // assume it is and process it as such. if (Tok.isNot(tok::header_name)) return false; } else { // Save '(' location for possible missing ')' message. LParenLoc = Tok.getLocation(); if (PP.LexHeaderName(Tok)) return false; } if (Tok.isNot(tok::header_name)) { PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); return false; } // Reserve a buffer to get the spelling. SmallString<128> FilenameBuffer; bool Invalid = false; StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid); if (Invalid) return false; SourceLocation FilenameLoc = Tok.getLocation(); // Get ')'. PP.LexNonComment(Tok); // Ensure we have a trailing ). if (Tok.isNot(tok::r_paren)) { PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) << II << tok::r_paren; PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; return false; } bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename); // If GetIncludeFilenameSpelling set the start ptr to null, there was an // error. if (Filename.empty()) return false; // Search include directories. const DirectoryLookup *CurDir; Optional File = PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile, CurDir, nullptr, nullptr, nullptr, nullptr, nullptr); if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { SrcMgr::CharacteristicKind FileType = SrcMgr::C_User; if (File) FileType = PP.getHeaderSearchInfo().getFileDirFlavor(&File->getFileEntry()); Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType); } // Get the result value. A result of true means the file exists. return File.hasValue(); } /// EvaluateHasInclude - Process a '__has_include("path")' expression. /// Returns true if successful. static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II, Preprocessor &PP) { return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr); } /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression. /// Returns true if successful. static bool EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II, Preprocessor &PP) { // __has_include_next is like __has_include, except that we start // searching after the current found directory. If we can't do this, // issue a diagnostic. // FIXME: Factor out duplication with // Preprocessor::HandleIncludeNextDirective. const DirectoryLookup *Lookup = PP.GetCurDirLookup(); const FileEntry *LookupFromFile = nullptr; if (PP.isInPrimaryFile() && PP.getLangOpts().IsHeaderFile) { // If the main file is a header, then it's either for PCH/AST generation, // or libclang opened it. Either way, handle it as a normal include below // and do not complain about __has_include_next. } else if (PP.isInPrimaryFile()) { Lookup = nullptr; PP.Diag(Tok, diag::pp_include_next_in_primary); } else if (PP.getCurrentLexerSubmodule()) { // Start looking up in the directory *after* the one in which the current // file would be found, if any. assert(PP.getCurrentLexer() && "#include_next directive in macro?"); LookupFromFile = PP.getCurrentLexer()->getFileEntry(); Lookup = nullptr; } else if (!Lookup) { PP.Diag(Tok, diag::pp_include_next_absolute_path); } else { // Start looking up in the next directory. ++Lookup; } return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile); } /// Process single-argument builtin feature-like macros that return /// integer values. static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS, Token &Tok, IdentifierInfo *II, Preprocessor &PP, llvm::function_ref< int(Token &Tok, bool &HasLexedNextTok)> Op) { // Parse the initial '('. PP.LexUnexpandedToken(Tok); if (Tok.isNot(tok::l_paren)) { PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II << tok::l_paren; // Provide a dummy '0' value on output stream to elide further errors. if (!Tok.isOneOf(tok::eof, tok::eod)) { OS << 0; Tok.setKind(tok::numeric_constant); } return; } unsigned ParenDepth = 1; SourceLocation LParenLoc = Tok.getLocation(); llvm::Optional Result; Token ResultTok; bool SuppressDiagnostic = false; while (true) { // Parse next token. PP.LexUnexpandedToken(Tok); already_lexed: switch (Tok.getKind()) { case tok::eof: case tok::eod: // Don't provide even a dummy value if the eod or eof marker is // reached. Simply provide a diagnostic. PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc); return; case tok::comma: if (!SuppressDiagnostic) { PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc); SuppressDiagnostic = true; } continue; case tok::l_paren: ++ParenDepth; if (Result.hasValue()) break; if (!SuppressDiagnostic) { PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II; SuppressDiagnostic = true; } continue; case tok::r_paren: if (--ParenDepth > 0) continue; // The last ')' has been reached; return the value if one found or // a diagnostic and a dummy value. if (Result.hasValue()) { OS << Result.getValue(); // For strict conformance to __has_cpp_attribute rules, use 'L' // suffix for dated literals. if (Result.getValue() > 1) OS << 'L'; } else { OS << 0; if (!SuppressDiagnostic) PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc); } Tok.setKind(tok::numeric_constant); return; default: { // Parse the macro argument, if one not found so far. if (Result.hasValue()) break; bool HasLexedNextToken = false; Result = Op(Tok, HasLexedNextToken); ResultTok = Tok; if (HasLexedNextToken) goto already_lexed; continue; } } // Diagnose missing ')'. if (!SuppressDiagnostic) { if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) { if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo()) Diag << LastII; else Diag << ResultTok.getKind(); Diag << tok::r_paren << ResultTok.getLocation(); } PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; SuppressDiagnostic = true; } } } /// Helper function to return the IdentifierInfo structure of a Token /// or generate a diagnostic if none available. static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok, Preprocessor &PP, signed DiagID) { IdentifierInfo *II; if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo())) return II; PP.Diag(Tok.getLocation(), DiagID); return nullptr; } /// Implements the __is_target_arch builtin macro. static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) { std::string ArchName = II->getName().lower() + "--"; llvm::Triple Arch(ArchName); const llvm::Triple &TT = TI.getTriple(); if (TT.isThumb()) { // arm matches thumb or thumbv7. armv7 matches thumbv7. if ((Arch.getSubArch() == llvm::Triple::NoSubArch || Arch.getSubArch() == TT.getSubArch()) && ((TT.getArch() == llvm::Triple::thumb && Arch.getArch() == llvm::Triple::arm) || (TT.getArch() == llvm::Triple::thumbeb && Arch.getArch() == llvm::Triple::armeb))) return true; } // Check the parsed arch when it has no sub arch to allow Clang to // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7. return (Arch.getSubArch() == llvm::Triple::NoSubArch || Arch.getSubArch() == TT.getSubArch()) && Arch.getArch() == TT.getArch(); } /// Implements the __is_target_vendor builtin macro. static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) { StringRef VendorName = TI.getTriple().getVendorName(); if (VendorName.empty()) VendorName = "unknown"; return VendorName.equals_lower(II->getName()); } /// Implements the __is_target_os builtin macro. static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) { std::string OSName = (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); llvm::Triple OS(OSName); if (OS.getOS() == llvm::Triple::Darwin) { // Darwin matches macos, ios, etc. return TI.getTriple().isOSDarwin(); } return TI.getTriple().getOS() == OS.getOS(); } /// Implements the __is_target_environment builtin macro. static bool isTargetEnvironment(const TargetInfo &TI, const IdentifierInfo *II) { std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); llvm::Triple Env(EnvName); return TI.getTriple().getEnvironment() == Env.getEnvironment(); } /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded /// as a builtin macro, handle it and return the next token as 'Tok'. void Preprocessor::ExpandBuiltinMacro(Token &Tok) { // Figure out which token this is. IdentifierInfo *II = Tok.getIdentifierInfo(); assert(II && "Can't be a macro without id info!"); // If this is an _Pragma or Microsoft __pragma directive, expand it, // invoke the pragma handler, then lex the token after it. if (II == Ident_Pragma) return Handle_Pragma(Tok); else if (II == Ident__pragma) // in non-MS mode this is null return HandleMicrosoft__pragma(Tok); ++NumBuiltinMacroExpanded; SmallString<128> TmpBuffer; llvm::raw_svector_ostream OS(TmpBuffer); // Set up the return result. Tok.setIdentifierInfo(nullptr); Tok.clearFlag(Token::NeedsCleaning); bool IsAtStartOfLine = Tok.isAtStartOfLine(); bool HasLeadingSpace = Tok.hasLeadingSpace(); if (II == Ident__LINE__) { // C99 6.10.8: "__LINE__: The presumed line number (within the current // source file) of the current source line (an integer constant)". This can // be affected by #line. SourceLocation Loc = Tok.getLocation(); // Advance to the location of the first _, this might not be the first byte // of the token if it starts with an escaped newline. Loc = AdvanceToTokenCharacter(Loc, 0); // One wrinkle here is that GCC expands __LINE__ to location of the *end* of // a macro expansion. This doesn't matter for object-like macros, but // can matter for a function-like macro that expands to contain __LINE__. // Skip down through expansion points until we find a file loc for the // end of the expansion history. Loc = SourceMgr.getExpansionRange(Loc).getEnd(); PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); // __LINE__ expands to a simple numeric value. OS << (PLoc.isValid()? PLoc.getLine() : 1); Tok.setKind(tok::numeric_constant); } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ || II == Ident__FILE_NAME__) { // C99 6.10.8: "__FILE__: The presumed name of the current source file (a // character string literal)". This can be affected by #line. PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); // __BASE_FILE__ is a GNU extension that returns the top of the presumed // #include stack instead of the current file. if (II == Ident__BASE_FILE__ && PLoc.isValid()) { SourceLocation NextLoc = PLoc.getIncludeLoc(); while (NextLoc.isValid()) { PLoc = SourceMgr.getPresumedLoc(NextLoc); if (PLoc.isInvalid()) break; NextLoc = PLoc.getIncludeLoc(); } } // Escape this filename. Turn '\' -> '\\' '"' -> '\"' SmallString<128> FN; if (PLoc.isValid()) { // __FILE_NAME__ is a Clang-specific extension that expands to the // the last part of __FILE__. if (II == Ident__FILE_NAME__) { // Try to get the last path component, failing that return the original // presumed location. StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename()); if (PLFileName != "") FN += PLFileName; else FN += PLoc.getFilename(); } else { FN += PLoc.getFilename(); } Lexer::Stringify(FN); OS << '"' << FN << '"'; } Tok.setKind(tok::string_literal); } else if (II == Ident__DATE__) { Diag(Tok.getLocation(), diag::warn_pp_date_time); if (!DATELoc.isValid()) ComputeDATE_TIME(DATELoc, TIMELoc, *this); Tok.setKind(tok::string_literal); Tok.setLength(strlen("\"Mmm dd yyyy\"")); Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(), Tok.getLocation(), Tok.getLength())); return; } else if (II == Ident__TIME__) { Diag(Tok.getLocation(), diag::warn_pp_date_time); if (!TIMELoc.isValid()) ComputeDATE_TIME(DATELoc, TIMELoc, *this); Tok.setKind(tok::string_literal); Tok.setLength(strlen("\"hh:mm:ss\"")); Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(), Tok.getLocation(), Tok.getLength())); return; } else if (II == Ident__INCLUDE_LEVEL__) { // Compute the presumed include depth of this token. This can be affected // by GNU line markers. unsigned Depth = 0; PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); if (PLoc.isValid()) { PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); for (; PLoc.isValid(); ++Depth) PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); } // __INCLUDE_LEVEL__ expands to a simple numeric value. OS << Depth; Tok.setKind(tok::numeric_constant); } else if (II == Ident__TIMESTAMP__) { Diag(Tok.getLocation(), diag::warn_pp_date_time); // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. // Get the file that we are lexing out of. If we're currently lexing from // a macro, dig into the include stack. const FileEntry *CurFile = nullptr; PreprocessorLexer *TheLexer = getCurrentFileLexer(); if (TheLexer) CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID()); const char *Result; if (CurFile) { time_t TT = CurFile->getModificationTime(); struct tm *TM = localtime(&TT); Result = asctime(TM); } else { Result = "??? ??? ?? ??:??:?? ????\n"; } // Surround the string with " and strip the trailing newline. OS << '"' << StringRef(Result).drop_back() << '"'; Tok.setKind(tok::string_literal); } else if (II == Ident__COUNTER__) { // __COUNTER__ expands to a simple numeric value. OS << CounterValue++; Tok.setKind(tok::numeric_constant); } else if (II == Ident__has_feature) { EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, diag::err_feature_check_malformed); return II && HasFeature(*this, II->getName()); }); } else if (II == Ident__has_extension) { EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, diag::err_feature_check_malformed); return II && HasExtension(*this, II->getName()); }); } else if (II == Ident__has_builtin) { EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, diag::err_feature_check_malformed); const LangOptions &LangOpts = getLangOpts(); if (!II) return false; else if (II->getBuiltinID() != 0) { switch (II->getBuiltinID()) { case Builtin::BI__builtin_operator_new: case Builtin::BI__builtin_operator_delete: // denotes date of behavior change to support calling arbitrary // usual allocation and deallocation functions. Required by libc++ return 201802; default: return true; } return true; } else if (II->getTokenID() != tok::identifier || II->hasRevertedTokenIDToIdentifier()) { // Treat all keywords that introduce a custom syntax of the form // // '__some_keyword' '(' [...] ')' // // as being "builtin functions", even if the syntax isn't a valid // function call (for example, because the builtin takes a type // argument). if (II->getName().startswith("__builtin_") || II->getName().startswith("__is_") || II->getName().startswith("__has_")) return true; return llvm::StringSwitch(II->getName()) .Case("__array_rank", true) .Case("__array_extent", true) .Case("__reference_binds_to_temporary", true) .Case("__underlying_type", true) .Default(false); } else { return llvm::StringSwitch(II->getName()) // Report builtin templates as being builtins. .Case("__make_integer_seq", LangOpts.CPlusPlus) .Case("__type_pack_element", LangOpts.CPlusPlus) // Likewise for some builtin preprocessor macros. // FIXME: This is inconsistent; we usually suggest detecting // builtin macros via #ifdef. Don't add more cases here. .Case("__is_target_arch", true) .Case("__is_target_vendor", true) .Case("__is_target_os", true) .Case("__is_target_environment", true) .Default(false); } }); } else if (II == Ident__is_identifier) { EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, [](Token &Tok, bool &HasLexedNextToken) -> int { return Tok.is(tok::identifier); }); } else if (II == Ident__has_attribute) { EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, diag::err_feature_check_malformed); return II ? hasAttribute(AttrSyntax::GNU, nullptr, II, getTargetInfo(), getLangOpts()) : 0; }); } else if (II == Ident__has_declspec) { EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, diag::err_feature_check_malformed); return II ? hasAttribute(AttrSyntax::Declspec, nullptr, II, getTargetInfo(), getLangOpts()) : 0; }); } else if (II == Ident__has_cpp_attribute || II == Ident__has_c_attribute) { bool IsCXX = II == Ident__has_cpp_attribute; EvaluateFeatureLikeBuiltinMacro( OS, Tok, II, *this, [&](Token &Tok, bool &HasLexedNextToken) -> int { IdentifierInfo *ScopeII = nullptr; IdentifierInfo *II = ExpectFeatureIdentifierInfo( Tok, *this, diag::err_feature_check_malformed); if (!II) return false; // It is possible to receive a scope token. Read the "::", if it is // available, and the subsequent identifier. LexUnexpandedToken(Tok); if (Tok.isNot(tok::coloncolon)) HasLexedNextToken = true; else { ScopeII = II; LexUnexpandedToken(Tok); II = ExpectFeatureIdentifierInfo(Tok, *this, diag::err_feature_check_malformed); } AttrSyntax Syntax = IsCXX ? AttrSyntax::CXX : AttrSyntax::C; return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(), getLangOpts()) : 0; }); } else if (II == Ident__has_include || II == Ident__has_include_next) { // The argument to these two builtins should be a parenthesized // file name string literal using angle brackets (<>) or // double-quotes (""). bool Value; if (II == Ident__has_include) Value = EvaluateHasInclude(Tok, II, *this); else Value = EvaluateHasIncludeNext(Tok, II, *this); if (Tok.isNot(tok::r_paren)) return; OS << (int)Value; Tok.setKind(tok::numeric_constant); } else if (II == Ident__has_warning) { // The argument should be a parenthesized string literal. EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { std::string WarningName; SourceLocation StrStartLoc = Tok.getLocation(); HasLexedNextToken = Tok.is(tok::string_literal); if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'", /*AllowMacroExpansion=*/false)) return false; // FIXME: Should we accept "-R..." flags here, or should that be // handled by a separate __has_remark? if (WarningName.size() < 3 || WarningName[0] != '-' || WarningName[1] != 'W') { Diag(StrStartLoc, diag::warn_has_warning_invalid_option); return false; } // Finally, check if the warning flags maps to a diagnostic group. // We construct a SmallVector here to talk to getDiagnosticIDs(). // Although we don't use the result, this isn't a hot path, and not // worth special casing. SmallVector Diags; return !getDiagnostics().getDiagnosticIDs()-> getDiagnosticsInGroup(diag::Flavor::WarningOrError, WarningName.substr(2), Diags); }); } else if (II == Ident__building_module) { // The argument to this builtin should be an identifier. The // builtin evaluates to 1 when that identifier names the module we are // currently building. EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, diag::err_expected_id_building_module); return getLangOpts().isCompilingModule() && II && (II->getName() == getLangOpts().CurrentModule); }); } else if (II == Ident__MODULE__) { // The current module as an identifier. OS << getLangOpts().CurrentModule; IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule); Tok.setIdentifierInfo(ModuleII); Tok.setKind(ModuleII->getTokenID()); } else if (II == Ident__identifier) { SourceLocation Loc = Tok.getLocation(); // We're expecting '__identifier' '(' identifier ')'. Try to recover // if the parens are missing. LexNonComment(Tok); if (Tok.isNot(tok::l_paren)) { // No '(', use end of last token. Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after) << II << tok::l_paren; // If the next token isn't valid as our argument, we can't recover. if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) Tok.setKind(tok::identifier); return; } SourceLocation LParenLoc = Tok.getLocation(); LexNonComment(Tok); if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) Tok.setKind(tok::identifier); else { Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier) << Tok.getKind(); // Don't walk past anything that's not a real token. if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation()) return; } // Discard the ')', preserving 'Tok' as our result. Token RParen; LexNonComment(RParen); if (RParen.isNot(tok::r_paren)) { Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after) << Tok.getKind() << tok::r_paren; Diag(LParenLoc, diag::note_matching) << tok::l_paren; } return; } else if (II == Ident__is_target_arch) { EvaluateFeatureLikeBuiltinMacro( OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { IdentifierInfo *II = ExpectFeatureIdentifierInfo( Tok, *this, diag::err_feature_check_malformed); return II && isTargetArch(getTargetInfo(), II); }); } else if (II == Ident__is_target_vendor) { EvaluateFeatureLikeBuiltinMacro( OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { IdentifierInfo *II = ExpectFeatureIdentifierInfo( Tok, *this, diag::err_feature_check_malformed); return II && isTargetVendor(getTargetInfo(), II); }); } else if (II == Ident__is_target_os) { EvaluateFeatureLikeBuiltinMacro( OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { IdentifierInfo *II = ExpectFeatureIdentifierInfo( Tok, *this, diag::err_feature_check_malformed); return II && isTargetOS(getTargetInfo(), II); }); } else if (II == Ident__is_target_environment) { EvaluateFeatureLikeBuiltinMacro( OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { IdentifierInfo *II = ExpectFeatureIdentifierInfo( Tok, *this, diag::err_feature_check_malformed); return II && isTargetEnvironment(getTargetInfo(), II); }); } else { llvm_unreachable("Unknown identifier!"); } CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation()); Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine); Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace); } void Preprocessor::markMacroAsUsed(MacroInfo *MI) { // If the 'used' status changed, and the macro requires 'unused' warning, // remove its SourceLocation from the warn-for-unused-macro locations. if (MI->isWarnIfUnused() && !MI->isUsed()) WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); MI->setIsUsed(true); }