//===--- CGException.cpp - Emit LLVM Code for C++ exceptions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with C++ exception related code generation. // //===----------------------------------------------------------------------===// #include "clang/AST/StmtCXX.h" #include "llvm/Intrinsics.h" #include "llvm/IntrinsicInst.h" #include "llvm/Support/CallSite.h" #include "CGObjCRuntime.h" #include "CodeGenFunction.h" #include "CGException.h" #include "CGCleanup.h" #include "TargetInfo.h" using namespace clang; using namespace CodeGen; static llvm::Constant *getAllocateExceptionFn(CodeGenFunction &CGF) { // void *__cxa_allocate_exception(size_t thrown_size); const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); std::vector Args(1, SizeTy); const llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getInt8PtrTy(CGF.getLLVMContext()), Args, false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); } static llvm::Constant *getFreeExceptionFn(CodeGenFunction &CGF) { // void __cxa_free_exception(void *thrown_exception); const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); std::vector Args(1, Int8PtrTy); const llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), Args, false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_free_exception"); } static llvm::Constant *getThrowFn(CodeGenFunction &CGF) { // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, // void (*dest) (void *)); const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); std::vector Args(3, Int8PtrTy); const llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), Args, false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); } static llvm::Constant *getReThrowFn(CodeGenFunction &CGF) { // void __cxa_rethrow(); const llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); } static llvm::Constant *getGetExceptionPtrFn(CodeGenFunction &CGF) { // void *__cxa_get_exception_ptr(void*); const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); std::vector Args(1, Int8PtrTy); const llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); } static llvm::Constant *getBeginCatchFn(CodeGenFunction &CGF) { // void *__cxa_begin_catch(void*); const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); std::vector Args(1, Int8PtrTy); const llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); } static llvm::Constant *getEndCatchFn(CodeGenFunction &CGF) { // void __cxa_end_catch(); const llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); } static llvm::Constant *getUnexpectedFn(CodeGenFunction &CGF) { // void __cxa_call_unexepcted(void *thrown_exception); const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); std::vector Args(1, Int8PtrTy); const llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), Args, false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_call_unexpected"); } llvm::Constant *CodeGenFunction::getUnwindResumeOrRethrowFn() { const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext()); std::vector Args(1, Int8PtrTy); const llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), Args, false); if (CGM.getLangOptions().SjLjExceptions) return CGM.CreateRuntimeFunction(FTy, "_Unwind_SjLj_Resume_or_Rethrow"); return CGM.CreateRuntimeFunction(FTy, "_Unwind_Resume_or_Rethrow"); } static llvm::Constant *getTerminateFn(CodeGenFunction &CGF) { // void __terminate(); const llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(CGF.getLLVMContext()), false); return CGF.CGM.CreateRuntimeFunction(FTy, CGF.CGM.getLangOptions().CPlusPlus ? "_ZSt9terminatev" : "abort"); } static llvm::Constant *getCatchallRethrowFn(CodeGenFunction &CGF, llvm::StringRef Name) { const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); std::vector Args(1, Int8PtrTy); const llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext()); const llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, Args, false); return CGF.CGM.CreateRuntimeFunction(FTy, Name); } const EHPersonality EHPersonality::GNU_C("__gcc_personality_v0"); const EHPersonality EHPersonality::GNU_C_SJLJ("__gcc_personality_sj0"); const EHPersonality EHPersonality::NeXT_ObjC("__objc_personality_v0"); const EHPersonality EHPersonality::GNU_CPlusPlus("__gxx_personality_v0"); const EHPersonality EHPersonality::GNU_CPlusPlus_SJLJ("__gxx_personality_sj0"); const EHPersonality EHPersonality::GNU_ObjC("__gnu_objc_personality_v0", "objc_exception_throw"); const EHPersonality EHPersonality::GNU_ObjCXX("__gnustep_objcxx_personality_v0"); static const EHPersonality &getCPersonality(const LangOptions &L) { if (L.SjLjExceptions) return EHPersonality::GNU_C_SJLJ; return EHPersonality::GNU_C; } static const EHPersonality &getObjCPersonality(const LangOptions &L) { if (L.NeXTRuntime) { if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC; else return getCPersonality(L); } else { return EHPersonality::GNU_ObjC; } } static const EHPersonality &getCXXPersonality(const LangOptions &L) { if (L.SjLjExceptions) return EHPersonality::GNU_CPlusPlus_SJLJ; else return EHPersonality::GNU_CPlusPlus; } /// Determines the personality function to use when both C++ /// and Objective-C exceptions are being caught. static const EHPersonality &getObjCXXPersonality(const LangOptions &L) { // The ObjC personality defers to the C++ personality for non-ObjC // handlers. Unlike the C++ case, we use the same personality // function on targets using (backend-driven) SJLJ EH. if (L.NeXTRuntime) { if (L.ObjCNonFragileABI) return EHPersonality::NeXT_ObjC; // In the fragile ABI, just use C++ exception handling and hope // they're not doing crazy exception mixing. else return getCXXPersonality(L); } // The GNU runtime's personality function inherently doesn't support // mixed EH. Use the C++ personality just to avoid returning null. return EHPersonality::GNU_ObjCXX; } const EHPersonality &EHPersonality::get(const LangOptions &L) { if (L.CPlusPlus && L.ObjC1) return getObjCXXPersonality(L); else if (L.CPlusPlus) return getCXXPersonality(L); else if (L.ObjC1) return getObjCPersonality(L); else return getCPersonality(L); } static llvm::Constant *getPersonalityFn(CodeGenModule &CGM, const EHPersonality &Personality) { llvm::Constant *Fn = CGM.CreateRuntimeFunction(llvm::FunctionType::get( llvm::Type::getInt32Ty(CGM.getLLVMContext()), true), Personality.getPersonalityFnName()); return Fn; } static llvm::Constant *getOpaquePersonalityFn(CodeGenModule &CGM, const EHPersonality &Personality) { llvm::Constant *Fn = getPersonalityFn(CGM, Personality); return llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); } /// Check whether a personality function could reasonably be swapped /// for a C++ personality function. static bool PersonalityHasOnlyCXXUses(llvm::Constant *Fn) { for (llvm::Constant::use_iterator I = Fn->use_begin(), E = Fn->use_end(); I != E; ++I) { llvm::User *User = *I; // Conditionally white-list bitcasts. if (llvm::ConstantExpr *CE = dyn_cast(User)) { if (CE->getOpcode() != llvm::Instruction::BitCast) return false; if (!PersonalityHasOnlyCXXUses(CE)) return false; continue; } // Otherwise, it has to be a selector call. if (!isa(User)) return false; llvm::EHSelectorInst *Selector = cast(User); for (unsigned I = 2, E = Selector->getNumArgOperands(); I != E; ++I) { // Look for something that would've been returned by the ObjC // runtime's GetEHType() method. llvm::GlobalVariable *GV = dyn_cast(Selector->getArgOperand(I)); if (!GV) continue; // ObjC EH selector entries are always global variables with // names starting like this. if (GV->getName().startswith("OBJC_EHTYPE")) return false; } } return true; } /// Try to use the C++ personality function in ObjC++. Not doing this /// can cause some incompatibilities with gcc, which is more /// aggressive about only using the ObjC++ personality in a function /// when it really needs it. void CodeGenModule::SimplifyPersonality() { // For now, this is really a Darwin-specific operation. if (Context.Target.getTriple().getOS() != llvm::Triple::Darwin) return; // If we're not in ObjC++ -fexceptions, there's nothing to do. if (!Features.CPlusPlus || !Features.ObjC1 || !Features.Exceptions) return; const EHPersonality &ObjCXX = EHPersonality::get(Features); const EHPersonality &CXX = getCXXPersonality(Features); if (&ObjCXX == &CXX || ObjCXX.getPersonalityFnName() == CXX.getPersonalityFnName()) return; llvm::Function *Fn = getModule().getFunction(ObjCXX.getPersonalityFnName()); // Nothing to do if it's unused. if (!Fn || Fn->use_empty()) return; // Can't do the optimization if it has non-C++ uses. if (!PersonalityHasOnlyCXXUses(Fn)) return; // Create the C++ personality function and kill off the old // function. llvm::Constant *CXXFn = getPersonalityFn(*this, CXX); // This can happen if the user is screwing with us. if (Fn->getType() != CXXFn->getType()) return; Fn->replaceAllUsesWith(CXXFn); Fn->eraseFromParent(); } /// Returns the value to inject into a selector to indicate the /// presence of a catch-all. static llvm::Constant *getCatchAllValue(CodeGenFunction &CGF) { // Possibly we should use @llvm.eh.catch.all.value here. return llvm::ConstantPointerNull::get(CGF.Int8PtrTy); } /// Returns the value to inject into a selector to indicate the /// presence of a cleanup. static llvm::Constant *getCleanupValue(CodeGenFunction &CGF) { return llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); } namespace { /// A cleanup to free the exception object if its initialization /// throws. struct FreeException { static void Emit(CodeGenFunction &CGF, bool forEH, llvm::Value *exn) { CGF.Builder.CreateCall(getFreeExceptionFn(CGF), exn) ->setDoesNotThrow(); } }; } // Emits an exception expression into the given location. This // differs from EmitAnyExprToMem only in that, if a final copy-ctor // call is required, an exception within that copy ctor causes // std::terminate to be invoked. static void EmitAnyExprToExn(CodeGenFunction &CGF, const Expr *e, llvm::Value *addr) { // Make sure the exception object is cleaned up if there's an // exception during initialization. CGF.pushFullExprCleanup(EHCleanup, addr); EHScopeStack::stable_iterator cleanup = CGF.EHStack.stable_begin(); // __cxa_allocate_exception returns a void*; we need to cast this // to the appropriate type for the object. const llvm::Type *ty = CGF.ConvertTypeForMem(e->getType())->getPointerTo(); llvm::Value *typedAddr = CGF.Builder.CreateBitCast(addr, ty); // FIXME: this isn't quite right! If there's a final unelided call // to a copy constructor, then according to [except.terminate]p1 we // must call std::terminate() if that constructor throws, because // technically that copy occurs after the exception expression is // evaluated but before the exception is caught. But the best way // to handle that is to teach EmitAggExpr to do the final copy // differently if it can't be elided. CGF.EmitAnyExprToMem(e, typedAddr, /*Volatile*/ false, /*IsInit*/ true); // Deactivate the cleanup block. CGF.DeactivateCleanupBlock(cleanup); } llvm::Value *CodeGenFunction::getExceptionSlot() { if (!ExceptionSlot) { const llvm::Type *i8p = llvm::Type::getInt8PtrTy(getLLVMContext()); ExceptionSlot = CreateTempAlloca(i8p, "exn.slot"); } return ExceptionSlot; } void CodeGenFunction::EmitCXXThrowExpr(const CXXThrowExpr *E) { if (!E->getSubExpr()) { if (getInvokeDest()) { Builder.CreateInvoke(getReThrowFn(*this), getUnreachableBlock(), getInvokeDest()) ->setDoesNotReturn(); } else { Builder.CreateCall(getReThrowFn(*this))->setDoesNotReturn(); Builder.CreateUnreachable(); } // throw is an expression, and the expression emitters expect us // to leave ourselves at a valid insertion point. EmitBlock(createBasicBlock("throw.cont")); return; } QualType ThrowType = E->getSubExpr()->getType(); // Now allocate the exception object. const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(*this); llvm::CallInst *ExceptionPtr = Builder.CreateCall(AllocExceptionFn, llvm::ConstantInt::get(SizeTy, TypeSize), "exception"); ExceptionPtr->setDoesNotThrow(); EmitAnyExprToExn(*this, E->getSubExpr(), ExceptionPtr); // Now throw the exception. const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext()); llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, /*ForEH=*/true); // The address of the destructor. If the exception type has a // trivial destructor (or isn't a record), we just pass null. llvm::Constant *Dtor = 0; if (const RecordType *RecordTy = ThrowType->getAs()) { CXXRecordDecl *Record = cast(RecordTy->getDecl()); if (!Record->hasTrivialDestructor()) { CXXDestructorDecl *DtorD = Record->getDestructor(); Dtor = CGM.GetAddrOfCXXDestructor(DtorD, Dtor_Complete); Dtor = llvm::ConstantExpr::getBitCast(Dtor, Int8PtrTy); } } if (!Dtor) Dtor = llvm::Constant::getNullValue(Int8PtrTy); if (getInvokeDest()) { llvm::InvokeInst *ThrowCall = Builder.CreateInvoke3(getThrowFn(*this), getUnreachableBlock(), getInvokeDest(), ExceptionPtr, TypeInfo, Dtor); ThrowCall->setDoesNotReturn(); } else { llvm::CallInst *ThrowCall = Builder.CreateCall3(getThrowFn(*this), ExceptionPtr, TypeInfo, Dtor); ThrowCall->setDoesNotReturn(); Builder.CreateUnreachable(); } // throw is an expression, and the expression emitters expect us // to leave ourselves at a valid insertion point. EmitBlock(createBasicBlock("throw.cont")); } void CodeGenFunction::EmitStartEHSpec(const Decl *D) { if (!CGM.getLangOptions().CXXExceptions) return; const FunctionDecl* FD = dyn_cast_or_null(D); if (FD == 0) return; const FunctionProtoType *Proto = FD->getType()->getAs(); if (Proto == 0) return; ExceptionSpecificationType EST = Proto->getExceptionSpecType(); if (isNoexceptExceptionSpec(EST)) { if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { // noexcept functions are simple terminate scopes. EHStack.pushTerminate(); } } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { unsigned NumExceptions = Proto->getNumExceptions(); EHFilterScope *Filter = EHStack.pushFilter(NumExceptions); for (unsigned I = 0; I != NumExceptions; ++I) { QualType Ty = Proto->getExceptionType(I); QualType ExceptType = Ty.getNonReferenceType().getUnqualifiedType(); llvm::Value *EHType = CGM.GetAddrOfRTTIDescriptor(ExceptType, /*ForEH=*/true); Filter->setFilter(I, EHType); } } } void CodeGenFunction::EmitEndEHSpec(const Decl *D) { if (!CGM.getLangOptions().CXXExceptions) return; const FunctionDecl* FD = dyn_cast_or_null(D); if (FD == 0) return; const FunctionProtoType *Proto = FD->getType()->getAs(); if (Proto == 0) return; ExceptionSpecificationType EST = Proto->getExceptionSpecType(); if (isNoexceptExceptionSpec(EST)) { if (Proto->getNoexceptSpec(getContext()) == FunctionProtoType::NR_Nothrow) { EHStack.popTerminate(); } } else if (EST == EST_Dynamic || EST == EST_DynamicNone) { EHStack.popFilter(); } } void CodeGenFunction::EmitCXXTryStmt(const CXXTryStmt &S) { EnterCXXTryStmt(S); EmitStmt(S.getTryBlock()); ExitCXXTryStmt(S); } void CodeGenFunction::EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { unsigned NumHandlers = S.getNumHandlers(); EHCatchScope *CatchScope = EHStack.pushCatch(NumHandlers); for (unsigned I = 0; I != NumHandlers; ++I) { const CXXCatchStmt *C = S.getHandler(I); llvm::BasicBlock *Handler = createBasicBlock("catch"); if (C->getExceptionDecl()) { // FIXME: Dropping the reference type on the type into makes it // impossible to correctly implement catch-by-reference // semantics for pointers. Unfortunately, this is what all // existing compilers do, and it's not clear that the standard // personality routine is capable of doing this right. See C++ DR 388: // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#388 QualType CaughtType = C->getCaughtType(); CaughtType = CaughtType.getNonReferenceType().getUnqualifiedType(); llvm::Value *TypeInfo = 0; if (CaughtType->isObjCObjectPointerType()) TypeInfo = CGM.getObjCRuntime().GetEHType(CaughtType); else TypeInfo = CGM.GetAddrOfRTTIDescriptor(CaughtType, /*ForEH=*/true); CatchScope->setHandler(I, TypeInfo, Handler); } else { // No exception decl indicates '...', a catch-all. CatchScope->setCatchAllHandler(I, Handler); } } } /// Check whether this is a non-EH scope, i.e. a scope which doesn't /// affect exception handling. Currently, the only non-EH scopes are /// normal-only cleanup scopes. static bool isNonEHScope(const EHScope &S) { switch (S.getKind()) { case EHScope::Cleanup: return !cast(S).isEHCleanup(); case EHScope::Filter: case EHScope::Catch: case EHScope::Terminate: return false; } // Suppress warning. return false; } llvm::BasicBlock *CodeGenFunction::getInvokeDestImpl() { assert(EHStack.requiresLandingPad()); assert(!EHStack.empty()); if (!CGM.getLangOptions().Exceptions) return 0; // Check the innermost scope for a cached landing pad. If this is // a non-EH cleanup, we'll check enclosing scopes in EmitLandingPad. llvm::BasicBlock *LP = EHStack.begin()->getCachedLandingPad(); if (LP) return LP; // Build the landing pad for this scope. LP = EmitLandingPad(); assert(LP); // Cache the landing pad on the innermost scope. If this is a // non-EH scope, cache the landing pad on the enclosing scope, too. for (EHScopeStack::iterator ir = EHStack.begin(); true; ++ir) { ir->setCachedLandingPad(LP); if (!isNonEHScope(*ir)) break; } return LP; } llvm::BasicBlock *CodeGenFunction::EmitLandingPad() { assert(EHStack.requiresLandingPad()); // This function contains a hack to work around a design flaw in // LLVM's EH IR which breaks semantics after inlining. This same // hack is implemented in llvm-gcc. // // The LLVM EH abstraction is basically a thin veneer over the // traditional GCC zero-cost design: for each range of instructions // in the function, there is (at most) one "landing pad" with an // associated chain of EH actions. A language-specific personality // function interprets this chain of actions and (1) decides whether // or not to resume execution at the landing pad and (2) if so, // provides an integer indicating why it's stopping. In LLVM IR, // the association of a landing pad with a range of instructions is // achieved via an invoke instruction, the chain of actions becomes // the arguments to the @llvm.eh.selector call, and the selector // call returns the integer indicator. Other than the required // presence of two intrinsic function calls in the landing pad, // the IR exactly describes the layout of the output code. // // A principal advantage of this design is that it is completely // language-agnostic; in theory, the LLVM optimizers can treat // landing pads neutrally, and targets need only know how to lower // the intrinsics to have a functioning exceptions system (assuming // that platform exceptions follow something approximately like the // GCC design). Unfortunately, landing pads cannot be combined in a // language-agnostic way: given selectors A and B, there is no way // to make a single landing pad which faithfully represents the // semantics of propagating an exception first through A, then // through B, without knowing how the personality will interpret the // (lowered form of the) selectors. This means that inlining has no // choice but to crudely chain invokes (i.e., to ignore invokes in // the inlined function, but to turn all unwindable calls into // invokes), which is only semantically valid if every unwind stops // at every landing pad. // // Therefore, the invoke-inline hack is to guarantee that every // landing pad has a catch-all. const bool UseInvokeInlineHack = true; for (EHScopeStack::iterator ir = EHStack.begin(); ; ) { assert(ir != EHStack.end() && "stack requiring landing pad is nothing but non-EH scopes?"); // If this is a terminate scope, just use the singleton terminate // landing pad. if (isa(*ir)) return getTerminateLandingPad(); // If this isn't an EH scope, iterate; otherwise break out. if (!isNonEHScope(*ir)) break; ++ir; // We haven't checked this scope for a cached landing pad yet. if (llvm::BasicBlock *LP = ir->getCachedLandingPad()) return LP; } // Save the current IR generation state. CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); const EHPersonality &Personality = EHPersonality::get(getLangOptions()); // Create and configure the landing pad. llvm::BasicBlock *LP = createBasicBlock("lpad"); EmitBlock(LP); // Save the exception pointer. It's safe to use a single exception // pointer per function because EH cleanups can never have nested // try/catches. llvm::CallInst *Exn = Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn"); Exn->setDoesNotThrow(); Builder.CreateStore(Exn, getExceptionSlot()); // Build the selector arguments. llvm::SmallVector EHSelector; EHSelector.push_back(Exn); EHSelector.push_back(getOpaquePersonalityFn(CGM, Personality)); // Accumulate all the handlers in scope. llvm::DenseMap EHHandlers; UnwindDest CatchAll; bool HasEHCleanup = false; bool HasEHFilter = false; llvm::SmallVector EHFilters; for (EHScopeStack::iterator I = EHStack.begin(), E = EHStack.end(); I != E; ++I) { switch (I->getKind()) { case EHScope::Cleanup: if (!HasEHCleanup) HasEHCleanup = cast(*I).isEHCleanup(); // We otherwise don't care about cleanups. continue; case EHScope::Filter: { assert(I.next() == EHStack.end() && "EH filter is not end of EH stack"); assert(!CatchAll.isValid() && "EH filter reached after catch-all"); // Filter scopes get added to the selector in wierd ways. EHFilterScope &Filter = cast(*I); HasEHFilter = true; // Add all the filter values which we aren't already explicitly // catching. for (unsigned I = 0, E = Filter.getNumFilters(); I != E; ++I) { llvm::Value *FV = Filter.getFilter(I); if (!EHHandlers.count(FV)) EHFilters.push_back(FV); } goto done; } case EHScope::Terminate: // Terminate scopes are basically catch-alls. assert(!CatchAll.isValid()); CatchAll = UnwindDest(getTerminateHandler(), EHStack.getEnclosingEHCleanup(I), cast(*I).getDestIndex()); goto done; case EHScope::Catch: break; } EHCatchScope &Catch = cast(*I); for (unsigned HI = 0, HE = Catch.getNumHandlers(); HI != HE; ++HI) { EHCatchScope::Handler Handler = Catch.getHandler(HI); // Catch-all. We should only have one of these per catch. if (!Handler.Type) { assert(!CatchAll.isValid()); CatchAll = UnwindDest(Handler.Block, EHStack.getEnclosingEHCleanup(I), Handler.Index); continue; } // Check whether we already have a handler for this type. UnwindDest &Dest = EHHandlers[Handler.Type]; if (Dest.isValid()) continue; EHSelector.push_back(Handler.Type); Dest = UnwindDest(Handler.Block, EHStack.getEnclosingEHCleanup(I), Handler.Index); } // Stop if we found a catch-all. if (CatchAll.isValid()) break; } done: unsigned LastToEmitInLoop = EHSelector.size(); // If we have a catch-all, add null to the selector. if (CatchAll.isValid()) { EHSelector.push_back(getCatchAllValue(*this)); // If we have an EH filter, we need to add those handlers in the // right place in the selector, which is to say, at the end. } else if (HasEHFilter) { // Create a filter expression: an integer constant saying how many // filters there are (+1 to avoid ambiguity with 0 for cleanup), // followed by the filter types. The personality routine only // lands here if the filter doesn't match. EHSelector.push_back(llvm::ConstantInt::get(Builder.getInt32Ty(), EHFilters.size() + 1)); EHSelector.append(EHFilters.begin(), EHFilters.end()); // Also check whether we need a cleanup. if (UseInvokeInlineHack || HasEHCleanup) EHSelector.push_back(UseInvokeInlineHack ? getCatchAllValue(*this) : getCleanupValue(*this)); // Otherwise, signal that we at least have cleanups. } else if (UseInvokeInlineHack || HasEHCleanup) { EHSelector.push_back(UseInvokeInlineHack ? getCatchAllValue(*this) : getCleanupValue(*this)); } else { assert(LastToEmitInLoop > 2); LastToEmitInLoop--; } assert(EHSelector.size() >= 3 && "selector call has only two arguments!"); // Tell the backend how to generate the landing pad. llvm::CallInst *Selection = Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector), EHSelector.begin(), EHSelector.end(), "eh.selector"); Selection->setDoesNotThrow(); // Select the right handler. llvm::Value *llvm_eh_typeid_for = CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for); // The results of llvm_eh_typeid_for aren't reliable --- at least // not locally --- so we basically have to do this as an 'if' chain. // We walk through the first N-1 catch clauses, testing and chaining, // and then fall into the final clause (which is either a cleanup, a // filter (possibly with a cleanup), a catch-all, or another catch). for (unsigned I = 2; I != LastToEmitInLoop; ++I) { llvm::Value *Type = EHSelector[I]; UnwindDest Dest = EHHandlers[Type]; assert(Dest.isValid() && "no handler entry for value in selector?"); // Figure out where to branch on a match. As a debug code-size // optimization, if the scope depth matches the innermost cleanup, // we branch directly to the catch handler. llvm::BasicBlock *Match = Dest.getBlock(); bool MatchNeedsCleanup = Dest.getScopeDepth() != EHStack.getInnermostEHCleanup(); if (MatchNeedsCleanup) Match = createBasicBlock("eh.match"); llvm::BasicBlock *Next = createBasicBlock("eh.next"); // Check whether the exception matches. llvm::CallInst *Id = Builder.CreateCall(llvm_eh_typeid_for, Builder.CreateBitCast(Type, Int8PtrTy)); Id->setDoesNotThrow(); Builder.CreateCondBr(Builder.CreateICmpEQ(Selection, Id), Match, Next); // Emit match code if necessary. if (MatchNeedsCleanup) { EmitBlock(Match); EmitBranchThroughEHCleanup(Dest); } // Continue to the next match. EmitBlock(Next); } // Emit the final case in the selector. // This might be a catch-all.... if (CatchAll.isValid()) { assert(isa(EHSelector.back())); EmitBranchThroughEHCleanup(CatchAll); // ...or an EH filter... } else if (HasEHFilter) { llvm::Value *SavedSelection = Selection; // First, unwind out to the outermost scope if necessary. if (EHStack.hasEHCleanups()) { // The end here might not dominate the beginning, so we might need to // save the selector if we need it. llvm::AllocaInst *SelectorVar = 0; if (HasEHCleanup) { SelectorVar = CreateTempAlloca(Builder.getInt32Ty(), "selector.var"); Builder.CreateStore(Selection, SelectorVar); } llvm::BasicBlock *CleanupContBB = createBasicBlock("ehspec.cleanup.cont"); EmitBranchThroughEHCleanup(UnwindDest(CleanupContBB, EHStack.stable_end(), EHStack.getNextEHDestIndex())); EmitBlock(CleanupContBB); if (HasEHCleanup) SavedSelection = Builder.CreateLoad(SelectorVar, "ehspec.saved-selector"); } // If there was a cleanup, we'll need to actually check whether we // landed here because the filter triggered. if (UseInvokeInlineHack || HasEHCleanup) { llvm::BasicBlock *RethrowBB = createBasicBlock("cleanup"); llvm::BasicBlock *UnexpectedBB = createBasicBlock("ehspec.unexpected"); llvm::Constant *Zero = llvm::ConstantInt::get(Builder.getInt32Ty(), 0); llvm::Value *FailsFilter = Builder.CreateICmpSLT(SavedSelection, Zero, "ehspec.fails"); Builder.CreateCondBr(FailsFilter, UnexpectedBB, RethrowBB); // The rethrow block is where we land if this was a cleanup. // TODO: can this be _Unwind_Resume if the InvokeInlineHack is off? EmitBlock(RethrowBB); Builder.CreateCall(getUnwindResumeOrRethrowFn(), Builder.CreateLoad(getExceptionSlot())) ->setDoesNotReturn(); Builder.CreateUnreachable(); EmitBlock(UnexpectedBB); } // Call __cxa_call_unexpected. This doesn't need to be an invoke // because __cxa_call_unexpected magically filters exceptions // according to the last landing pad the exception was thrown // into. Seriously. Builder.CreateCall(getUnexpectedFn(*this), Builder.CreateLoad(getExceptionSlot())) ->setDoesNotReturn(); Builder.CreateUnreachable(); // ...or a normal catch handler... } else if (!UseInvokeInlineHack && !HasEHCleanup) { llvm::Value *Type = EHSelector.back(); EmitBranchThroughEHCleanup(EHHandlers[Type]); // ...or a cleanup. } else { EmitBranchThroughEHCleanup(getRethrowDest()); } // Restore the old IR generation state. Builder.restoreIP(SavedIP); return LP; } namespace { /// A cleanup to call __cxa_end_catch. In many cases, the caught /// exception type lets us state definitively that the thrown exception /// type does not have a destructor. In particular: /// - Catch-alls tell us nothing, so we have to conservatively /// assume that the thrown exception might have a destructor. /// - Catches by reference behave according to their base types. /// - Catches of non-record types will only trigger for exceptions /// of non-record types, which never have destructors. /// - Catches of record types can trigger for arbitrary subclasses /// of the caught type, so we have to assume the actual thrown /// exception type might have a throwing destructor, even if the /// caught type's destructor is trivial or nothrow. struct CallEndCatch : EHScopeStack::Cleanup { CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} bool MightThrow; void Emit(CodeGenFunction &CGF, bool IsForEH) { if (!MightThrow) { CGF.Builder.CreateCall(getEndCatchFn(CGF))->setDoesNotThrow(); return; } CGF.EmitCallOrInvoke(getEndCatchFn(CGF), 0, 0); } }; } /// Emits a call to __cxa_begin_catch and enters a cleanup to call /// __cxa_end_catch. /// /// \param EndMightThrow - true if __cxa_end_catch might throw static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, llvm::Value *Exn, bool EndMightThrow) { llvm::CallInst *Call = CGF.Builder.CreateCall(getBeginCatchFn(CGF), Exn); Call->setDoesNotThrow(); CGF.EHStack.pushCleanup(NormalAndEHCleanup, EndMightThrow); return Call; } /// A "special initializer" callback for initializing a catch /// parameter during catch initialization. static void InitCatchParam(CodeGenFunction &CGF, const VarDecl &CatchParam, llvm::Value *ParamAddr) { // Load the exception from where the landing pad saved it. llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn"); CanQualType CatchType = CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); const llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); // If we're catching by reference, we can just cast the object // pointer to the appropriate pointer. if (isa(CatchType)) { QualType CaughtType = cast(CatchType)->getPointeeType(); bool EndCatchMightThrow = CaughtType->isRecordType(); // __cxa_begin_catch returns the adjusted object pointer. llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); // We have no way to tell the personality function that we're // catching by reference, so if we're catching a pointer, // __cxa_begin_catch will actually return that pointer by value. if (const PointerType *PT = dyn_cast(CaughtType)) { QualType PointeeType = PT->getPointeeType(); // When catching by reference, generally we should just ignore // this by-value pointer and use the exception object instead. if (!PointeeType->isRecordType()) { // Exn points to the struct _Unwind_Exception header, which // we have to skip past in order to reach the exception data. unsigned HeaderSize = CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); // However, if we're catching a pointer-to-record type that won't // work, because the personality function might have adjusted // the pointer. There's actually no way for us to fully satisfy // the language/ABI contract here: we can't use Exn because it // might have the wrong adjustment, but we can't use the by-value // pointer because it's off by a level of abstraction. // // The current solution is to dump the adjusted pointer into an // alloca, which breaks language semantics (because changing the // pointer doesn't change the exception) but at least works. // The better solution would be to filter out non-exact matches // and rethrow them, but this is tricky because the rethrow // really needs to be catchable by other sites at this landing // pad. The best solution is to fix the personality function. } else { // Pull the pointer for the reference type off. const llvm::Type *PtrTy = cast(LLVMCatchTy)->getElementType(); // Create the temporary and write the adjusted pointer into it. llvm::Value *ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, "exn.byref.tmp"); llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); CGF.Builder.CreateStore(Casted, ExnPtrTmp); // Bind the reference to the temporary. AdjustedExn = ExnPtrTmp; } } llvm::Value *ExnCast = CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); CGF.Builder.CreateStore(ExnCast, ParamAddr); return; } // Non-aggregates (plus complexes). bool IsComplex = false; if (!CGF.hasAggregateLLVMType(CatchType) || (IsComplex = CatchType->isAnyComplexType())) { llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); // If the catch type is a pointer type, __cxa_begin_catch returns // the pointer by value. if (CatchType->hasPointerRepresentation()) { llvm::Value *CastExn = CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); CGF.Builder.CreateStore(CastExn, ParamAddr); return; } // Otherwise, it returns a pointer into the exception object. const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); if (IsComplex) { CGF.StoreComplexToAddr(CGF.LoadComplexFromAddr(Cast, /*volatile*/ false), ParamAddr, /*volatile*/ false); } else { unsigned Alignment = CGF.getContext().getDeclAlign(&CatchParam).getQuantity(); llvm::Value *ExnLoad = CGF.Builder.CreateLoad(Cast, "exn.scalar"); CGF.EmitStoreOfScalar(ExnLoad, ParamAddr, /*volatile*/ false, Alignment, CatchType); } return; } assert(isa(CatchType) && "unexpected catch type!"); const llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok // Check for a copy expression. If we don't have a copy expression, // that means a trivial copy is okay. const Expr *copyExpr = CatchParam.getInit(); if (!copyExpr) { llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType); return; } // We have to call __cxa_get_exception_ptr to get the adjusted // pointer before copying. llvm::CallInst *rawAdjustedExn = CGF.Builder.CreateCall(getGetExceptionPtrFn(CGF), Exn); rawAdjustedExn->setDoesNotThrow(); // Cast that to the appropriate type. llvm::Value *adjustedExn = CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy); // The copy expression is defined in terms of an OpaqueValueExpr. // Find it and map it to the adjusted expression. CodeGenFunction::OpaqueValueMapping opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); // Call the copy ctor in a terminate scope. CGF.EHStack.pushTerminate(); // Perform the copy construction. CGF.EmitAggExpr(copyExpr, AggValueSlot::forAddr(ParamAddr, false, false)); // Leave the terminate scope. CGF.EHStack.popTerminate(); // Undo the opaque value mapping. opaque.pop(); // Finally we can call __cxa_begin_catch. CallBeginCatch(CGF, Exn, true); } /// Begins a catch statement by initializing the catch variable and /// calling __cxa_begin_catch. static void BeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { // We have to be very careful with the ordering of cleanups here: // C++ [except.throw]p4: // The destruction [of the exception temporary] occurs // immediately after the destruction of the object declared in // the exception-declaration in the handler. // // So the precise ordering is: // 1. Construct catch variable. // 2. __cxa_begin_catch // 3. Enter __cxa_end_catch cleanup // 4. Enter dtor cleanup // // We do this by using a slightly abnormal initialization process. // Delegation sequence: // - ExitCXXTryStmt opens a RunCleanupsScope // - EmitAutoVarAlloca creates the variable and debug info // - InitCatchParam initializes the variable from the exception // - CallBeginCatch calls __cxa_begin_catch // - CallBeginCatch enters the __cxa_end_catch cleanup // - EmitAutoVarCleanups enters the variable destructor cleanup // - EmitCXXTryStmt emits the code for the catch body // - EmitCXXTryStmt close the RunCleanupsScope VarDecl *CatchParam = S->getExceptionDecl(); if (!CatchParam) { llvm::Value *Exn = CGF.Builder.CreateLoad(CGF.getExceptionSlot(), "exn"); CallBeginCatch(CGF, Exn, true); return; } // Emit the local. CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF)); CGF.EmitAutoVarCleanups(var); } namespace { struct CallRethrow : EHScopeStack::Cleanup { void Emit(CodeGenFunction &CGF, bool IsForEH) { CGF.EmitCallOrInvoke(getReThrowFn(CGF), 0, 0); } }; } void CodeGenFunction::ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock) { unsigned NumHandlers = S.getNumHandlers(); EHCatchScope &CatchScope = cast(*EHStack.begin()); assert(CatchScope.getNumHandlers() == NumHandlers); // Copy the handler blocks off before we pop the EH stack. Emitting // the handlers might scribble on this memory. llvm::SmallVector Handlers(NumHandlers); memcpy(Handlers.data(), CatchScope.begin(), NumHandlers * sizeof(EHCatchScope::Handler)); EHStack.popCatch(); // The fall-through block. llvm::BasicBlock *ContBB = createBasicBlock("try.cont"); // We just emitted the body of the try; jump to the continue block. if (HaveInsertPoint()) Builder.CreateBr(ContBB); // Determine if we need an implicit rethrow for all these catch handlers. bool ImplicitRethrow = false; if (IsFnTryBlock) ImplicitRethrow = isa(CurCodeDecl) || isa(CurCodeDecl); for (unsigned I = 0; I != NumHandlers; ++I) { llvm::BasicBlock *CatchBlock = Handlers[I].Block; EmitBlock(CatchBlock); // Catch the exception if this isn't a catch-all. const CXXCatchStmt *C = S.getHandler(I); // Enter a cleanup scope, including the catch variable and the // end-catch. RunCleanupsScope CatchScope(*this); // Initialize the catch variable and set up the cleanups. BeginCatch(*this, C); // If there's an implicit rethrow, push a normal "cleanup" to call // _cxa_rethrow. This needs to happen before __cxa_end_catch is // called, and so it is pushed after BeginCatch. if (ImplicitRethrow) EHStack.pushCleanup(NormalCleanup); // Perform the body of the catch. EmitStmt(C->getHandlerBlock()); // Fall out through the catch cleanups. CatchScope.ForceCleanup(); // Branch out of the try. if (HaveInsertPoint()) Builder.CreateBr(ContBB); } EmitBlock(ContBB); } namespace { struct CallEndCatchForFinally : EHScopeStack::Cleanup { llvm::Value *ForEHVar; llvm::Value *EndCatchFn; CallEndCatchForFinally(llvm::Value *ForEHVar, llvm::Value *EndCatchFn) : ForEHVar(ForEHVar), EndCatchFn(EndCatchFn) {} void Emit(CodeGenFunction &CGF, bool IsForEH) { llvm::BasicBlock *EndCatchBB = CGF.createBasicBlock("finally.endcatch"); llvm::BasicBlock *CleanupContBB = CGF.createBasicBlock("finally.cleanup.cont"); llvm::Value *ShouldEndCatch = CGF.Builder.CreateLoad(ForEHVar, "finally.endcatch"); CGF.Builder.CreateCondBr(ShouldEndCatch, EndCatchBB, CleanupContBB); CGF.EmitBlock(EndCatchBB); CGF.EmitCallOrInvoke(EndCatchFn, 0, 0); // catch-all, so might throw CGF.EmitBlock(CleanupContBB); } }; struct PerformFinally : EHScopeStack::Cleanup { const Stmt *Body; llvm::Value *ForEHVar; llvm::Value *EndCatchFn; llvm::Value *RethrowFn; llvm::Value *SavedExnVar; PerformFinally(const Stmt *Body, llvm::Value *ForEHVar, llvm::Value *EndCatchFn, llvm::Value *RethrowFn, llvm::Value *SavedExnVar) : Body(Body), ForEHVar(ForEHVar), EndCatchFn(EndCatchFn), RethrowFn(RethrowFn), SavedExnVar(SavedExnVar) {} void Emit(CodeGenFunction &CGF, bool IsForEH) { // Enter a cleanup to call the end-catch function if one was provided. if (EndCatchFn) CGF.EHStack.pushCleanup(NormalAndEHCleanup, ForEHVar, EndCatchFn); // Save the current cleanup destination in case there are // cleanups in the finally block. llvm::Value *SavedCleanupDest = CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot(), "cleanup.dest.saved"); // Emit the finally block. CGF.EmitStmt(Body); // If the end of the finally is reachable, check whether this was // for EH. If so, rethrow. if (CGF.HaveInsertPoint()) { llvm::BasicBlock *RethrowBB = CGF.createBasicBlock("finally.rethrow"); llvm::BasicBlock *ContBB = CGF.createBasicBlock("finally.cont"); llvm::Value *ShouldRethrow = CGF.Builder.CreateLoad(ForEHVar, "finally.shouldthrow"); CGF.Builder.CreateCondBr(ShouldRethrow, RethrowBB, ContBB); CGF.EmitBlock(RethrowBB); if (SavedExnVar) { llvm::Value *Args[] = { CGF.Builder.CreateLoad(SavedExnVar) }; CGF.EmitCallOrInvoke(RethrowFn, Args, Args+1); } else { CGF.EmitCallOrInvoke(RethrowFn, 0, 0); } CGF.Builder.CreateUnreachable(); CGF.EmitBlock(ContBB); // Restore the cleanup destination. CGF.Builder.CreateStore(SavedCleanupDest, CGF.getNormalCleanupDestSlot()); } // Leave the end-catch cleanup. As an optimization, pretend that // the fallthrough path was inaccessible; we've dynamically proven // that we're not in the EH case along that path. if (EndCatchFn) { CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); CGF.PopCleanupBlock(); CGF.Builder.restoreIP(SavedIP); } // Now make sure we actually have an insertion point or the // cleanup gods will hate us. CGF.EnsureInsertPoint(); } }; } /// Enters a finally block for an implementation using zero-cost /// exceptions. This is mostly general, but hard-codes some /// language/ABI-specific behavior in the catch-all sections. CodeGenFunction::FinallyInfo CodeGenFunction::EnterFinallyBlock(const Stmt *Body, llvm::Constant *BeginCatchFn, llvm::Constant *EndCatchFn, llvm::Constant *RethrowFn) { assert((BeginCatchFn != 0) == (EndCatchFn != 0) && "begin/end catch functions not paired"); assert(RethrowFn && "rethrow function is required"); // The rethrow function has one of the following two types: // void (*)() // void (*)(void*) // In the latter case we need to pass it the exception object. // But we can't use the exception slot because the @finally might // have a landing pad (which would overwrite the exception slot). const llvm::FunctionType *RethrowFnTy = cast( cast(RethrowFn->getType()) ->getElementType()); llvm::Value *SavedExnVar = 0; if (RethrowFnTy->getNumParams()) SavedExnVar = CreateTempAlloca(Builder.getInt8PtrTy(), "finally.exn"); // A finally block is a statement which must be executed on any edge // out of a given scope. Unlike a cleanup, the finally block may // contain arbitrary control flow leading out of itself. In // addition, finally blocks should always be executed, even if there // are no catch handlers higher on the stack. Therefore, we // surround the protected scope with a combination of a normal // cleanup (to catch attempts to break out of the block via normal // control flow) and an EH catch-all (semantically "outside" any try // statement to which the finally block might have been attached). // The finally block itself is generated in the context of a cleanup // which conditionally leaves the catch-all. FinallyInfo Info; // Jump destination for performing the finally block on an exception // edge. We'll never actually reach this block, so unreachable is // fine. JumpDest RethrowDest = getJumpDestInCurrentScope(getUnreachableBlock()); // Whether the finally block is being executed for EH purposes. llvm::AllocaInst *ForEHVar = CreateTempAlloca(Builder.getInt1Ty(), "finally.for-eh"); InitTempAlloca(ForEHVar, llvm::ConstantInt::getFalse(getLLVMContext())); // Enter a normal cleanup which will perform the @finally block. EHStack.pushCleanup(NormalCleanup, Body, ForEHVar, EndCatchFn, RethrowFn, SavedExnVar); // Enter a catch-all scope. llvm::BasicBlock *CatchAllBB = createBasicBlock("finally.catchall"); CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); Builder.SetInsertPoint(CatchAllBB); // If there's a begin-catch function, call it. if (BeginCatchFn) { Builder.CreateCall(BeginCatchFn, Builder.CreateLoad(getExceptionSlot())) ->setDoesNotThrow(); } // If we need to remember the exception pointer to rethrow later, do so. if (SavedExnVar) { llvm::Value *SavedExn = Builder.CreateLoad(getExceptionSlot()); Builder.CreateStore(SavedExn, SavedExnVar); } // Tell the finally block that we're in EH. Builder.CreateStore(llvm::ConstantInt::getTrue(getLLVMContext()), ForEHVar); // Thread a jump through the finally cleanup. EmitBranchThroughCleanup(RethrowDest); Builder.restoreIP(SavedIP); EHCatchScope *CatchScope = EHStack.pushCatch(1); CatchScope->setCatchAllHandler(0, CatchAllBB); return Info; } void CodeGenFunction::ExitFinallyBlock(FinallyInfo &Info) { // Leave the finally catch-all. EHCatchScope &Catch = cast(*EHStack.begin()); llvm::BasicBlock *CatchAllBB = Catch.getHandler(0).Block; EHStack.popCatch(); // And leave the normal cleanup. PopCleanupBlock(); CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); EmitBlock(CatchAllBB, true); Builder.restoreIP(SavedIP); } llvm::BasicBlock *CodeGenFunction::getTerminateLandingPad() { if (TerminateLandingPad) return TerminateLandingPad; CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); // This will get inserted at the end of the function. TerminateLandingPad = createBasicBlock("terminate.lpad"); Builder.SetInsertPoint(TerminateLandingPad); // Tell the backend that this is a landing pad. llvm::CallInst *Exn = Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_exception), "exn"); Exn->setDoesNotThrow(); const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions()); // Tell the backend what the exception table should be: // nothing but a catch-all. llvm::Value *Args[3] = { Exn, getOpaquePersonalityFn(CGM, Personality), getCatchAllValue(*this) }; Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::eh_selector), Args, Args+3, "eh.selector") ->setDoesNotThrow(); llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); TerminateCall->setDoesNotReturn(); TerminateCall->setDoesNotThrow(); Builder.CreateUnreachable(); // Restore the saved insertion state. Builder.restoreIP(SavedIP); return TerminateLandingPad; } llvm::BasicBlock *CodeGenFunction::getTerminateHandler() { if (TerminateHandler) return TerminateHandler; CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); // Set up the terminate handler. This block is inserted at the very // end of the function by FinishFunction. TerminateHandler = createBasicBlock("terminate.handler"); Builder.SetInsertPoint(TerminateHandler); llvm::CallInst *TerminateCall = Builder.CreateCall(getTerminateFn(*this)); TerminateCall->setDoesNotReturn(); TerminateCall->setDoesNotThrow(); Builder.CreateUnreachable(); // Restore the saved insertion state. Builder.restoreIP(SavedIP); return TerminateHandler; } CodeGenFunction::UnwindDest CodeGenFunction::getRethrowDest() { if (RethrowBlock.isValid()) return RethrowBlock; CGBuilderTy::InsertPoint SavedIP = Builder.saveIP(); // We emit a jump to a notional label at the outermost unwind state. llvm::BasicBlock *Unwind = createBasicBlock("eh.resume"); Builder.SetInsertPoint(Unwind); const EHPersonality &Personality = EHPersonality::get(CGM.getLangOptions()); // This can always be a call because we necessarily didn't find // anything on the EH stack which needs our help. llvm::StringRef RethrowName = Personality.getCatchallRethrowFnName(); llvm::Constant *RethrowFn; if (!RethrowName.empty()) RethrowFn = getCatchallRethrowFn(*this, RethrowName); else RethrowFn = getUnwindResumeOrRethrowFn(); Builder.CreateCall(RethrowFn, Builder.CreateLoad(getExceptionSlot())) ->setDoesNotReturn(); Builder.CreateUnreachable(); Builder.restoreIP(SavedIP); RethrowBlock = UnwindDest(Unwind, EHStack.stable_end(), 0); return RethrowBlock; }