//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the Sema class, which performs semantic analysis and // builds ASTs. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_SEMA_SEMA_H #define LLVM_CLANG_SEMA_SEMA_H #include "clang/AST/Attr.h" #include "clang/AST/Availability.h" #include "clang/AST/ComparisonCategories.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExternalASTSource.h" #include "clang/AST/LocInfoType.h" #include "clang/AST/MangleNumberingContext.h" #include "clang/AST/NSAPI.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/TypeOrdering.h" #include "clang/Basic/ExpressionTraits.h" #include "clang/Basic/Module.h" #include "clang/Basic/OpenMPKinds.h" #include "clang/Basic/PragmaKinds.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TemplateKinds.h" #include "clang/Basic/TypeTraits.h" #include "clang/Sema/AnalysisBasedWarnings.h" #include "clang/Sema/CleanupInfo.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/ExternalSemaSource.h" #include "clang/Sema/IdentifierResolver.h" #include "clang/Sema/ObjCMethodList.h" #include "clang/Sema/Ownership.h" #include "clang/Sema/Scope.h" #include "clang/Sema/TypoCorrection.h" #include "clang/Sema/Weak.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TinyPtrVector.h" #include #include #include #include namespace llvm { class APSInt; template struct DenseMapInfo; template class DenseSet; class SmallBitVector; struct InlineAsmIdentifierInfo; } namespace clang { class ADLResult; class ASTConsumer; class ASTContext; class ASTMutationListener; class ASTReader; class ASTWriter; class ArrayType; class ParsedAttr; class BindingDecl; class BlockDecl; class CapturedDecl; class CXXBasePath; class CXXBasePaths; class CXXBindTemporaryExpr; typedef SmallVector CXXCastPath; class CXXConstructorDecl; class CXXConversionDecl; class CXXDeleteExpr; class CXXDestructorDecl; class CXXFieldCollector; class CXXMemberCallExpr; class CXXMethodDecl; class CXXScopeSpec; class CXXTemporary; class CXXTryStmt; class CallExpr; class ClassTemplateDecl; class ClassTemplatePartialSpecializationDecl; class ClassTemplateSpecializationDecl; class VarTemplatePartialSpecializationDecl; class CodeCompleteConsumer; class CodeCompletionAllocator; class CodeCompletionTUInfo; class CodeCompletionResult; class CoroutineBodyStmt; class Decl; class DeclAccessPair; class DeclContext; class DeclRefExpr; class DeclaratorDecl; class DeducedTemplateArgument; class DependentDiagnostic; class DesignatedInitExpr; class Designation; class EnableIfAttr; class EnumConstantDecl; class Expr; class ExtVectorType; class FormatAttr; class FriendDecl; class FunctionDecl; class FunctionProtoType; class FunctionTemplateDecl; class ImplicitConversionSequence; typedef MutableArrayRef ConversionSequenceList; class InitListExpr; class InitializationKind; class InitializationSequence; class InitializedEntity; class IntegerLiteral; class LabelStmt; class LambdaExpr; class LangOptions; class LocalInstantiationScope; class LookupResult; class MacroInfo; typedef ArrayRef> ModuleIdPath; class ModuleLoader; class MultiLevelTemplateArgumentList; class NamedDecl; class ObjCCategoryDecl; class ObjCCategoryImplDecl; class ObjCCompatibleAliasDecl; class ObjCContainerDecl; class ObjCImplDecl; class ObjCImplementationDecl; class ObjCInterfaceDecl; class ObjCIvarDecl; template class ObjCList; class ObjCMessageExpr; class ObjCMethodDecl; class ObjCPropertyDecl; class ObjCProtocolDecl; class OMPThreadPrivateDecl; class OMPRequiresDecl; class OMPDeclareReductionDecl; class OMPDeclareSimdDecl; class OMPClause; struct OMPVarListLocTy; struct OverloadCandidate; class OverloadCandidateSet; class OverloadExpr; class ParenListExpr; class ParmVarDecl; class Preprocessor; class PseudoDestructorTypeStorage; class PseudoObjectExpr; class QualType; class StandardConversionSequence; class Stmt; class StringLiteral; class SwitchStmt; class TemplateArgument; class TemplateArgumentList; class TemplateArgumentLoc; class TemplateDecl; class TemplateInstantiationCallback; class TemplateParameterList; class TemplatePartialOrderingContext; class TemplateTemplateParmDecl; class Token; class TypeAliasDecl; class TypedefDecl; class TypedefNameDecl; class TypeLoc; class TypoCorrectionConsumer; class UnqualifiedId; class UnresolvedLookupExpr; class UnresolvedMemberExpr; class UnresolvedSetImpl; class UnresolvedSetIterator; class UsingDecl; class UsingShadowDecl; class ValueDecl; class VarDecl; class VarTemplateSpecializationDecl; class VisibilityAttr; class VisibleDeclConsumer; class IndirectFieldDecl; struct DeductionFailureInfo; class TemplateSpecCandidateSet; namespace sema { class AccessedEntity; class BlockScopeInfo; class Capture; class CapturedRegionScopeInfo; class CapturingScopeInfo; class CompoundScopeInfo; class DelayedDiagnostic; class DelayedDiagnosticPool; class FunctionScopeInfo; class LambdaScopeInfo; class PossiblyUnreachableDiag; class SemaPPCallbacks; class TemplateDeductionInfo; } namespace threadSafety { class BeforeSet; void threadSafetyCleanup(BeforeSet* Cache); } // FIXME: No way to easily map from TemplateTypeParmTypes to // TemplateTypeParmDecls, so we have this horrible PointerUnion. typedef std::pair, SourceLocation> UnexpandedParameterPack; /// Describes whether we've seen any nullability information for the given /// file. struct FileNullability { /// The first pointer declarator (of any pointer kind) in the file that does /// not have a corresponding nullability annotation. SourceLocation PointerLoc; /// The end location for the first pointer declarator in the file. Used for /// placing fix-its. SourceLocation PointerEndLoc; /// Which kind of pointer declarator we saw. uint8_t PointerKind; /// Whether we saw any type nullability annotations in the given file. bool SawTypeNullability = false; }; /// A mapping from file IDs to a record of whether we've seen nullability /// information in that file. class FileNullabilityMap { /// A mapping from file IDs to the nullability information for each file ID. llvm::DenseMap Map; /// A single-element cache based on the file ID. struct { FileID File; FileNullability Nullability; } Cache; public: FileNullability &operator[](FileID file) { // Check the single-element cache. if (file == Cache.File) return Cache.Nullability; // It's not in the single-element cache; flush the cache if we have one. if (!Cache.File.isInvalid()) { Map[Cache.File] = Cache.Nullability; } // Pull this entry into the cache. Cache.File = file; Cache.Nullability = Map[file]; return Cache.Nullability; } }; /// Keeps track of expected type during expression parsing. The type is tied to /// a particular token, all functions that update or consume the type take a /// start location of the token they are looking at as a parameter. This allows /// to avoid updating the type on hot paths in the parser. class PreferredTypeBuilder { public: PreferredTypeBuilder() = default; explicit PreferredTypeBuilder(QualType Type) : Type(Type) {} void enterCondition(Sema &S, SourceLocation Tok); void enterReturn(Sema &S, SourceLocation Tok); void enterVariableInit(SourceLocation Tok, Decl *D); /// Computing a type for the function argument may require running /// overloading, so we postpone its computation until it is actually needed. /// /// Clients should be very careful when using this funciton, as it stores a /// function_ref, clients should make sure all calls to get() with the same /// location happen while function_ref is alive. void enterFunctionArgument(SourceLocation Tok, llvm::function_ref ComputeType); void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc); void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind, SourceLocation OpLoc); void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op); void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base); void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS); /// Handles all type casts, including C-style cast, C++ casts, etc. void enterTypeCast(SourceLocation Tok, QualType CastType); QualType get(SourceLocation Tok) const { if (Tok != ExpectedLoc) return QualType(); if (!Type.isNull()) return Type; if (ComputeType) return ComputeType(); return QualType(); } private: /// Start position of a token for which we store expected type. SourceLocation ExpectedLoc; /// Expected type for a token starting at ExpectedLoc. QualType Type; /// A function to compute expected type at ExpectedLoc. It is only considered /// if Type is null. llvm::function_ref ComputeType; }; /// Sema - This implements semantic analysis and AST building for C. class Sema { Sema(const Sema &) = delete; void operator=(const Sema &) = delete; ///Source of additional semantic information. ExternalSemaSource *ExternalSource; ///Whether Sema has generated a multiplexer and has to delete it. bool isMultiplexExternalSource; static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD); bool isVisibleSlow(const NamedDecl *D); /// Determine whether two declarations should be linked together, given that /// the old declaration might not be visible and the new declaration might /// not have external linkage. bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old, const NamedDecl *New) { if (isVisible(Old)) return true; // See comment in below overload for why it's safe to compute the linkage // of the new declaration here. if (New->isExternallyDeclarable()) { assert(Old->isExternallyDeclarable() && "should not have found a non-externally-declarable previous decl"); return true; } return false; } bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New); void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, QualType ResultTy, ArrayRef Args); public: typedef OpaquePtr DeclGroupPtrTy; typedef OpaquePtr TemplateTy; typedef OpaquePtr TypeTy; OpenCLOptions OpenCLFeatures; FPOptions FPFeatures; const LangOptions &LangOpts; Preprocessor &PP; ASTContext &Context; ASTConsumer &Consumer; DiagnosticsEngine &Diags; SourceManager &SourceMgr; /// Flag indicating whether or not to collect detailed statistics. bool CollectStats; /// Code-completion consumer. CodeCompleteConsumer *CodeCompleter; /// CurContext - This is the current declaration context of parsing. DeclContext *CurContext; /// Generally null except when we temporarily switch decl contexts, /// like in \see ActOnObjCTemporaryExitContainerContext. DeclContext *OriginalLexicalContext; /// VAListTagName - The declaration name corresponding to __va_list_tag. /// This is used as part of a hack to omit that class from ADL results. DeclarationName VAListTagName; bool MSStructPragmaOn; // True when \#pragma ms_struct on /// Controls member pointer representation format under the MS ABI. LangOptions::PragmaMSPointersToMembersKind MSPointerToMemberRepresentationMethod; /// Stack of active SEH __finally scopes. Can be empty. SmallVector CurrentSEHFinally; /// Source location for newly created implicit MSInheritanceAttrs SourceLocation ImplicitMSInheritanceAttrLoc; /// Holds TypoExprs that are created from `createDelayedTypo`. This is used by /// `TransformTypos` in order to keep track of any TypoExprs that are created /// recursively during typo correction and wipe them away if the correction /// fails. llvm::SmallVector TypoExprs; /// pragma clang section kind enum PragmaClangSectionKind { PCSK_Invalid = 0, PCSK_BSS = 1, PCSK_Data = 2, PCSK_Rodata = 3, PCSK_Text = 4 }; enum PragmaClangSectionAction { PCSA_Set = 0, PCSA_Clear = 1 }; struct PragmaClangSection { std::string SectionName; bool Valid = false; SourceLocation PragmaLocation; void Act(SourceLocation PragmaLocation, PragmaClangSectionAction Action, StringLiteral* Name); }; PragmaClangSection PragmaClangBSSSection; PragmaClangSection PragmaClangDataSection; PragmaClangSection PragmaClangRodataSection; PragmaClangSection PragmaClangTextSection; enum PragmaMsStackAction { PSK_Reset = 0x0, // #pragma () PSK_Set = 0x1, // #pragma (value) PSK_Push = 0x2, // #pragma (push[, id]) PSK_Pop = 0x4, // #pragma (pop[, id]) PSK_Show = 0x8, // #pragma (show) -- only for "pack"! PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value) PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value) }; template struct PragmaStack { struct Slot { llvm::StringRef StackSlotLabel; ValueType Value; SourceLocation PragmaLocation; SourceLocation PragmaPushLocation; Slot(llvm::StringRef StackSlotLabel, ValueType Value, SourceLocation PragmaLocation, SourceLocation PragmaPushLocation) : StackSlotLabel(StackSlotLabel), Value(Value), PragmaLocation(PragmaLocation), PragmaPushLocation(PragmaPushLocation) {} }; void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action, llvm::StringRef StackSlotLabel, ValueType Value); // MSVC seems to add artificial slots to #pragma stacks on entering a C++ // method body to restore the stacks on exit, so it works like this: // // struct S { // #pragma (push, InternalPragmaSlot, ) // void Method {} // #pragma (pop, InternalPragmaSlot) // }; // // It works even with #pragma vtordisp, although MSVC doesn't support // #pragma vtordisp(push [, id], n) // syntax. // // Push / pop a named sentinel slot. void SentinelAction(PragmaMsStackAction Action, StringRef Label) { assert((Action == PSK_Push || Action == PSK_Pop) && "Can only push / pop #pragma stack sentinels!"); Act(CurrentPragmaLocation, Action, Label, CurrentValue); } // Constructors. explicit PragmaStack(const ValueType &Default) : DefaultValue(Default), CurrentValue(Default) {} bool hasValue() const { return CurrentValue != DefaultValue; } SmallVector Stack; ValueType DefaultValue; // Value used for PSK_Reset action. ValueType CurrentValue; SourceLocation CurrentPragmaLocation; }; // FIXME: We should serialize / deserialize these if they occur in a PCH (but // we shouldn't do so if they're in a module). /// Whether to insert vtordisps prior to virtual bases in the Microsoft /// C++ ABI. Possible values are 0, 1, and 2, which mean: /// /// 0: Suppress all vtordisps /// 1: Insert vtordisps in the presence of vbase overrides and non-trivial /// structors /// 2: Always insert vtordisps to support RTTI on partially constructed /// objects PragmaStack VtorDispStack; // #pragma pack. // Sentinel to represent when the stack is set to mac68k alignment. static const unsigned kMac68kAlignmentSentinel = ~0U; PragmaStack PackStack; // The current #pragma pack values and locations at each #include. struct PackIncludeState { unsigned CurrentValue; SourceLocation CurrentPragmaLocation; bool HasNonDefaultValue, ShouldWarnOnInclude; }; SmallVector PackIncludeStack; // Segment #pragmas. PragmaStack DataSegStack; PragmaStack BSSSegStack; PragmaStack ConstSegStack; PragmaStack CodeSegStack; // RAII object to push / pop sentinel slots for all MS #pragma stacks. // Actions should be performed only if we enter / exit a C++ method body. class PragmaStackSentinelRAII { public: PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct); ~PragmaStackSentinelRAII(); private: Sema &S; StringRef SlotLabel; bool ShouldAct; }; /// A mapping that describes the nullability we've seen in each header file. FileNullabilityMap NullabilityMap; /// Last section used with #pragma init_seg. StringLiteral *CurInitSeg; SourceLocation CurInitSegLoc; /// VisContext - Manages the stack for \#pragma GCC visibility. void *VisContext; // Really a "PragmaVisStack*" /// This an attribute introduced by \#pragma clang attribute. struct PragmaAttributeEntry { SourceLocation Loc; ParsedAttr *Attribute; SmallVector MatchRules; bool IsUsed; }; /// A push'd group of PragmaAttributeEntries. struct PragmaAttributeGroup { /// The location of the push attribute. SourceLocation Loc; /// The namespace of this push group. const IdentifierInfo *Namespace; SmallVector Entries; }; SmallVector PragmaAttributeStack; /// The declaration that is currently receiving an attribute from the /// #pragma attribute stack. const Decl *PragmaAttributeCurrentTargetDecl; /// This represents the last location of a "#pragma clang optimize off" /// directive if such a directive has not been closed by an "on" yet. If /// optimizations are currently "on", this is set to an invalid location. SourceLocation OptimizeOffPragmaLocation; /// Flag indicating if Sema is building a recovery call expression. /// /// This flag is used to avoid building recovery call expressions /// if Sema is already doing so, which would cause infinite recursions. bool IsBuildingRecoveryCallExpr; /// Used to control the generation of ExprWithCleanups. CleanupInfo Cleanup; /// ExprCleanupObjects - This is the stack of objects requiring /// cleanup that are created by the current full expression. The /// element type here is ExprWithCleanups::Object. SmallVector ExprCleanupObjects; /// Store a set of either DeclRefExprs or MemberExprs that contain a reference /// to a variable (constant) that may or may not be odr-used in this Expr, and /// we won't know until all lvalue-to-rvalue and discarded value conversions /// have been applied to all subexpressions of the enclosing full expression. /// This is cleared at the end of each full expression. using MaybeODRUseExprSet = llvm::SmallPtrSet; MaybeODRUseExprSet MaybeODRUseExprs; std::unique_ptr CachedFunctionScope; /// Stack containing information about each of the nested /// function, block, and method scopes that are currently active. SmallVector FunctionScopes; typedef LazyVector ExtVectorDeclsType; /// ExtVectorDecls - This is a list all the extended vector types. This allows /// us to associate a raw vector type with one of the ext_vector type names. /// This is only necessary for issuing pretty diagnostics. ExtVectorDeclsType ExtVectorDecls; /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes. std::unique_ptr FieldCollector; typedef llvm::SmallSetVector NamedDeclSetType; /// Set containing all declared private fields that are not used. NamedDeclSetType UnusedPrivateFields; /// Set containing all typedefs that are likely unused. llvm::SmallSetVector UnusedLocalTypedefNameCandidates; /// Delete-expressions to be analyzed at the end of translation unit /// /// This list contains class members, and locations of delete-expressions /// that could not be proven as to whether they mismatch with new-expression /// used in initializer of the field. typedef std::pair DeleteExprLoc; typedef llvm::SmallVector DeleteLocs; llvm::MapVector DeleteExprs; typedef llvm::SmallPtrSet RecordDeclSetTy; /// PureVirtualClassDiagSet - a set of class declarations which we have /// emitted a list of pure virtual functions. Used to prevent emitting the /// same list more than once. std::unique_ptr PureVirtualClassDiagSet; /// ParsingInitForAutoVars - a set of declarations with auto types for which /// we are currently parsing the initializer. llvm::SmallPtrSet ParsingInitForAutoVars; /// Look for a locally scoped extern "C" declaration by the given name. NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name); typedef LazyVector TentativeDefinitionsType; /// All the tentative definitions encountered in the TU. TentativeDefinitionsType TentativeDefinitions; typedef LazyVector UnusedFileScopedDeclsType; /// The set of file scoped decls seen so far that have not been used /// and must warn if not used. Only contains the first declaration. UnusedFileScopedDeclsType UnusedFileScopedDecls; typedef LazyVector DelegatingCtorDeclsType; /// All the delegating constructors seen so far in the file, used for /// cycle detection at the end of the TU. DelegatingCtorDeclsType DelegatingCtorDecls; /// All the overriding functions seen during a class definition /// that had their exception spec checks delayed, plus the overridden /// function. SmallVector, 2> DelayedOverridingExceptionSpecChecks; /// All the function redeclarations seen during a class definition that had /// their exception spec checks delayed, plus the prior declaration they /// should be checked against. Except during error recovery, the new decl /// should always be a friend declaration, as that's the only valid way to /// redeclare a special member before its class is complete. SmallVector, 2> DelayedEquivalentExceptionSpecChecks; typedef llvm::MapVector> LateParsedTemplateMapT; LateParsedTemplateMapT LateParsedTemplateMap; /// Callback to the parser to parse templated functions when needed. typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT); typedef void LateTemplateParserCleanupCB(void *P); LateTemplateParserCB *LateTemplateParser; LateTemplateParserCleanupCB *LateTemplateParserCleanup; void *OpaqueParser; void SetLateTemplateParser(LateTemplateParserCB *LTP, LateTemplateParserCleanupCB *LTPCleanup, void *P) { LateTemplateParser = LTP; LateTemplateParserCleanup = LTPCleanup; OpaqueParser = P; } class DelayedDiagnostics; class DelayedDiagnosticsState { sema::DelayedDiagnosticPool *SavedPool; friend class Sema::DelayedDiagnostics; }; typedef DelayedDiagnosticsState ParsingDeclState; typedef DelayedDiagnosticsState ProcessingContextState; /// A class which encapsulates the logic for delaying diagnostics /// during parsing and other processing. class DelayedDiagnostics { /// The current pool of diagnostics into which delayed /// diagnostics should go. sema::DelayedDiagnosticPool *CurPool; public: DelayedDiagnostics() : CurPool(nullptr) {} /// Adds a delayed diagnostic. void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h /// Determines whether diagnostics should be delayed. bool shouldDelayDiagnostics() { return CurPool != nullptr; } /// Returns the current delayed-diagnostics pool. sema::DelayedDiagnosticPool *getCurrentPool() const { return CurPool; } /// Enter a new scope. Access and deprecation diagnostics will be /// collected in this pool. DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) { DelayedDiagnosticsState state; state.SavedPool = CurPool; CurPool = &pool; return state; } /// Leave a delayed-diagnostic state that was previously pushed. /// Do not emit any of the diagnostics. This is performed as part /// of the bookkeeping of popping a pool "properly". void popWithoutEmitting(DelayedDiagnosticsState state) { CurPool = state.SavedPool; } /// Enter a new scope where access and deprecation diagnostics are /// not delayed. DelayedDiagnosticsState pushUndelayed() { DelayedDiagnosticsState state; state.SavedPool = CurPool; CurPool = nullptr; return state; } /// Undo a previous pushUndelayed(). void popUndelayed(DelayedDiagnosticsState state) { assert(CurPool == nullptr); CurPool = state.SavedPool; } } DelayedDiagnostics; /// A RAII object to temporarily push a declaration context. class ContextRAII { private: Sema &S; DeclContext *SavedContext; ProcessingContextState SavedContextState; QualType SavedCXXThisTypeOverride; public: ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true) : S(S), SavedContext(S.CurContext), SavedContextState(S.DelayedDiagnostics.pushUndelayed()), SavedCXXThisTypeOverride(S.CXXThisTypeOverride) { assert(ContextToPush && "pushing null context"); S.CurContext = ContextToPush; if (NewThisContext) S.CXXThisTypeOverride = QualType(); } void pop() { if (!SavedContext) return; S.CurContext = SavedContext; S.DelayedDiagnostics.popUndelayed(SavedContextState); S.CXXThisTypeOverride = SavedCXXThisTypeOverride; SavedContext = nullptr; } ~ContextRAII() { pop(); } }; /// Used to change context to isConstantEvaluated without pushing a heavy /// ExpressionEvaluationContextRecord object. bool isConstantEvaluatedOverride; bool isConstantEvaluated() { return ExprEvalContexts.back().isConstantEvaluated() || isConstantEvaluatedOverride; } /// RAII object to handle the state changes required to synthesize /// a function body. class SynthesizedFunctionScope { Sema &S; Sema::ContextRAII SavedContext; bool PushedCodeSynthesisContext = false; public: SynthesizedFunctionScope(Sema &S, DeclContext *DC) : S(S), SavedContext(S, DC) { S.PushFunctionScope(); S.PushExpressionEvaluationContext( Sema::ExpressionEvaluationContext::PotentiallyEvaluated); if (auto *FD = dyn_cast(DC)) FD->setWillHaveBody(true); else assert(isa(DC)); } void addContextNote(SourceLocation UseLoc) { assert(!PushedCodeSynthesisContext); Sema::CodeSynthesisContext Ctx; Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction; Ctx.PointOfInstantiation = UseLoc; Ctx.Entity = cast(S.CurContext); S.pushCodeSynthesisContext(Ctx); PushedCodeSynthesisContext = true; } ~SynthesizedFunctionScope() { if (PushedCodeSynthesisContext) S.popCodeSynthesisContext(); if (auto *FD = dyn_cast(S.CurContext)) FD->setWillHaveBody(false); S.PopExpressionEvaluationContext(); S.PopFunctionScopeInfo(); } }; /// WeakUndeclaredIdentifiers - Identifiers contained in /// \#pragma weak before declared. rare. may alias another /// identifier, declared or undeclared llvm::MapVector WeakUndeclaredIdentifiers; /// ExtnameUndeclaredIdentifiers - Identifiers contained in /// \#pragma redefine_extname before declared. Used in Solaris system headers /// to define functions that occur in multiple standards to call the version /// in the currently selected standard. llvm::DenseMap ExtnameUndeclaredIdentifiers; /// Load weak undeclared identifiers from the external source. void LoadExternalWeakUndeclaredIdentifiers(); /// WeakTopLevelDecl - Translation-unit scoped declarations generated by /// \#pragma weak during processing of other Decls. /// I couldn't figure out a clean way to generate these in-line, so /// we store them here and handle separately -- which is a hack. /// It would be best to refactor this. SmallVector WeakTopLevelDecl; IdentifierResolver IdResolver; /// Translation Unit Scope - useful to Objective-C actions that need /// to lookup file scope declarations in the "ordinary" C decl namespace. /// For example, user-defined classes, built-in "id" type, etc. Scope *TUScope; /// The C++ "std" namespace, where the standard library resides. LazyDeclPtr StdNamespace; /// The C++ "std::bad_alloc" class, which is defined by the C++ /// standard library. LazyDeclPtr StdBadAlloc; /// The C++ "std::align_val_t" enum class, which is defined by the C++ /// standard library. LazyDeclPtr StdAlignValT; /// The C++ "std::experimental" namespace, where the experimental parts /// of the standard library resides. NamespaceDecl *StdExperimentalNamespaceCache; /// The C++ "std::initializer_list" template, which is defined in /// \. ClassTemplateDecl *StdInitializerList; /// The C++ "std::coroutine_traits" template, which is defined in /// \ ClassTemplateDecl *StdCoroutineTraitsCache; /// The C++ "type_info" declaration, which is defined in \. RecordDecl *CXXTypeInfoDecl; /// The MSVC "_GUID" struct, which is defined in MSVC header files. RecordDecl *MSVCGuidDecl; /// Caches identifiers/selectors for NSFoundation APIs. std::unique_ptr NSAPIObj; /// The declaration of the Objective-C NSNumber class. ObjCInterfaceDecl *NSNumberDecl; /// The declaration of the Objective-C NSValue class. ObjCInterfaceDecl *NSValueDecl; /// Pointer to NSNumber type (NSNumber *). QualType NSNumberPointer; /// Pointer to NSValue type (NSValue *). QualType NSValuePointer; /// The Objective-C NSNumber methods used to create NSNumber literals. ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods]; /// The declaration of the Objective-C NSString class. ObjCInterfaceDecl *NSStringDecl; /// Pointer to NSString type (NSString *). QualType NSStringPointer; /// The declaration of the stringWithUTF8String: method. ObjCMethodDecl *StringWithUTF8StringMethod; /// The declaration of the valueWithBytes:objCType: method. ObjCMethodDecl *ValueWithBytesObjCTypeMethod; /// The declaration of the Objective-C NSArray class. ObjCInterfaceDecl *NSArrayDecl; /// The declaration of the arrayWithObjects:count: method. ObjCMethodDecl *ArrayWithObjectsMethod; /// The declaration of the Objective-C NSDictionary class. ObjCInterfaceDecl *NSDictionaryDecl; /// The declaration of the dictionaryWithObjects:forKeys:count: method. ObjCMethodDecl *DictionaryWithObjectsMethod; /// id type. QualType QIDNSCopying; /// will hold 'respondsToSelector:' Selector RespondsToSelectorSel; /// A flag to remember whether the implicit forms of operator new and delete /// have been declared. bool GlobalNewDeleteDeclared; /// A flag to indicate that we're in a context that permits abstract /// references to fields. This is really a bool AllowAbstractFieldReference; /// Describes how the expressions currently being parsed are /// evaluated at run-time, if at all. enum class ExpressionEvaluationContext { /// The current expression and its subexpressions occur within an /// unevaluated operand (C++11 [expr]p7), such as the subexpression of /// \c sizeof, where the type of the expression may be significant but /// no code will be generated to evaluate the value of the expression at /// run time. Unevaluated, /// The current expression occurs within a braced-init-list within /// an unevaluated operand. This is mostly like a regular unevaluated /// context, except that we still instantiate constexpr functions that are /// referenced here so that we can perform narrowing checks correctly. UnevaluatedList, /// The current expression occurs within a discarded statement. /// This behaves largely similarly to an unevaluated operand in preventing /// definitions from being required, but not in other ways. DiscardedStatement, /// The current expression occurs within an unevaluated /// operand that unconditionally permits abstract references to /// fields, such as a SIZE operator in MS-style inline assembly. UnevaluatedAbstract, /// The current context is "potentially evaluated" in C++11 terms, /// but the expression is evaluated at compile-time (like the values of /// cases in a switch statement). ConstantEvaluated, /// The current expression is potentially evaluated at run time, /// which means that code may be generated to evaluate the value of the /// expression at run time. PotentiallyEvaluated, /// The current expression is potentially evaluated, but any /// declarations referenced inside that expression are only used if /// in fact the current expression is used. /// /// This value is used when parsing default function arguments, for which /// we would like to provide diagnostics (e.g., passing non-POD arguments /// through varargs) but do not want to mark declarations as "referenced" /// until the default argument is used. PotentiallyEvaluatedIfUsed }; /// Data structure used to record current or nested /// expression evaluation contexts. struct ExpressionEvaluationContextRecord { /// The expression evaluation context. ExpressionEvaluationContext Context; /// Whether the enclosing context needed a cleanup. CleanupInfo ParentCleanup; /// Whether we are in a decltype expression. bool IsDecltype; /// The number of active cleanup objects when we entered /// this expression evaluation context. unsigned NumCleanupObjects; /// The number of typos encountered during this expression evaluation /// context (i.e. the number of TypoExprs created). unsigned NumTypos; MaybeODRUseExprSet SavedMaybeODRUseExprs; /// The lambdas that are present within this context, if it /// is indeed an unevaluated context. SmallVector Lambdas; /// The declaration that provides context for lambda expressions /// and block literals if the normal declaration context does not /// suffice, e.g., in a default function argument. Decl *ManglingContextDecl; /// The context information used to mangle lambda expressions /// and block literals within this context. /// /// This mangling information is allocated lazily, since most contexts /// do not have lambda expressions or block literals. std::unique_ptr MangleNumbering; /// If we are processing a decltype type, a set of call expressions /// for which we have deferred checking the completeness of the return type. SmallVector DelayedDecltypeCalls; /// If we are processing a decltype type, a set of temporary binding /// expressions for which we have deferred checking the destructor. SmallVector DelayedDecltypeBinds; llvm::SmallPtrSet PossibleDerefs; /// \brief Describes whether we are in an expression constext which we have /// to handle differently. enum ExpressionKind { EK_Decltype, EK_TemplateArgument, EK_Other } ExprContext; ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context, unsigned NumCleanupObjects, CleanupInfo ParentCleanup, Decl *ManglingContextDecl, ExpressionKind ExprContext) : Context(Context), ParentCleanup(ParentCleanup), NumCleanupObjects(NumCleanupObjects), NumTypos(0), ManglingContextDecl(ManglingContextDecl), MangleNumbering(), ExprContext(ExprContext) {} /// Retrieve the mangling numbering context, used to consistently /// number constructs like lambdas for mangling. MangleNumberingContext &getMangleNumberingContext(ASTContext &Ctx); bool isUnevaluated() const { return Context == ExpressionEvaluationContext::Unevaluated || Context == ExpressionEvaluationContext::UnevaluatedAbstract || Context == ExpressionEvaluationContext::UnevaluatedList; } bool isConstantEvaluated() const { return Context == ExpressionEvaluationContext::ConstantEvaluated; } }; /// A stack of expression evaluation contexts. SmallVector ExprEvalContexts; /// Emit a warning for all pending noderef expressions that we recorded. void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec); /// Compute the mangling number context for a lambda expression or /// block literal. /// /// \param DC - The DeclContext containing the lambda expression or /// block literal. /// \param[out] ManglingContextDecl - Returns the ManglingContextDecl /// associated with the context, if relevant. MangleNumberingContext *getCurrentMangleNumberContext( const DeclContext *DC, Decl *&ManglingContextDecl); /// SpecialMemberOverloadResult - The overloading result for a special member /// function. /// /// This is basically a wrapper around PointerIntPair. The lowest bits of the /// integer are used to determine whether overload resolution succeeded. class SpecialMemberOverloadResult { public: enum Kind { NoMemberOrDeleted, Ambiguous, Success }; private: llvm::PointerIntPair Pair; public: SpecialMemberOverloadResult() : Pair() {} SpecialMemberOverloadResult(CXXMethodDecl *MD) : Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {} CXXMethodDecl *getMethod() const { return Pair.getPointer(); } void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); } Kind getKind() const { return static_cast(Pair.getInt()); } void setKind(Kind K) { Pair.setInt(K); } }; class SpecialMemberOverloadResultEntry : public llvm::FastFoldingSetNode, public SpecialMemberOverloadResult { public: SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID) : FastFoldingSetNode(ID) {} }; /// A cache of special member function overload resolution results /// for C++ records. llvm::FoldingSet SpecialMemberCache; /// A cache of the flags available in enumerations with the flag_bits /// attribute. mutable llvm::DenseMap FlagBitsCache; /// The kind of translation unit we are processing. /// /// When we're processing a complete translation unit, Sema will perform /// end-of-translation-unit semantic tasks (such as creating /// initializers for tentative definitions in C) once parsing has /// completed. Modules and precompiled headers perform different kinds of /// checks. TranslationUnitKind TUKind; llvm::BumpPtrAllocator BumpAlloc; /// The number of SFINAE diagnostics that have been trapped. unsigned NumSFINAEErrors; typedef llvm::DenseMap> UnparsedDefaultArgInstantiationsMap; /// A mapping from parameters with unparsed default arguments to the /// set of instantiations of each parameter. /// /// This mapping is a temporary data structure used when parsing /// nested class templates or nested classes of class templates, /// where we might end up instantiating an inner class before the /// default arguments of its methods have been parsed. UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations; // Contains the locations of the beginning of unparsed default // argument locations. llvm::DenseMap UnparsedDefaultArgLocs; /// UndefinedInternals - all the used, undefined objects which require a /// definition in this translation unit. llvm::MapVector UndefinedButUsed; /// Determine if VD, which must be a variable or function, is an external /// symbol that nonetheless can't be referenced from outside this translation /// unit because its type has no linkage and it's not extern "C". bool isExternalWithNoLinkageType(ValueDecl *VD); /// Obtain a sorted list of functions that are undefined but ODR-used. void getUndefinedButUsed( SmallVectorImpl > &Undefined); /// Retrieves list of suspicious delete-expressions that will be checked at /// the end of translation unit. const llvm::MapVector & getMismatchingDeleteExpressions() const; typedef std::pair GlobalMethods; typedef llvm::DenseMap GlobalMethodPool; /// Method Pool - allows efficient lookup when typechecking messages to "id". /// We need to maintain a list, since selectors can have differing signatures /// across classes. In Cocoa, this happens to be extremely uncommon (only 1% /// of selectors are "overloaded"). /// At the head of the list it is recorded whether there were 0, 1, or >= 2 /// methods inside categories with a particular selector. GlobalMethodPool MethodPool; /// Method selectors used in a \@selector expression. Used for implementation /// of -Wselector. llvm::MapVector ReferencedSelectors; /// List of SourceLocations where 'self' is implicitly retained inside a /// block. llvm::SmallVector, 1> ImplicitlyRetainedSelfLocs; /// Kinds of C++ special members. enum CXXSpecialMember { CXXDefaultConstructor, CXXCopyConstructor, CXXMoveConstructor, CXXCopyAssignment, CXXMoveAssignment, CXXDestructor, CXXInvalid }; typedef llvm::PointerIntPair SpecialMemberDecl; /// The C++ special members which we are currently in the process of /// declaring. If this process recursively triggers the declaration of the /// same special member, we should act as if it is not yet declared. llvm::SmallPtrSet SpecialMembersBeingDeclared; /// The function definitions which were renamed as part of typo-correction /// to match their respective declarations. We want to keep track of them /// to ensure that we don't emit a "redefinition" error if we encounter a /// correctly named definition after the renamed definition. llvm::SmallPtrSet TypoCorrectedFunctionDefinitions; /// Stack of types that correspond to the parameter entities that are /// currently being copy-initialized. Can be empty. llvm::SmallVector CurrentParameterCopyTypes; void ReadMethodPool(Selector Sel); void updateOutOfDateSelector(Selector Sel); /// Private Helper predicate to check for 'self'. bool isSelfExpr(Expr *RExpr); bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method); /// Cause the active diagnostic on the DiagosticsEngine to be /// emitted. This is closely coupled to the SemaDiagnosticBuilder class and /// should not be used elsewhere. void EmitCurrentDiagnostic(unsigned DiagID); /// Records and restores the FP_CONTRACT state on entry/exit of compound /// statements. class FPContractStateRAII { public: FPContractStateRAII(Sema &S) : S(S), OldFPFeaturesState(S.FPFeatures) {} ~FPContractStateRAII() { S.FPFeatures = OldFPFeaturesState; } private: Sema& S; FPOptions OldFPFeaturesState; }; void addImplicitTypedef(StringRef Name, QualType T); bool WarnedStackExhausted = false; public: Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, TranslationUnitKind TUKind = TU_Complete, CodeCompleteConsumer *CompletionConsumer = nullptr); ~Sema(); /// Perform initialization that occurs after the parser has been /// initialized but before it parses anything. void Initialize(); const LangOptions &getLangOpts() const { return LangOpts; } OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; } FPOptions &getFPOptions() { return FPFeatures; } DiagnosticsEngine &getDiagnostics() const { return Diags; } SourceManager &getSourceManager() const { return SourceMgr; } Preprocessor &getPreprocessor() const { return PP; } ASTContext &getASTContext() const { return Context; } ASTConsumer &getASTConsumer() const { return Consumer; } ASTMutationListener *getASTMutationListener() const; ExternalSemaSource* getExternalSource() const { return ExternalSource; } ///Registers an external source. If an external source already exists, /// creates a multiplex external source and appends to it. /// ///\param[in] E - A non-null external sema source. /// void addExternalSource(ExternalSemaSource *E); void PrintStats() const; /// Warn that the stack is nearly exhausted. void warnStackExhausted(SourceLocation Loc); /// Run some code with "sufficient" stack space. (Currently, at least 256K is /// guaranteed). Produces a warning if we're low on stack space and allocates /// more in that case. Use this in code that may recurse deeply (for example, /// in template instantiation) to avoid stack overflow. void runWithSufficientStackSpace(SourceLocation Loc, llvm::function_ref Fn); /// Helper class that creates diagnostics with optional /// template instantiation stacks. /// /// This class provides a wrapper around the basic DiagnosticBuilder /// class that emits diagnostics. SemaDiagnosticBuilder is /// responsible for emitting the diagnostic (as DiagnosticBuilder /// does) and, if the diagnostic comes from inside a template /// instantiation, printing the template instantiation stack as /// well. class SemaDiagnosticBuilder : public DiagnosticBuilder { Sema &SemaRef; unsigned DiagID; public: SemaDiagnosticBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID) : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) { } // This is a cunning lie. DiagnosticBuilder actually performs move // construction in its copy constructor (but due to varied uses, it's not // possible to conveniently express this as actual move construction). So // the default copy ctor here is fine, because the base class disables the // source anyway, so the user-defined ~SemaDiagnosticBuilder is a safe no-op // in that case anwyay. SemaDiagnosticBuilder(const SemaDiagnosticBuilder&) = default; ~SemaDiagnosticBuilder() { // If we aren't active, there is nothing to do. if (!isActive()) return; // Otherwise, we need to emit the diagnostic. First flush the underlying // DiagnosticBuilder data, and clear the diagnostic builder itself so it // won't emit the diagnostic in its own destructor. // // This seems wasteful, in that as written the DiagnosticBuilder dtor will // do its own needless checks to see if the diagnostic needs to be // emitted. However, because we take care to ensure that the builder // objects never escape, a sufficiently smart compiler will be able to // eliminate that code. FlushCounts(); Clear(); // Dispatch to Sema to emit the diagnostic. SemaRef.EmitCurrentDiagnostic(DiagID); } /// Teach operator<< to produce an object of the correct type. template friend const SemaDiagnosticBuilder &operator<<( const SemaDiagnosticBuilder &Diag, const T &Value) { const DiagnosticBuilder &BaseDiag = Diag; BaseDiag << Value; return Diag; } }; /// Emit a diagnostic. SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) { DiagnosticBuilder DB = Diags.Report(Loc, DiagID); return SemaDiagnosticBuilder(DB, *this, DiagID); } /// Emit a partial diagnostic. SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic& PD); /// Build a partial diagnostic. PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h bool findMacroSpelling(SourceLocation &loc, StringRef name); /// Get a string to suggest for zero-initialization of a type. std::string getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const; std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const; /// Calls \c Lexer::getLocForEndOfToken() SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0); /// Retrieve the module loader associated with the preprocessor. ModuleLoader &getModuleLoader() const; void emitAndClearUnusedLocalTypedefWarnings(); enum TUFragmentKind { /// The global module fragment, between 'module;' and a module-declaration. Global, /// A normal translation unit fragment. For a non-module unit, this is the /// entire translation unit. Otherwise, it runs from the module-declaration /// to the private-module-fragment (if any) or the end of the TU (if not). Normal, /// The private module fragment, between 'module :private;' and the end of /// the translation unit. Private }; void ActOnStartOfTranslationUnit(); void ActOnEndOfTranslationUnit(); void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind); void CheckDelegatingCtorCycles(); Scope *getScopeForContext(DeclContext *Ctx); void PushFunctionScope(); void PushBlockScope(Scope *BlockScope, BlockDecl *Block); sema::LambdaScopeInfo *PushLambdaScope(); /// This is used to inform Sema what the current TemplateParameterDepth /// is during Parsing. Currently it is used to pass on the depth /// when parsing generic lambda 'auto' parameters. void RecordParsingTemplateParameterDepth(unsigned Depth); void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD, RecordDecl *RD, CapturedRegionKind K, unsigned OpenMPCaptureLevel = 0); /// Custom deleter to allow FunctionScopeInfos to be kept alive for a short /// time after they've been popped. class PoppedFunctionScopeDeleter { Sema *Self; public: explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {} void operator()(sema::FunctionScopeInfo *Scope) const; }; using PoppedFunctionScopePtr = std::unique_ptr; PoppedFunctionScopePtr PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr, const Decl *D = nullptr, QualType BlockType = QualType()); sema::FunctionScopeInfo *getCurFunction() const { return FunctionScopes.empty() ? nullptr : FunctionScopes.back(); } sema::FunctionScopeInfo *getEnclosingFunction() const; void setFunctionHasBranchIntoScope(); void setFunctionHasBranchProtectedScope(); void setFunctionHasIndirectGoto(); void PushCompoundScope(bool IsStmtExpr); void PopCompoundScope(); sema::CompoundScopeInfo &getCurCompoundScope() const; bool hasAnyUnrecoverableErrorsInThisFunction() const; /// Retrieve the current block, if any. sema::BlockScopeInfo *getCurBlock(); /// Get the innermost lambda enclosing the current location, if any. This /// looks through intervening non-lambda scopes such as local functions and /// blocks. sema::LambdaScopeInfo *getEnclosingLambda() const; /// Retrieve the current lambda scope info, if any. /// \param IgnoreNonLambdaCapturingScope true if should find the top-most /// lambda scope info ignoring all inner capturing scopes that are not /// lambda scopes. sema::LambdaScopeInfo * getCurLambda(bool IgnoreNonLambdaCapturingScope = false); /// Retrieve the current generic lambda info, if any. sema::LambdaScopeInfo *getCurGenericLambda(); /// Retrieve the current captured region, if any. sema::CapturedRegionScopeInfo *getCurCapturedRegion(); /// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls SmallVectorImpl &WeakTopLevelDecls() { return WeakTopLevelDecl; } void ActOnComment(SourceRange Comment); //===--------------------------------------------------------------------===// // Type Analysis / Processing: SemaType.cpp. // QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs, const DeclSpec *DS = nullptr); QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA, const DeclSpec *DS = nullptr); QualType BuildPointerType(QualType T, SourceLocation Loc, DeclarationName Entity); QualType BuildReferenceType(QualType T, bool LValueRef, SourceLocation Loc, DeclarationName Entity); QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, Expr *ArraySize, unsigned Quals, SourceRange Brackets, DeclarationName Entity); QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc); QualType BuildExtVectorType(QualType T, Expr *ArraySize, SourceLocation AttrLoc); QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace, SourceLocation AttrLoc); /// Same as above, but constructs the AddressSpace index if not provided. QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace, SourceLocation AttrLoc); bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc); bool CheckFunctionReturnType(QualType T, SourceLocation Loc); /// Build a function type. /// /// This routine checks the function type according to C++ rules and /// under the assumption that the result type and parameter types have /// just been instantiated from a template. It therefore duplicates /// some of the behavior of GetTypeForDeclarator, but in a much /// simpler form that is only suitable for this narrow use case. /// /// \param T The return type of the function. /// /// \param ParamTypes The parameter types of the function. This array /// will be modified to account for adjustments to the types of the /// function parameters. /// /// \param Loc The location of the entity whose type involves this /// function type or, if there is no such entity, the location of the /// type that will have function type. /// /// \param Entity The name of the entity that involves the function /// type, if known. /// /// \param EPI Extra information about the function type. Usually this will /// be taken from an existing function with the same prototype. /// /// \returns A suitable function type, if there are no errors. The /// unqualified type will always be a FunctionProtoType. /// Otherwise, returns a NULL type. QualType BuildFunctionType(QualType T, MutableArrayRef ParamTypes, SourceLocation Loc, DeclarationName Entity, const FunctionProtoType::ExtProtoInfo &EPI); QualType BuildMemberPointerType(QualType T, QualType Class, SourceLocation Loc, DeclarationName Entity); QualType BuildBlockPointerType(QualType T, SourceLocation Loc, DeclarationName Entity); QualType BuildParenType(QualType T); QualType BuildAtomicType(QualType T, SourceLocation Loc); QualType BuildReadPipeType(QualType T, SourceLocation Loc); QualType BuildWritePipeType(QualType T, SourceLocation Loc); TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S); TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy); /// Package the given type and TSI into a ParsedType. ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo); DeclarationNameInfo GetNameForDeclarator(Declarator &D); DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name); static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo = nullptr); CanThrowResult canThrow(const Expr *E); const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT); void UpdateExceptionSpec(FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI); bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range); bool CheckDistantExceptionSpec(QualType T); bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New); bool CheckEquivalentExceptionSpec( const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc); bool CheckEquivalentExceptionSpec( const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc); bool handlerCanCatch(QualType HandlerType, QualType ExceptionType); bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID, const PartialDiagnostic &NestedDiagID, const PartialDiagnostic &NoteID, const PartialDiagnostic &NoThrowDiagID, const FunctionProtoType *Superset, SourceLocation SuperLoc, const FunctionProtoType *Subset, SourceLocation SubLoc); bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID, const PartialDiagnostic &NoteID, const FunctionProtoType *Target, SourceLocation TargetLoc, const FunctionProtoType *Source, SourceLocation SourceLoc); TypeResult ActOnTypeName(Scope *S, Declarator &D); /// The parser has parsed the context-sensitive type 'instancetype' /// in an Objective-C message declaration. Return the appropriate type. ParsedType ActOnObjCInstanceType(SourceLocation Loc); /// Abstract class used to diagnose incomplete types. struct TypeDiagnoser { TypeDiagnoser() {} virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0; virtual ~TypeDiagnoser() {} }; static int getPrintable(int I) { return I; } static unsigned getPrintable(unsigned I) { return I; } static bool getPrintable(bool B) { return B; } static const char * getPrintable(const char *S) { return S; } static StringRef getPrintable(StringRef S) { return S; } static const std::string &getPrintable(const std::string &S) { return S; } static const IdentifierInfo *getPrintable(const IdentifierInfo *II) { return II; } static DeclarationName getPrintable(DeclarationName N) { return N; } static QualType getPrintable(QualType T) { return T; } static SourceRange getPrintable(SourceRange R) { return R; } static SourceRange getPrintable(SourceLocation L) { return L; } static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); } static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();} template class BoundTypeDiagnoser : public TypeDiagnoser { unsigned DiagID; std::tuple Args; template void emit(const SemaDiagnosticBuilder &DB, std::index_sequence) const { // Apply all tuple elements to the builder in order. bool Dummy[] = {false, (DB << getPrintable(std::get(Args)))...}; (void)Dummy; } public: BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args) : TypeDiagnoser(), DiagID(DiagID), Args(Args...) { assert(DiagID != 0 && "no diagnostic for type diagnoser"); } void diagnose(Sema &S, SourceLocation Loc, QualType T) override { const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID); emit(DB, std::index_sequence_for()); DB << T; } }; private: /// Methods for marking which expressions involve dereferencing a pointer /// marked with the 'noderef' attribute. Expressions are checked bottom up as /// they are parsed, meaning that a noderef pointer may not be accessed. For /// example, in `&*p` where `p` is a noderef pointer, we will first parse the /// `*p`, but need to check that `address of` is called on it. This requires /// keeping a container of all pending expressions and checking if the address /// of them are eventually taken. void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E); void CheckAddressOfNoDeref(const Expr *E); void CheckMemberAccessOfNoDeref(const MemberExpr *E); bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T, TypeDiagnoser *Diagnoser); struct ModuleScope { SourceLocation BeginLoc; clang::Module *Module = nullptr; bool ModuleInterface = false; bool ImplicitGlobalModuleFragment = false; VisibleModuleSet OuterVisibleModules; }; /// The modules we're currently parsing. llvm::SmallVector ModuleScopes; /// Namespace definitions that we will export when they finish. llvm::SmallPtrSet DeferredExportedNamespaces; /// Get the module whose scope we are currently within. Module *getCurrentModule() const { return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module; } VisibleModuleSet VisibleModules; public: /// Get the module owning an entity. Module *getOwningModule(Decl *Entity) { return Entity->getOwningModule(); } /// Make a merged definition of an existing hidden definition \p ND /// visible at the specified location. void makeMergedDefinitionVisible(NamedDecl *ND); bool isModuleVisible(const Module *M, bool ModulePrivate = false); /// Determine whether a declaration is visible to name lookup. bool isVisible(const NamedDecl *D) { return !D->isHidden() || isVisibleSlow(D); } /// Determine whether any declaration of an entity is visible. bool hasVisibleDeclaration(const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr) { return isVisible(D) || hasVisibleDeclarationSlow(D, Modules); } bool hasVisibleDeclarationSlow(const NamedDecl *D, llvm::SmallVectorImpl *Modules); bool hasVisibleMergedDefinition(NamedDecl *Def); bool hasMergedDefinitionInCurrentModule(NamedDecl *Def); /// Determine if \p D and \p Suggested have a structurally compatible /// layout as described in C11 6.2.7/1. bool hasStructuralCompatLayout(Decl *D, Decl *Suggested); /// Determine if \p D has a visible definition. If not, suggest a declaration /// that should be made visible to expose the definition. bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, bool OnlyNeedComplete = false); bool hasVisibleDefinition(const NamedDecl *D) { NamedDecl *Hidden; return hasVisibleDefinition(const_cast(D), &Hidden); } /// Determine if the template parameter \p D has a visible default argument. bool hasVisibleDefaultArgument(const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); /// Determine if there is a visible declaration of \p D that is an explicit /// specialization declaration for a specialization of a template. (For a /// member specialization, use hasVisibleMemberSpecialization.) bool hasVisibleExplicitSpecialization( const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); /// Determine if there is a visible declaration of \p D that is a member /// specialization declaration (as opposed to an instantiated declaration). bool hasVisibleMemberSpecialization( const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); /// Determine if \p A and \p B are equivalent internal linkage declarations /// from different modules, and thus an ambiguity error can be downgraded to /// an extension warning. bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A, const NamedDecl *B); void diagnoseEquivalentInternalLinkageDeclarations( SourceLocation Loc, const NamedDecl *D, ArrayRef Equiv); bool isUsualDeallocationFunction(const CXXMethodDecl *FD); bool isCompleteType(SourceLocation Loc, QualType T) { return !RequireCompleteTypeImpl(Loc, T, nullptr); } bool RequireCompleteType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser); bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID); template bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID, const Ts &...Args) { BoundTypeDiagnoser Diagnoser(DiagID, Args...); return RequireCompleteType(Loc, T, Diagnoser); } void completeExprArrayBound(Expr *E); bool RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser); bool RequireCompleteExprType(Expr *E, unsigned DiagID); template bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) { BoundTypeDiagnoser Diagnoser(DiagID, Args...); return RequireCompleteExprType(E, Diagnoser); } bool RequireLiteralType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser); bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID); template bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID, const Ts &...Args) { BoundTypeDiagnoser Diagnoser(DiagID, Args...); return RequireLiteralType(Loc, T, Diagnoser); } QualType getElaboratedType(ElaboratedTypeKeyword Keyword, const CXXScopeSpec &SS, QualType T, TagDecl *OwnedTagDecl = nullptr); QualType BuildTypeofExprType(Expr *E, SourceLocation Loc); /// If AsUnevaluated is false, E is treated as though it were an evaluated /// context, such as when building a type for decltype(auto). QualType BuildDecltypeType(Expr *E, SourceLocation Loc, bool AsUnevaluated = true); QualType BuildUnaryTransformType(QualType BaseType, UnaryTransformType::UTTKind UKind, SourceLocation Loc); //===--------------------------------------------------------------------===// // Symbol table / Decl tracking callbacks: SemaDecl.cpp. // struct SkipBodyInfo { SkipBodyInfo() : ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr), New(nullptr) {} bool ShouldSkip; bool CheckSameAsPrevious; NamedDecl *Previous; NamedDecl *New; }; DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr); void DiagnoseUseOfUnimplementedSelectors(); bool isSimpleTypeSpecifier(tok::TokenKind Kind) const; ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec *SS = nullptr, bool isClassName = false, bool HasTrailingDot = false, ParsedType ObjectType = nullptr, bool IsCtorOrDtorName = false, bool WantNontrivialTypeSourceInfo = false, bool IsClassTemplateDeductionContext = true, IdentifierInfo **CorrectedII = nullptr); TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S); bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S); void DiagnoseUnknownTypeName(IdentifierInfo *&II, SourceLocation IILoc, Scope *S, CXXScopeSpec *SS, ParsedType &SuggestedType, bool IsTemplateName = false); /// Attempt to behave like MSVC in situations where lookup of an unqualified /// type name has failed in a dependent context. In these situations, we /// automatically form a DependentTypeName that will retry lookup in a related /// scope during instantiation. ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II, SourceLocation NameLoc, bool IsTemplateTypeArg); /// Describes the result of the name lookup and resolution performed /// by \c ClassifyName(). enum NameClassificationKind { NC_Unknown, NC_Error, NC_Keyword, NC_Type, NC_Expression, NC_NestedNameSpecifier, NC_TypeTemplate, NC_VarTemplate, NC_FunctionTemplate, NC_UndeclaredTemplate, }; class NameClassification { NameClassificationKind Kind; ExprResult Expr; TemplateName Template; ParsedType Type; explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {} public: NameClassification(ExprResult Expr) : Kind(NC_Expression), Expr(Expr) {} NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {} NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {} static NameClassification Error() { return NameClassification(NC_Error); } static NameClassification Unknown() { return NameClassification(NC_Unknown); } static NameClassification NestedNameSpecifier() { return NameClassification(NC_NestedNameSpecifier); } static NameClassification TypeTemplate(TemplateName Name) { NameClassification Result(NC_TypeTemplate); Result.Template = Name; return Result; } static NameClassification VarTemplate(TemplateName Name) { NameClassification Result(NC_VarTemplate); Result.Template = Name; return Result; } static NameClassification FunctionTemplate(TemplateName Name) { NameClassification Result(NC_FunctionTemplate); Result.Template = Name; return Result; } static NameClassification UndeclaredTemplate(TemplateName Name) { NameClassification Result(NC_UndeclaredTemplate); Result.Template = Name; return Result; } NameClassificationKind getKind() const { return Kind; } ParsedType getType() const { assert(Kind == NC_Type); return Type; } ExprResult getExpression() const { assert(Kind == NC_Expression); return Expr; } TemplateName getTemplateName() const { assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_UndeclaredTemplate); return Template; } TemplateNameKind getTemplateNameKind() const { switch (Kind) { case NC_TypeTemplate: return TNK_Type_template; case NC_FunctionTemplate: return TNK_Function_template; case NC_VarTemplate: return TNK_Var_template; case NC_UndeclaredTemplate: return TNK_Undeclared_template; default: llvm_unreachable("unsupported name classification."); } } }; /// Perform name lookup on the given name, classifying it based on /// the results of name lookup and the following token. /// /// This routine is used by the parser to resolve identifiers and help direct /// parsing. When the identifier cannot be found, this routine will attempt /// to correct the typo and classify based on the resulting name. /// /// \param S The scope in which we're performing name lookup. /// /// \param SS The nested-name-specifier that precedes the name. /// /// \param Name The identifier. If typo correction finds an alternative name, /// this pointer parameter will be updated accordingly. /// /// \param NameLoc The location of the identifier. /// /// \param NextToken The token following the identifier. Used to help /// disambiguate the name. /// /// \param IsAddressOfOperand True if this name is the operand of a unary /// address of ('&') expression, assuming it is classified as an /// expression. /// /// \param CCC The correction callback, if typo correction is desired. NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name, SourceLocation NameLoc, const Token &NextToken, bool IsAddressOfOperand, CorrectionCandidateCallback *CCC = nullptr); /// Describes the detailed kind of a template name. Used in diagnostics. enum class TemplateNameKindForDiagnostics { ClassTemplate, FunctionTemplate, VarTemplate, AliasTemplate, TemplateTemplateParam, Concept, DependentTemplate }; TemplateNameKindForDiagnostics getTemplateNameKindForDiagnostics(TemplateName Name); /// Determine whether it's plausible that E was intended to be a /// template-name. bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) { if (!getLangOpts().CPlusPlus || E.isInvalid()) return false; Dependent = false; if (auto *DRE = dyn_cast(E.get())) return !DRE->hasExplicitTemplateArgs(); if (auto *ME = dyn_cast(E.get())) return !ME->hasExplicitTemplateArgs(); Dependent = true; if (auto *DSDRE = dyn_cast(E.get())) return !DSDRE->hasExplicitTemplateArgs(); if (auto *DSME = dyn_cast(E.get())) return !DSME->hasExplicitTemplateArgs(); // Any additional cases recognized here should also be handled by // diagnoseExprIntendedAsTemplateName. return false; } void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, SourceLocation Less, SourceLocation Greater); Decl *ActOnDeclarator(Scope *S, Declarator &D); NamedDecl *HandleDeclarator(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists); void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S); bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info); bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, DeclarationName Name, SourceLocation Loc, bool IsTemplateId); void diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, SourceLocation FallbackLoc, SourceLocation ConstQualLoc = SourceLocation(), SourceLocation VolatileQualLoc = SourceLocation(), SourceLocation RestrictQualLoc = SourceLocation(), SourceLocation AtomicQualLoc = SourceLocation(), SourceLocation UnalignedQualLoc = SourceLocation()); static bool adjustContextForLocalExternDecl(DeclContext *&DC); void DiagnoseFunctionSpecifiers(const DeclSpec &DS); NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D, const LookupResult &R); NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R); void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, const LookupResult &R); void CheckShadow(Scope *S, VarDecl *D); /// Warn if 'E', which is an expression that is about to be modified, refers /// to a shadowing declaration. void CheckShadowingDeclModification(Expr *E, SourceLocation Loc); void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI); private: /// Map of current shadowing declarations to shadowed declarations. Warn if /// it looks like the user is trying to modify the shadowing declaration. llvm::DenseMap ShadowingDecls; public: void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange); void handleTagNumbering(const TagDecl *Tag, Scope *TagScope); void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, TypedefNameDecl *NewTD); void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D); NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, TypeSourceInfo *TInfo, LookupResult &Previous); NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D, LookupResult &Previous, bool &Redeclaration); NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, bool &AddToScope, ArrayRef Bindings = None); NamedDecl * ActOnDecompositionDeclarator(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParamLists); // Returns true if the variable declaration is a redeclaration bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous); void CheckVariableDeclarationType(VarDecl *NewVD); bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, Expr *Init); void CheckCompleteVariableDeclaration(VarDecl *VD); void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD); void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D); NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC, TypeSourceInfo *TInfo, LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, bool &AddToScope); bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD); enum class CheckConstexprKind { /// Diagnose issues that are non-constant or that are extensions. Diagnose, /// Identify whether this function satisfies the formal rules for constexpr /// functions in the current lanugage mode (with no extensions). CheckValid }; bool CheckConstexprFunctionDefinition(const FunctionDecl *FD, CheckConstexprKind Kind); void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD); void FindHiddenVirtualMethods(CXXMethodDecl *MD, SmallVectorImpl &OverloadedMethods); void NoteHiddenVirtualMethods(CXXMethodDecl *MD, SmallVectorImpl &OverloadedMethods); // Returns true if the function declaration is a redeclaration bool CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, LookupResult &Previous, bool IsMemberSpecialization); bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl); bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, QualType NewT, QualType OldT); void CheckMain(FunctionDecl *FD, const DeclSpec &D); void CheckMSVCRTEntryPoint(FunctionDecl *FD); Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, bool IsDefinition); void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D); Decl *ActOnParamDeclarator(Scope *S, Declarator &D); ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC, SourceLocation Loc, QualType T); ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc, SourceLocation NameLoc, IdentifierInfo *Name, QualType T, TypeSourceInfo *TSInfo, StorageClass SC); void ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, Expr *defarg); void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc, SourceLocation ArgLoc); void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc); bool SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg, SourceLocation EqualLoc); // Contexts where using non-trivial C union types can be disallowed. This is // passed to err_non_trivial_c_union_in_invalid_context. enum NonTrivialCUnionContext { // Function parameter. NTCUC_FunctionParam, // Function return. NTCUC_FunctionReturn, // Default-initialized object. NTCUC_DefaultInitializedObject, // Variable with automatic storage duration. NTCUC_AutoVar, // Initializer expression that might copy from another object. NTCUC_CopyInit, // Assignment. NTCUC_Assignment, // Compound literal. NTCUC_CompoundLiteral, // Block capture. NTCUC_BlockCapture, // lvalue-to-rvalue conversion of volatile type. NTCUC_LValueToRValueVolatile, }; /// Emit diagnostics if the initializer or any of its explicit or /// implicitly-generated subexpressions require copying or /// default-initializing a type that is or contains a C union type that is /// non-trivial to copy or default-initialize. void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc); // These flags are passed to checkNonTrivialCUnion. enum NonTrivialCUnionKind { NTCUK_Init = 0x1, NTCUK_Destruct = 0x2, NTCUK_Copy = 0x4, }; /// Emit diagnostics if a non-trivial C union type or a struct that contains /// a non-trivial C union is used in an invalid context. void checkNonTrivialCUnion(QualType QT, SourceLocation Loc, NonTrivialCUnionContext UseContext, unsigned NonTrivialKind); void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit); void ActOnUninitializedDecl(Decl *dcl); void ActOnInitializerError(Decl *Dcl); void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc); void ActOnCXXForRangeDecl(Decl *D); StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, IdentifierInfo *Ident, ParsedAttributes &Attrs, SourceLocation AttrEnd); void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc); void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc); void CheckStaticLocalForDllExport(VarDecl *VD); void FinalizeDeclaration(Decl *D); DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, ArrayRef Group); DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef Group); /// Should be called on all declarations that might have attached /// documentation comments. void ActOnDocumentableDecl(Decl *D); void ActOnDocumentableDecls(ArrayRef Group); void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, SourceLocation LocAfterDecls); void CheckForFunctionRedefinition( FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr, SkipBodyInfo *SkipBody = nullptr); Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParamLists, SkipBodyInfo *SkipBody = nullptr); Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D, SkipBodyInfo *SkipBody = nullptr); void ActOnStartOfObjCMethodDef(Scope *S, Decl *D); bool isObjCMethodDecl(Decl *D) { return D && isa(D); } /// Determine whether we can delay parsing the body of a function or /// function template until it is used, assuming we don't care about emitting /// code for that function. /// /// This will be \c false if we may need the body of the function in the /// middle of parsing an expression (where it's impractical to switch to /// parsing a different function), for instance, if it's constexpr in C++11 /// or has an 'auto' return type in C++14. These cases are essentially bugs. bool canDelayFunctionBody(const Declarator &D); /// Determine whether we can skip parsing the body of a function /// definition, assuming we don't care about analyzing its body or emitting /// code for that function. /// /// This will be \c false only if we may need the body of the function in /// order to parse the rest of the program (for instance, if it is /// \c constexpr in C++11 or has an 'auto' return type in C++14). bool canSkipFunctionBody(Decl *D); void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope); Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body); Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation); Decl *ActOnSkippedFunctionBody(Decl *Decl); void ActOnFinishInlineFunctionDef(FunctionDecl *D); /// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an /// attribute for which parsing is delayed. void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs); /// Diagnose any unused parameters in the given sequence of /// ParmVarDecl pointers. void DiagnoseUnusedParameters(ArrayRef Parameters); /// Diagnose whether the size of parameters or return value of a /// function or obj-c method definition is pass-by-value and larger than a /// specified threshold. void DiagnoseSizeOfParametersAndReturnValue(ArrayRef Parameters, QualType ReturnTy, NamedDecl *D); void DiagnoseInvalidJumps(Stmt *Body); Decl *ActOnFileScopeAsmDecl(Expr *expr, SourceLocation AsmLoc, SourceLocation RParenLoc); /// Handle a C++11 empty-declaration and attribute-declaration. Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList, SourceLocation SemiLoc); enum class ModuleDeclKind { Interface, ///< 'export module X;' Implementation, ///< 'module X;' }; /// The parser has processed a module-declaration that begins the definition /// of a module interface or implementation. DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, ModuleDeclKind MDK, ModuleIdPath Path, bool IsFirstDecl); /// The parser has processed a global-module-fragment declaration that begins /// the definition of the global module fragment of the current module unit. /// \param ModuleLoc The location of the 'module' keyword. DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc); /// The parser has processed a private-module-fragment declaration that begins /// the definition of the private module fragment of the current module unit. /// \param ModuleLoc The location of the 'module' keyword. /// \param PrivateLoc The location of the 'private' keyword. DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, SourceLocation PrivateLoc); /// The parser has processed a module import declaration. /// /// \param StartLoc The location of the first token in the declaration. This /// could be the location of an '@', 'export', or 'import'. /// \param ExportLoc The location of the 'export' keyword, if any. /// \param ImportLoc The location of the 'import' keyword. /// \param Path The module access path. DeclResult ActOnModuleImport(SourceLocation StartLoc, SourceLocation ExportLoc, SourceLocation ImportLoc, ModuleIdPath Path); DeclResult ActOnModuleImport(SourceLocation StartLoc, SourceLocation ExportLoc, SourceLocation ImportLoc, Module *M, ModuleIdPath Path = {}); /// The parser has processed a module import translated from a /// #include or similar preprocessing directive. void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod); void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod); /// The parsed has entered a submodule. void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod); /// The parser has left a submodule. void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod); /// Create an implicit import of the given module at the given /// source location, for error recovery, if possible. /// /// This routine is typically used when an entity found by name lookup /// is actually hidden within a module that we know about but the user /// has forgotten to import. void createImplicitModuleImportForErrorRecovery(SourceLocation Loc, Module *Mod); /// Kinds of missing import. Note, the values of these enumerators correspond /// to %select values in diagnostics. enum class MissingImportKind { Declaration, Definition, DefaultArgument, ExplicitSpecialization, PartialSpecialization }; /// Diagnose that the specified declaration needs to be visible but /// isn't, and suggest a module import that would resolve the problem. void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, MissingImportKind MIK, bool Recover = true); void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, SourceLocation DeclLoc, ArrayRef Modules, MissingImportKind MIK, bool Recover); Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, SourceLocation LBraceLoc); Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl, SourceLocation RBraceLoc); /// We've found a use of a templated declaration that would trigger an /// implicit instantiation. Check that any relevant explicit specializations /// and partial specializations are visible, and diagnose if not. void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec); /// We've found a use of a template specialization that would select a /// partial specialization. Check that the partial specialization is visible, /// and diagnose if not. void checkPartialSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec); /// Retrieve a suitable printing policy for diagnostics. PrintingPolicy getPrintingPolicy() const { return getPrintingPolicy(Context, PP); } /// Retrieve a suitable printing policy for diagnostics. static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx, const Preprocessor &PP); /// Scope actions. void ActOnPopScope(SourceLocation Loc, Scope *S); void ActOnTranslationUnitScope(Scope *S); Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, RecordDecl *&AnonRecord); Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, MultiTemplateParamsArg TemplateParams, bool IsExplicitInstantiation, RecordDecl *&AnonRecord); Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, AccessSpecifier AS, RecordDecl *Record, const PrintingPolicy &Policy); Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, RecordDecl *Record); /// Common ways to introduce type names without a tag for use in diagnostics. /// Keep in sync with err_tag_reference_non_tag. enum NonTagKind { NTK_NonStruct, NTK_NonClass, NTK_NonUnion, NTK_NonEnum, NTK_Typedef, NTK_TypeAlias, NTK_Template, NTK_TypeAliasTemplate, NTK_TemplateTemplateArgument, }; /// Given a non-tag type declaration, returns an enum useful for indicating /// what kind of non-tag type this is. NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK); bool isAcceptableTagRedeclaration(const TagDecl *Previous, TagTypeKind NewTag, bool isDefinition, SourceLocation NewTagLoc, const IdentifierInfo *Name); enum TagUseKind { TUK_Reference, // Reference to a tag: 'struct foo *X;' TUK_Declaration, // Fwd decl of a tag: 'struct foo;' TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;' TUK_Friend // Friend declaration: 'friend struct foo;' }; Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr, AccessSpecifier AS, SourceLocation ModulePrivateLoc, MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl, bool &IsDependent, SourceLocation ScopedEnumKWLoc, bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, bool IsTypeSpecifier, bool IsTemplateParamOrArg, SkipBodyInfo *SkipBody = nullptr); Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr, MultiTemplateParamsArg TempParamLists); TypeResult ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation TagLoc, SourceLocation NameLoc); void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, IdentifierInfo *ClassName, SmallVectorImpl &Decls); Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth); FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, InClassInitStyle InitStyle, AccessSpecifier AS); MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, InClassInitStyle InitStyle, AccessSpecifier AS, const ParsedAttr &MSPropertyAttr); FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T, TypeSourceInfo *TInfo, RecordDecl *Record, SourceLocation Loc, bool Mutable, Expr *BitfieldWidth, InClassInitStyle InitStyle, SourceLocation TSSL, AccessSpecifier AS, NamedDecl *PrevDecl, Declarator *D = nullptr); bool CheckNontrivialField(FieldDecl *FD); void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM); enum TrivialABIHandling { /// The triviality of a method unaffected by "trivial_abi". TAH_IgnoreTrivialABI, /// The triviality of a method affected by "trivial_abi". TAH_ConsiderTrivialABI }; bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, TrivialABIHandling TAH = TAH_IgnoreTrivialABI, bool Diagnose = false); CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD); void ActOnLastBitfield(SourceLocation DeclStart, SmallVectorImpl &AllIvarDecls); Decl *ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, tok::ObjCKeywordKind visibility); // This is used for both record definitions and ObjC interface declarations. void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl, ArrayRef Fields, SourceLocation LBrac, SourceLocation RBrac, const ParsedAttributesView &AttrList); /// ActOnTagStartDefinition - Invoked when we have entered the /// scope of a tag's definition (e.g., for an enumeration, class, /// struct, or union). void ActOnTagStartDefinition(Scope *S, Decl *TagDecl); /// Perform ODR-like check for C/ObjC when merging tag types from modules. /// Differently from C++, actually parse the body and reject / error out /// in case of a structural mismatch. bool ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev, SkipBodyInfo &SkipBody); typedef void *SkippedDefinitionContext; /// Invoked when we enter a tag definition that we're skipping. SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD); Decl *ActOnObjCContainerStartDefinition(Decl *IDecl); /// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a /// C++ record definition's base-specifiers clause and are starting its /// member declarations. void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl, SourceLocation FinalLoc, bool IsFinalSpelledSealed, SourceLocation LBraceLoc); /// ActOnTagFinishDefinition - Invoked once we have finished parsing /// the definition of a tag (enumeration, class, struct, or union). void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl, SourceRange BraceRange); void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context); void ActOnObjCContainerFinishDefinition(); /// Invoked when we must temporarily exit the objective-c container /// scope for parsing/looking-up C constructs. /// /// Must be followed by a call to \see ActOnObjCReenterContainerContext void ActOnObjCTemporaryExitContainerContext(DeclContext *DC); void ActOnObjCReenterContainerContext(DeclContext *DC); /// ActOnTagDefinitionError - Invoked when there was an unrecoverable /// error parsing the definition of a tag. void ActOnTagDefinitionError(Scope *S, Decl *TagDecl); EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum, EnumConstantDecl *LastEnumConst, SourceLocation IdLoc, IdentifierInfo *Id, Expr *val); bool CheckEnumUnderlyingType(TypeSourceInfo *TI); bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, QualType EnumUnderlyingTy, bool IsFixed, const EnumDecl *Prev); /// Determine whether the body of an anonymous enumeration should be skipped. /// \param II The name of the first enumerator. SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, SourceLocation IILoc); Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant, SourceLocation IdLoc, IdentifierInfo *Id, const ParsedAttributesView &Attrs, SourceLocation EqualLoc, Expr *Val); void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, Decl *EnumDecl, ArrayRef Elements, Scope *S, const ParsedAttributesView &Attr); DeclContext *getContainingDC(DeclContext *DC); /// Set the current declaration context until it gets popped. void PushDeclContext(Scope *S, DeclContext *DC); void PopDeclContext(); /// EnterDeclaratorContext - Used when we must lookup names in the context /// of a declarator's nested name specifier. void EnterDeclaratorContext(Scope *S, DeclContext *DC); void ExitDeclaratorContext(Scope *S); /// Push the parameters of D, which must be a function, into scope. void ActOnReenterFunctionContext(Scope* S, Decl* D); void ActOnExitFunctionContext(); DeclContext *getFunctionLevelDeclContext(); /// getCurFunctionDecl - If inside of a function body, this returns a pointer /// to the function decl for the function being parsed. If we're currently /// in a 'block', this returns the containing context. FunctionDecl *getCurFunctionDecl(); /// getCurMethodDecl - If inside of a method body, this returns a pointer to /// the method decl for the method being parsed. If we're currently /// in a 'block', this returns the containing context. ObjCMethodDecl *getCurMethodDecl(); /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method /// or C function we're in, otherwise return null. If we're currently /// in a 'block', this returns the containing context. NamedDecl *getCurFunctionOrMethodDecl(); /// Add this decl to the scope shadowed decl chains. void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true); /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns /// true if 'D' belongs to the given declaration context. /// /// \param AllowInlineNamespace If \c true, allow the declaration to be in the /// enclosing namespace set of the context, rather than contained /// directly within it. bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr, bool AllowInlineNamespace = false); /// Finds the scope corresponding to the given decl context, if it /// happens to be an enclosing scope. Otherwise return NULL. static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC); /// Subroutines of ActOnDeclarator(). TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T, TypeSourceInfo *TInfo); bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New); /// Describes the kind of merge to perform for availability /// attributes (including "deprecated", "unavailable", and "availability"). enum AvailabilityMergeKind { /// Don't merge availability attributes at all. AMK_None, /// Merge availability attributes for a redeclaration, which requires /// an exact match. AMK_Redeclaration, /// Merge availability attributes for an override, which requires /// an exact match or a weakening of constraints. AMK_Override, /// Merge availability attributes for an implementation of /// a protocol requirement. AMK_ProtocolImplementation, }; /// Describes the kind of priority given to an availability attribute. /// /// The sum of priorities deteremines the final priority of the attribute. /// The final priority determines how the attribute will be merged. /// An attribute with a lower priority will always remove higher priority /// attributes for the specified platform when it is being applied. An /// attribute with a higher priority will not be applied if the declaration /// already has an availability attribute with a lower priority for the /// specified platform. The final prirority values are not expected to match /// the values in this enumeration, but instead should be treated as a plain /// integer value. This enumeration just names the priority weights that are /// used to calculate that final vaue. enum AvailabilityPriority : int { /// The availability attribute was specified explicitly next to the /// declaration. AP_Explicit = 0, /// The availability attribute was applied using '#pragma clang attribute'. AP_PragmaClangAttribute = 1, /// The availability attribute for a specific platform was inferred from /// an availability attribute for another platform. AP_InferredFromOtherPlatform = 2 }; /// Attribute merging methods. Return true if a new attribute was added. AvailabilityAttr * mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, int Priority); TypeVisibilityAttr * mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, TypeVisibilityAttr::VisibilityType Vis); VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, VisibilityAttr::VisibilityType Vis); UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Uuid); DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI); DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI); MSInheritanceAttr * mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, bool BestCase, MSInheritanceAttr::Spelling SemanticSpelling); FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Format, int FormatIdx, int FirstArg); SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name); CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name); AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D, const AttributeCommonInfo &CI, const IdentifierInfo *Ident); MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI); NoSpeculativeLoadHardeningAttr * mergeNoSpeculativeLoadHardeningAttr(Decl *D, const NoSpeculativeLoadHardeningAttr &AL); SpeculativeLoadHardeningAttr * mergeSpeculativeLoadHardeningAttr(Decl *D, const SpeculativeLoadHardeningAttr &AL); OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D, const AttributeCommonInfo &CI); InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL); InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL); CommonAttr *mergeCommonAttr(Decl *D, const ParsedAttr &AL); CommonAttr *mergeCommonAttr(Decl *D, const CommonAttr &AL); void mergeDeclAttributes(NamedDecl *New, Decl *Old, AvailabilityMergeKind AMK = AMK_Redeclaration); void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, LookupResult &OldDecls); bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S, bool MergeTypeWithOld); bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, Scope *S, bool MergeTypeWithOld); void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old); void MergeVarDecl(VarDecl *New, LookupResult &Previous); void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld); void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old); bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn); void notePreviousDefinition(const NamedDecl *Old, SourceLocation New); bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S); // AssignmentAction - This is used by all the assignment diagnostic functions // to represent what is actually causing the operation enum AssignmentAction { AA_Assigning, AA_Passing, AA_Returning, AA_Converting, AA_Initializing, AA_Sending, AA_Casting, AA_Passing_CFAudited }; /// C++ Overloading. enum OverloadKind { /// This is a legitimate overload: the existing declarations are /// functions or function templates with different signatures. Ovl_Overload, /// This is not an overload because the signature exactly matches /// an existing declaration. Ovl_Match, /// This is not an overload because the lookup results contain a /// non-function. Ovl_NonFunction }; OverloadKind CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &OldDecls, NamedDecl *&OldDecl, bool IsForUsingDecl); bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl, bool ConsiderCudaAttrs = true); ImplicitConversionSequence TryImplicitConversion(Expr *From, QualType ToType, bool SuppressUserConversions, bool AllowExplicit, bool InOverloadResolution, bool CStyle, bool AllowObjCWritebackConversion); bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType); bool IsFloatingPointPromotion(QualType FromType, QualType ToType); bool IsComplexPromotion(QualType FromType, QualType ToType); bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType& ConvertedType, bool &IncompatibleObjC); bool isObjCPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC); bool isObjCWritebackConversion(QualType FromType, QualType ToType, QualType &ConvertedType); bool IsBlockPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType); bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType, const FunctionProtoType *NewType, unsigned *ArgPos = nullptr); void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, QualType FromType, QualType ToType); void maybeExtendBlockObject(ExprResult &E); CastKind PrepareCastToObjCObjectPointer(ExprResult &E); bool CheckPointerConversion(Expr *From, QualType ToType, CastKind &Kind, CXXCastPath& BasePath, bool IgnoreBaseAccess, bool Diagnose = true); bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType &ConvertedType); bool CheckMemberPointerConversion(Expr *From, QualType ToType, CastKind &Kind, CXXCastPath &BasePath, bool IgnoreBaseAccess); bool IsQualificationConversion(QualType FromType, QualType ToType, bool CStyle, bool &ObjCLifetimeConversion); bool IsFunctionConversion(QualType FromType, QualType ToType, QualType &ResultTy); bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType); bool isSameOrCompatibleFunctionType(CanQualType Param, CanQualType Arg); ExprResult PerformMoveOrCopyInitialization(const InitializedEntity &Entity, const VarDecl *NRVOCandidate, QualType ResultType, Expr *Value, bool AllowNRVO = true); bool CanPerformAggregateInitializationForOverloadResolution( const InitializedEntity &Entity, InitListExpr *From); bool CanPerformCopyInitialization(const InitializedEntity &Entity, ExprResult Init); ExprResult PerformCopyInitialization(const InitializedEntity &Entity, SourceLocation EqualLoc, ExprResult Init, bool TopLevelOfInitList = false, bool AllowExplicit = false); ExprResult PerformObjectArgumentInitialization(Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, CXXMethodDecl *Method); /// Check that the lifetime of the initializer (and its subobjects) is /// sufficient for initializing the entity, and perform lifetime extension /// (when permitted) if not. void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init); ExprResult PerformContextuallyConvertToBool(Expr *From); ExprResult PerformContextuallyConvertToObjCPointer(Expr *From); /// Contexts in which a converted constant expression is required. enum CCEKind { CCEK_CaseValue, ///< Expression in a case label. CCEK_Enumerator, ///< Enumerator value with fixed underlying type. CCEK_TemplateArg, ///< Value of a non-type template parameter. CCEK_NewExpr, ///< Constant expression in a noptr-new-declarator. CCEK_ConstexprIf, ///< Condition in a constexpr if statement. CCEK_ExplicitBool ///< Condition in an explicit(bool) specifier. }; ExprResult CheckConvertedConstantExpression(Expr *From, QualType T, llvm::APSInt &Value, CCEKind CCE); ExprResult CheckConvertedConstantExpression(Expr *From, QualType T, APValue &Value, CCEKind CCE); /// Abstract base class used to perform a contextual implicit /// conversion from an expression to any type passing a filter. class ContextualImplicitConverter { public: bool Suppress; bool SuppressConversion; ContextualImplicitConverter(bool Suppress = false, bool SuppressConversion = false) : Suppress(Suppress), SuppressConversion(SuppressConversion) {} /// Determine whether the specified type is a valid destination type /// for this conversion. virtual bool match(QualType T) = 0; /// Emits a diagnostic complaining that the expression does not have /// integral or enumeration type. virtual SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0; /// Emits a diagnostic when the expression has incomplete class type. virtual SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0; /// Emits a diagnostic when the only matching conversion function /// is explicit. virtual SemaDiagnosticBuilder diagnoseExplicitConv( Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0; /// Emits a note for the explicit conversion function. virtual SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0; /// Emits a diagnostic when there are multiple possible conversion /// functions. virtual SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0; /// Emits a note for one of the candidate conversions. virtual SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0; /// Emits a diagnostic when we picked a conversion function /// (for cases when we are not allowed to pick a conversion function). virtual SemaDiagnosticBuilder diagnoseConversion( Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0; virtual ~ContextualImplicitConverter() {} }; class ICEConvertDiagnoser : public ContextualImplicitConverter { bool AllowScopedEnumerations; public: ICEConvertDiagnoser(bool AllowScopedEnumerations, bool Suppress, bool SuppressConversion) : ContextualImplicitConverter(Suppress, SuppressConversion), AllowScopedEnumerations(AllowScopedEnumerations) {} /// Match an integral or (possibly scoped) enumeration type. bool match(QualType T) override; SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override { return diagnoseNotInt(S, Loc, T); } /// Emits a diagnostic complaining that the expression does not have /// integral or enumeration type. virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0; }; /// Perform a contextual implicit conversion. ExprResult PerformContextualImplicitConversion( SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter); enum ObjCSubscriptKind { OS_Array, OS_Dictionary, OS_Error }; ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE); // Note that LK_String is intentionally after the other literals, as // this is used for diagnostics logic. enum ObjCLiteralKind { LK_Array, LK_Dictionary, LK_Numeric, LK_Boxed, LK_String, LK_Block, LK_None }; ObjCLiteralKind CheckLiteralKind(Expr *FromE); ExprResult PerformObjectMemberConversion(Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, NamedDecl *Member); // Members have to be NamespaceDecl* or TranslationUnitDecl*. // TODO: make this is a typesafe union. typedef llvm::SmallSetVector AssociatedNamespaceSet; typedef llvm::SmallSetVector AssociatedClassSet; using ADLCallKind = CallExpr::ADLCallKind; void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false, bool AllowExplicit = true, bool AllowExplicitConversion = false, ADLCallKind IsADLCandidate = ADLCallKind::NotADL, ConversionSequenceList EarlyConversions = None); void AddFunctionCandidates(const UnresolvedSetImpl &Functions, ArrayRef Args, OverloadCandidateSet &CandidateSet, TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr, bool SuppressUserConversions = false, bool PartialOverloading = false, bool FirstArgumentIsBase = false); void AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversion = false); void AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false, ConversionSequenceList EarlyConversions = None); void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false); void AddTemplateOverloadCandidate( FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false, bool AllowExplicit = true, ADLCallKind IsADLCandidate = ADLCallKind::NotADL); bool CheckNonDependentConversions(FunctionTemplateDecl *FunctionTemplate, ArrayRef ParamTypes, ArrayRef Args, OverloadCandidateSet &CandidateSet, ConversionSequenceList &Conversions, bool SuppressUserConversions, CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(), Expr::Classification ObjectClassification = {}); void AddConversionCandidate( CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, Expr *From, QualType ToType, OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, bool AllowExplicit, bool AllowResultConversion = true); void AddTemplateConversionCandidate( FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, Expr *From, QualType ToType, OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, bool AllowExplicit, bool AllowResultConversion = true); void AddSurrogateCandidate(CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, const FunctionProtoType *Proto, Expr *Object, ArrayRef Args, OverloadCandidateSet& CandidateSet); void AddMemberOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, ArrayRef Args, OverloadCandidateSet& CandidateSet, SourceRange OpRange = SourceRange()); void AddBuiltinCandidate(QualType *ParamTys, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool IsAssignmentOperator = false, unsigned NumContextualBoolArguments = 0); void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, ArrayRef Args, OverloadCandidateSet& CandidateSet); void AddArgumentDependentLookupCandidates(DeclarationName Name, SourceLocation Loc, ArrayRef Args, TemplateArgumentListInfo *ExplicitTemplateArgs, OverloadCandidateSet& CandidateSet, bool PartialOverloading = false); // Emit as a 'note' the specific overload candidate void NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn, QualType DestType = QualType(), bool TakingAddress = false); // Emit as a series of 'note's all template and non-templates identified by // the expression Expr void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(), bool TakingAddress = false); /// Check the enable_if expressions on the given function. Returns the first /// failing attribute, or NULL if they were all successful. EnableIfAttr *CheckEnableIf(FunctionDecl *Function, ArrayRef Args, bool MissingImplicitThis = false); /// Find the failed Boolean condition within a given Boolean /// constant expression, and describe it with a string. std::pair findFailedBooleanCondition(Expr *Cond); /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any /// non-ArgDependent DiagnoseIfAttrs. /// /// Argument-dependent diagnose_if attributes should be checked each time a /// function is used as a direct callee of a function call. /// /// Returns true if any errors were emitted. bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, const Expr *ThisArg, ArrayRef Args, SourceLocation Loc); /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any /// ArgDependent DiagnoseIfAttrs. /// /// Argument-independent diagnose_if attributes should be checked on every use /// of a function. /// /// Returns true if any errors were emitted. bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, SourceLocation Loc); /// Returns whether the given function's address can be taken or not, /// optionally emitting a diagnostic if the address can't be taken. /// /// Returns false if taking the address of the function is illegal. bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, bool Complain = false, SourceLocation Loc = SourceLocation()); // [PossiblyAFunctionType] --> [Return] // NonFunctionType --> NonFunctionType // R (A) --> R(A) // R (*)(A) --> R (A) // R (&)(A) --> R (A) // R (S::*)(A) --> R (A) QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType); FunctionDecl * ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType, bool Complain, DeclAccessPair &Found, bool *pHadMultipleCandidates = nullptr); FunctionDecl * resolveAddressOfOnlyViableOverloadCandidate(Expr *E, DeclAccessPair &FoundResult); bool resolveAndFixAddressOfOnlyViableOverloadCandidate( ExprResult &SrcExpr, bool DoFunctionPointerConversion = false); FunctionDecl * ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, bool Complain = false, DeclAccessPair *Found = nullptr); bool ResolveAndFixSingleFunctionTemplateSpecialization( ExprResult &SrcExpr, bool DoFunctionPointerConverion = false, bool Complain = false, SourceRange OpRangeForComplaining = SourceRange(), QualType DestTypeForComplaining = QualType(), unsigned DiagIDForComplaining = 0); Expr *FixOverloadedFunctionReference(Expr *E, DeclAccessPair FoundDecl, FunctionDecl *Fn); ExprResult FixOverloadedFunctionReference(ExprResult, DeclAccessPair FoundDecl, FunctionDecl *Fn); void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool PartialOverloading = false); // An enum used to represent the different possible results of building a // range-based for loop. enum ForRangeStatus { FRS_Success, FRS_NoViableFunction, FRS_DiagnosticIssued }; ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc, SourceLocation RangeLoc, const DeclarationNameInfo &NameInfo, LookupResult &MemberLookup, OverloadCandidateSet *CandidateSet, Expr *Range, ExprResult *CallExpr); ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc, Expr *ExecConfig, bool AllowTypoCorrection=true, bool CalleesAddressIsTaken=false); bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, MultiExprArg Args, SourceLocation RParenLoc, OverloadCandidateSet *CandidateSet, ExprResult *Result); ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, const UnresolvedSetImpl &Fns, Expr *input, bool RequiresADL = true); ExprResult CreateOverloadedBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, bool RequiresADL = true); ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, SourceLocation RLoc, Expr *Base,Expr *Idx); ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc); ExprResult BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc); ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, bool *NoArrowOperatorFound = nullptr); /// CheckCallReturnType - Checks that a call expression's return type is /// complete. Returns true on failure. The location passed in is the location /// that best represents the call. bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc, CallExpr *CE, FunctionDecl *FD); /// Helpers for dealing with blocks and functions. bool CheckParmsForFunctionDef(ArrayRef Parameters, bool CheckParameterNames); void CheckCXXDefaultArguments(FunctionDecl *FD); void CheckExtraCXXDefaultArguments(Declarator &D); Scope *getNonFieldDeclScope(Scope *S); /// \name Name lookup /// /// These routines provide name lookup that is used during semantic /// analysis to resolve the various kinds of names (identifiers, /// overloaded operator names, constructor names, etc.) into zero or /// more declarations within a particular scope. The major entry /// points are LookupName, which performs unqualified name lookup, /// and LookupQualifiedName, which performs qualified name lookup. /// /// All name lookup is performed based on some specific criteria, /// which specify what names will be visible to name lookup and how /// far name lookup should work. These criteria are important both /// for capturing language semantics (certain lookups will ignore /// certain names, for example) and for performance, since name /// lookup is often a bottleneck in the compilation of C++. Name /// lookup criteria is specified via the LookupCriteria enumeration. /// /// The results of name lookup can vary based on the kind of name /// lookup performed, the current language, and the translation /// unit. In C, for example, name lookup will either return nothing /// (no entity found) or a single declaration. In C++, name lookup /// can additionally refer to a set of overloaded functions or /// result in an ambiguity. All of the possible results of name /// lookup are captured by the LookupResult class, which provides /// the ability to distinguish among them. //@{ /// Describes the kind of name lookup to perform. enum LookupNameKind { /// Ordinary name lookup, which finds ordinary names (functions, /// variables, typedefs, etc.) in C and most kinds of names /// (functions, variables, members, types, etc.) in C++. LookupOrdinaryName = 0, /// Tag name lookup, which finds the names of enums, classes, /// structs, and unions. LookupTagName, /// Label name lookup. LookupLabel, /// Member name lookup, which finds the names of /// class/struct/union members. LookupMemberName, /// Look up of an operator name (e.g., operator+) for use with /// operator overloading. This lookup is similar to ordinary name /// lookup, but will ignore any declarations that are class members. LookupOperatorName, /// Look up of a name that precedes the '::' scope resolution /// operator in C++. This lookup completely ignores operator, object, /// function, and enumerator names (C++ [basic.lookup.qual]p1). LookupNestedNameSpecifierName, /// Look up a namespace name within a C++ using directive or /// namespace alias definition, ignoring non-namespace names (C++ /// [basic.lookup.udir]p1). LookupNamespaceName, /// Look up all declarations in a scope with the given name, /// including resolved using declarations. This is appropriate /// for checking redeclarations for a using declaration. LookupUsingDeclName, /// Look up an ordinary name that is going to be redeclared as a /// name with linkage. This lookup ignores any declarations that /// are outside of the current scope unless they have linkage. See /// C99 6.2.2p4-5 and C++ [basic.link]p6. LookupRedeclarationWithLinkage, /// Look up a friend of a local class. This lookup does not look /// outside the innermost non-class scope. See C++11 [class.friend]p11. LookupLocalFriendName, /// Look up the name of an Objective-C protocol. LookupObjCProtocolName, /// Look up implicit 'self' parameter of an objective-c method. LookupObjCImplicitSelfParam, /// Look up the name of an OpenMP user-defined reduction operation. LookupOMPReductionName, /// Look up the name of an OpenMP user-defined mapper. LookupOMPMapperName, /// Look up any declaration with any name. LookupAnyName }; /// Specifies whether (or how) name lookup is being performed for a /// redeclaration (vs. a reference). enum RedeclarationKind { /// The lookup is a reference to this name that is not for the /// purpose of redeclaring the name. NotForRedeclaration = 0, /// The lookup results will be used for redeclaration of a name, /// if an entity by that name already exists and is visible. ForVisibleRedeclaration, /// The lookup results will be used for redeclaration of a name /// with external linkage; non-visible lookup results with external linkage /// may also be found. ForExternalRedeclaration }; RedeclarationKind forRedeclarationInCurContext() { // A declaration with an owning module for linkage can never link against // anything that is not visible. We don't need to check linkage here; if // the context has internal linkage, redeclaration lookup won't find things // from other TUs, and we can't safely compute linkage yet in general. if (cast(CurContext) ->getOwningModuleForLinkage(/*IgnoreLinkage*/true)) return ForVisibleRedeclaration; return ForExternalRedeclaration; } /// The possible outcomes of name lookup for a literal operator. enum LiteralOperatorLookupResult { /// The lookup resulted in an error. LOLR_Error, /// The lookup found no match but no diagnostic was issued. LOLR_ErrorNoDiagnostic, /// The lookup found a single 'cooked' literal operator, which /// expects a normal literal to be built and passed to it. LOLR_Cooked, /// The lookup found a single 'raw' literal operator, which expects /// a string literal containing the spelling of the literal token. LOLR_Raw, /// The lookup found an overload set of literal operator templates, /// which expect the characters of the spelling of the literal token to be /// passed as a non-type template argument pack. LOLR_Template, /// The lookup found an overload set of literal operator templates, /// which expect the character type and characters of the spelling of the /// string literal token to be passed as template arguments. LOLR_StringTemplate }; SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D, CXXSpecialMember SM, bool ConstArg, bool VolatileArg, bool RValueThis, bool ConstThis, bool VolatileThis); typedef std::function TypoDiagnosticGenerator; typedef std::function TypoRecoveryCallback; private: bool CppLookupName(LookupResult &R, Scope *S); struct TypoExprState { std::unique_ptr Consumer; TypoDiagnosticGenerator DiagHandler; TypoRecoveryCallback RecoveryHandler; TypoExprState(); TypoExprState(TypoExprState &&other) noexcept; TypoExprState &operator=(TypoExprState &&other) noexcept; }; /// The set of unhandled TypoExprs and their associated state. llvm::MapVector DelayedTypos; /// Creates a new TypoExpr AST node. TypoExpr *createDelayedTypo(std::unique_ptr TCC, TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC); // The set of known/encountered (unique, canonicalized) NamespaceDecls. // // The boolean value will be true to indicate that the namespace was loaded // from an AST/PCH file, or false otherwise. llvm::MapVector KnownNamespaces; /// Whether we have already loaded known namespaces from an extenal /// source. bool LoadedExternalKnownNamespaces; /// Helper for CorrectTypo and CorrectTypoDelayed used to create and /// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction /// should be skipped entirely. std::unique_ptr makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, DeclContext *MemberContext, bool EnteringContext, const ObjCObjectPointerType *OPT, bool ErrorRecovery); public: const TypoExprState &getTypoExprState(TypoExpr *TE) const; /// Clears the state of the given TypoExpr. void clearDelayedTypo(TypoExpr *TE); /// Look up a name, looking for a single declaration. Return /// null if the results were absent, ambiguous, or overloaded. /// /// It is preferable to use the elaborated form and explicitly handle /// ambiguity and overloaded. NamedDecl *LookupSingleName(Scope *S, DeclarationName Name, SourceLocation Loc, LookupNameKind NameKind, RedeclarationKind Redecl = NotForRedeclaration); bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation = false); bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup = false); bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, CXXScopeSpec &SS); bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, bool AllowBuiltinCreation = false, bool EnteringContext = false); ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc, RedeclarationKind Redecl = NotForRedeclaration); bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class); void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, QualType T1, QualType T2, UnresolvedSetImpl &Functions); LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc, SourceLocation GnuLabelLoc = SourceLocation()); DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class); CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class); CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class, unsigned Quals); CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals); CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class, unsigned Quals); CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals); CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class); bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id); LiteralOperatorLookupResult LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef ArgTys, bool AllowRaw, bool AllowTemplate, bool AllowStringTemplate, bool DiagnoseMissing); bool isKnownName(StringRef name); void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, ArrayRef Args, ADLResult &Functions); void LookupVisibleDecls(Scope *S, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope = true, bool LoadExternal = true); void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope = true, bool IncludeDependentBases = false, bool LoadExternal = true); enum CorrectTypoKind { CTK_NonError, // CorrectTypo used in a non error recovery situation. CTK_ErrorRecovery // CorrectTypo used in normal error recovery. }; TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, CorrectTypoKind Mode, DeclContext *MemberContext = nullptr, bool EnteringContext = false, const ObjCObjectPointerType *OPT = nullptr, bool RecordFailure = true); TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, DeclContext *MemberContext = nullptr, bool EnteringContext = false, const ObjCObjectPointerType *OPT = nullptr); /// Process any TypoExprs in the given Expr and its children, /// generating diagnostics as appropriate and returning a new Expr if there /// were typos that were all successfully corrected and ExprError if one or /// more typos could not be corrected. /// /// \param E The Expr to check for TypoExprs. /// /// \param InitDecl A VarDecl to avoid because the Expr being corrected is its /// initializer. /// /// \param Filter A function applied to a newly rebuilt Expr to determine if /// it is an acceptable/usable result from a single combination of typo /// corrections. As long as the filter returns ExprError, different /// combinations of corrections will be tried until all are exhausted. ExprResult CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl = nullptr, llvm::function_ref Filter = [](Expr *E) -> ExprResult { return E; }); ExprResult CorrectDelayedTyposInExpr(Expr *E, llvm::function_ref Filter) { return CorrectDelayedTyposInExpr(E, nullptr, Filter); } ExprResult CorrectDelayedTyposInExpr(ExprResult ER, VarDecl *InitDecl = nullptr, llvm::function_ref Filter = [](Expr *E) -> ExprResult { return E; }) { return ER.isInvalid() ? ER : CorrectDelayedTyposInExpr(ER.get(), Filter); } ExprResult CorrectDelayedTyposInExpr(ExprResult ER, llvm::function_ref Filter) { return CorrectDelayedTyposInExpr(ER, nullptr, Filter); } void diagnoseTypo(const TypoCorrection &Correction, const PartialDiagnostic &TypoDiag, bool ErrorRecovery = true); void diagnoseTypo(const TypoCorrection &Correction, const PartialDiagnostic &TypoDiag, const PartialDiagnostic &PrevNote, bool ErrorRecovery = true); void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F); void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc, ArrayRef Args, AssociatedNamespaceSet &AssociatedNamespaces, AssociatedClassSet &AssociatedClasses); void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, bool ConsiderLinkage, bool AllowInlineNamespace); bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old); void DiagnoseAmbiguousLookup(LookupResult &Result); //@} ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id, SourceLocation IdLoc, bool TypoCorrection = false); NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S, bool ForRedeclaration, SourceLocation Loc); NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, Scope *S); void AddKnownFunctionAttributes(FunctionDecl *FD); // More parsing and symbol table subroutines. void ProcessPragmaWeak(Scope *S, Decl *D); // Decl attributes - this routine is the top level dispatcher. void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD); // Helper for delayed processing of attributes. void ProcessDeclAttributeDelayed(Decl *D, const ParsedAttributesView &AttrList); void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL, bool IncludeCXX11Attributes = true); bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList); void checkUnusedDeclAttributes(Declarator &D); /// Determine if type T is a valid subject for a nonnull and similar /// attributes. By default, we look through references (the behavior used by /// nonnull), but if the second parameter is true, then we treat a reference /// type as valid. bool isValidPointerAttrType(QualType T, bool RefOkay = false); bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value); bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC, const FunctionDecl *FD = nullptr); bool CheckAttrTarget(const ParsedAttr &CurrAttr); bool CheckAttrNoArgs(const ParsedAttr &CurrAttr); bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum, StringRef &Str, SourceLocation *ArgLocation = nullptr); bool checkSectionName(SourceLocation LiteralLoc, StringRef Str); bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str); bool checkMSInheritanceAttrOnDefinition( CXXRecordDecl *RD, SourceRange Range, bool BestCase, MSInheritanceAttr::Spelling SemanticSpelling); void CheckAlignasUnderalignment(Decl *D); /// Adjust the calling convention of a method to be the ABI default if it /// wasn't specified explicitly. This handles method types formed from /// function type typedefs and typename template arguments. void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor, SourceLocation Loc); // Check if there is an explicit attribute, but only look through parens. // The intent is to look for an attribute on the current declarator, but not // one that came from a typedef. bool hasExplicitCallingConv(QualType T); /// Get the outermost AttributedType node that sets a calling convention. /// Valid types should not have multiple attributes with different CCs. const AttributedType *getCallingConvAttributedType(QualType T) const; /// Stmt attributes - this routine is the top level dispatcher. StmtResult ProcessStmtAttributes(Stmt *Stmt, const ParsedAttributesView &Attrs, SourceRange Range); void WarnConflictingTypedMethods(ObjCMethodDecl *Method, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl); void CheckConflictingOverridingMethod(ObjCMethodDecl *Method, ObjCMethodDecl *Overridden, bool IsProtocolMethodDecl); /// WarnExactTypedMethods - This routine issues a warning if method /// implementation declaration matches exactly that of its declaration. void WarnExactTypedMethods(ObjCMethodDecl *Method, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl); typedef llvm::SmallPtrSet SelectorSet; /// CheckImplementationIvars - This routine checks if the instance variables /// listed in the implelementation match those listed in the interface. void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, ObjCIvarDecl **Fields, unsigned nIvars, SourceLocation Loc); /// ImplMethodsVsClassMethods - This is main routine to warn if any method /// remains unimplemented in the class or category \@implementation. void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl, bool IncompleteImpl = false); /// DiagnoseUnimplementedProperties - This routine warns on those properties /// which must be implemented by this implementation. void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl, ObjCContainerDecl *CDecl, bool SynthesizeProperties); /// Diagnose any null-resettable synthesized setters. void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl); /// DefaultSynthesizeProperties - This routine default synthesizes all /// properties which must be synthesized in the class's \@implementation. void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl, ObjCInterfaceDecl *IDecl, SourceLocation AtEnd); void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd); /// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is /// an ivar synthesized for 'Method' and 'Method' is a property accessor /// declared in class 'IFace'. bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace, ObjCMethodDecl *Method, ObjCIvarDecl *IV); /// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which /// backs the property is not used in the property's accessor. void DiagnoseUnusedBackingIvarInAccessor(Scope *S, const ObjCImplementationDecl *ImplD); /// GetIvarBackingPropertyAccessor - If method is a property setter/getter and /// it property has a backing ivar, returns this ivar; otherwise, returns NULL. /// It also returns ivar's property on success. ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, const ObjCPropertyDecl *&PDecl) const; /// Called by ActOnProperty to handle \@property declarations in /// class extensions. ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S, SourceLocation AtLoc, SourceLocation LParenLoc, FieldDeclarator &FD, Selector GetterSel, SourceLocation GetterNameLoc, Selector SetterSel, SourceLocation SetterNameLoc, const bool isReadWrite, unsigned &Attributes, const unsigned AttributesAsWritten, QualType T, TypeSourceInfo *TSI, tok::ObjCKeywordKind MethodImplKind); /// Called by ActOnProperty and HandlePropertyInClassExtension to /// handle creating the ObjcPropertyDecl for a category or \@interface. ObjCPropertyDecl *CreatePropertyDecl(Scope *S, ObjCContainerDecl *CDecl, SourceLocation AtLoc, SourceLocation LParenLoc, FieldDeclarator &FD, Selector GetterSel, SourceLocation GetterNameLoc, Selector SetterSel, SourceLocation SetterNameLoc, const bool isReadWrite, const unsigned Attributes, const unsigned AttributesAsWritten, QualType T, TypeSourceInfo *TSI, tok::ObjCKeywordKind MethodImplKind, DeclContext *lexicalDC = nullptr); /// AtomicPropertySetterGetterRules - This routine enforces the rule (via /// warning) when atomic property has one but not the other user-declared /// setter or getter. void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl, ObjCInterfaceDecl* IDecl); void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D); void DiagnoseMissingDesignatedInitOverrides( const ObjCImplementationDecl *ImplD, const ObjCInterfaceDecl *IFD); void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID); enum MethodMatchStrategy { MMS_loose, MMS_strict }; /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns /// true, or false, accordingly. bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method, const ObjCMethodDecl *PrevMethod, MethodMatchStrategy strategy = MMS_strict); /// MatchAllMethodDeclarations - Check methods declaraed in interface or /// or protocol against those declared in their implementations. void MatchAllMethodDeclarations(const SelectorSet &InsMap, const SelectorSet &ClsMap, SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl, bool &IncompleteImpl, bool ImmediateClass, bool WarnCategoryMethodImpl=false); /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in /// category matches with those implemented in its primary class and /// warns each time an exact match is found. void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP); /// Add the given method to the list of globally-known methods. void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method); private: /// AddMethodToGlobalPool - Add an instance or factory method to the global /// pool. See descriptoin of AddInstanceMethodToGlobalPool. void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance); /// LookupMethodInGlobalPool - Returns the instance or factory method and /// optionally warns if there are multiple signatures. ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass, bool instance); public: /// - Returns instance or factory methods in global method pool for /// given selector. It checks the desired kind first, if none is found, and /// parameter checkTheOther is set, it then checks the other kind. If no such /// method or only one method is found, function returns false; otherwise, it /// returns true. bool CollectMultipleMethodsInGlobalPool(Selector Sel, SmallVectorImpl& Methods, bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound = nullptr); bool AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, bool receiverIdOrClass, SmallVectorImpl& Methods); void DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl &Methods, Selector Sel, SourceRange R, bool receiverIdOrClass); private: /// - Returns a selector which best matches given argument list or /// nullptr if none could be found ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, SmallVectorImpl& Methods); /// Record the typo correction failure and return an empty correction. TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc, bool RecordFailure = true) { if (RecordFailure) TypoCorrectionFailures[Typo].insert(TypoLoc); return TypoCorrection(); } public: /// AddInstanceMethodToGlobalPool - All instance methods in a translation /// unit are added to a global pool. This allows us to efficiently associate /// a selector with a method declaraation for purposes of typechecking /// messages sent to "id" (where the class of the object is unknown). void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) { AddMethodToGlobalPool(Method, impl, /*instance*/true); } /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods. void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) { AddMethodToGlobalPool(Method, impl, /*instance*/false); } /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global /// pool. void AddAnyMethodToGlobalPool(Decl *D); /// LookupInstanceMethodInGlobalPool - Returns the method and warns if /// there are multiple signatures. ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass=false) { return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass, /*instance*/true); } /// LookupFactoryMethodInGlobalPool - Returns the method and warns if /// there are multiple signatures. ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass=false) { return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass, /*instance*/false); } const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel, QualType ObjectType=QualType()); /// LookupImplementedMethodInGlobalPool - Returns the method which has an /// implementation. ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel); /// CollectIvarsToConstructOrDestruct - Collect those ivars which require /// initialization. void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, SmallVectorImpl &Ivars); //===--------------------------------------------------------------------===// // Statement Parsing Callbacks: SemaStmt.cpp. public: class FullExprArg { public: FullExprArg() : E(nullptr) { } FullExprArg(Sema &actions) : E(nullptr) { } ExprResult release() { return E; } Expr *get() const { return E; } Expr *operator->() { return E; } private: // FIXME: No need to make the entire Sema class a friend when it's just // Sema::MakeFullExpr that needs access to the constructor below. friend class Sema; explicit FullExprArg(Expr *expr) : E(expr) {} Expr *E; }; FullExprArg MakeFullExpr(Expr *Arg) { return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation()); } FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) { return FullExprArg( ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get()); } FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) { ExprResult FE = ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(), /*DiscardedValue*/ true); return FullExprArg(FE.get()); } StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true); StmtResult ActOnExprStmtError(); StmtResult ActOnNullStmt(SourceLocation SemiLoc, bool HasLeadingEmptyMacro = false); void ActOnStartOfCompoundStmt(bool IsStmtExpr); void ActOnFinishOfCompoundStmt(); StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, ArrayRef Elts, bool isStmtExpr); /// A RAII object to enter scope of a compound statement. class CompoundScopeRAII { public: CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) { S.ActOnStartOfCompoundStmt(IsStmtExpr); } ~CompoundScopeRAII() { S.ActOnFinishOfCompoundStmt(); } private: Sema &S; }; /// An RAII helper that pops function a function scope on exit. struct FunctionScopeRAII { Sema &S; bool Active; FunctionScopeRAII(Sema &S) : S(S), Active(true) {} ~FunctionScopeRAII() { if (Active) S.PopFunctionScopeInfo(); } void disable() { Active = false; } }; StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc, SourceLocation EndLoc); void ActOnForEachDeclStmt(DeclGroupPtrTy Decl); StmtResult ActOnForEachLValueExpr(Expr *E); ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val); StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS, SourceLocation DotDotDotLoc, ExprResult RHS, SourceLocation ColonLoc); void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt); StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt, Scope *CurScope); StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, SourceLocation ColonLoc, Stmt *SubStmt); StmtResult ActOnAttributedStmt(SourceLocation AttrLoc, ArrayRef Attrs, Stmt *SubStmt); class ConditionResult; StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, ConditionResult Cond, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal); StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, ConditionResult Cond, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal); StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Stmt *InitStmt, ConditionResult Cond); StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, Stmt *Body); StmtResult ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond, Stmt *Body); StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation CondLParen, Expr *Cond, SourceLocation CondRParen); StmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *First, ConditionResult Second, FullExprArg Third, SourceLocation RParenLoc, Stmt *Body); ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection); StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, Stmt *First, Expr *collection, SourceLocation RParenLoc); StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body); enum BuildForRangeKind { /// Initial building of a for-range statement. BFRK_Build, /// Instantiation or recovery rebuild of a for-range statement. Don't /// attempt any typo-correction. BFRK_Rebuild, /// Determining whether a for-range statement could be built. Avoid any /// unnecessary or irreversible actions. BFRK_Check }; StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, Stmt *LoopVar, SourceLocation ColonLoc, Expr *Collection, SourceLocation RParenLoc, BuildForRangeKind Kind); StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End, Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc, BuildForRangeKind Kind); StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body); StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *TheDecl); StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *DestExp); StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope); StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope); void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, CapturedRegionKind Kind, unsigned NumParams); typedef std::pair CapturedParamNameType; void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, CapturedRegionKind Kind, ArrayRef Params, unsigned OpenMPCaptureLevel = 0); StmtResult ActOnCapturedRegionEnd(Stmt *S); void ActOnCapturedRegionError(); RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, unsigned NumParams); enum CopyElisionSemanticsKind { CES_Strict = 0, CES_AllowParameters = 1, CES_AllowDifferentTypes = 2, CES_AllowExceptionVariables = 4, CES_FormerDefault = (CES_AllowParameters), CES_Default = (CES_AllowParameters | CES_AllowDifferentTypes), CES_AsIfByStdMove = (CES_AllowParameters | CES_AllowDifferentTypes | CES_AllowExceptionVariables), }; VarDecl *getCopyElisionCandidate(QualType ReturnType, Expr *E, CopyElisionSemanticsKind CESK); bool isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD, CopyElisionSemanticsKind CESK); StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, Scope *CurScope); StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp); StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp); StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, IdentifierInfo **Names, MultiExprArg Constraints, MultiExprArg Exprs, Expr *AsmString, MultiExprArg Clobbers, unsigned NumLabels, SourceLocation RParenLoc); void FillInlineAsmIdentifierInfo(Expr *Res, llvm::InlineAsmIdentifierInfo &Info); ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool IsUnevaluatedContext); bool LookupInlineAsmField(StringRef Base, StringRef Member, unsigned &Offset, SourceLocation AsmLoc); ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member, SourceLocation AsmLoc); StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, ArrayRef AsmToks, StringRef AsmString, unsigned NumOutputs, unsigned NumInputs, ArrayRef Constraints, ArrayRef Clobbers, ArrayRef Exprs, SourceLocation EndLoc); LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName, SourceLocation Location, bool AlwaysCreate); VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, bool Invalid = false); Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D); StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, Decl *Parm, Stmt *Body); StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body); StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, MultiStmtArg Catch, Stmt *Finally); StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw); StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, Scope *CurScope); ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand); StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SynchExpr, Stmt *SynchBody); StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body); VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id); Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D); StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, Stmt *HandlerBlock); StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, ArrayRef Handlers); StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ? SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler); StmtResult ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, Stmt *Block); void ActOnStartSEHFinallyBlock(); void ActOnAbortSEHFinallyBlock(); StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block); StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope); void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock); bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const; /// If it's a file scoped decl that must warn if not used, keep track /// of it. void MarkUnusedFileScopedDecl(const DeclaratorDecl *D); /// DiagnoseUnusedExprResult - If the statement passed in is an expression /// whose result is unused, warn. void DiagnoseUnusedExprResult(const Stmt *S); void DiagnoseUnusedNestedTypedefs(const RecordDecl *D); void DiagnoseUnusedDecl(const NamedDecl *ND); /// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null /// statement as a \p Body, and it is located on the same line. /// /// This helps prevent bugs due to typos, such as: /// if (condition); /// do_stuff(); void DiagnoseEmptyStmtBody(SourceLocation StmtLoc, const Stmt *Body, unsigned DiagID); /// Warn if a for/while loop statement \p S, which is followed by /// \p PossibleBody, has a suspicious null statement as a body. void DiagnoseEmptyLoopBody(const Stmt *S, const Stmt *PossibleBody); /// Warn if a value is moved to itself. void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, SourceLocation OpLoc); /// Warn if we're implicitly casting from a _Nullable pointer type to a /// _Nonnull one. void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType, SourceLocation Loc); /// Warn when implicitly casting 0 to nullptr. void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E); ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) { return DelayedDiagnostics.push(pool); } void PopParsingDeclaration(ParsingDeclState state, Decl *decl); typedef ProcessingContextState ParsingClassState; ParsingClassState PushParsingClass() { return DelayedDiagnostics.pushUndelayed(); } void PopParsingClass(ParsingClassState state) { DelayedDiagnostics.popUndelayed(state); } void redelayDiagnostics(sema::DelayedDiagnosticPool &pool); void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef Locs, const ObjCInterfaceDecl *UnknownObjCClass, bool ObjCPropertyAccess, bool AvoidPartialAvailabilityChecks = false, ObjCInterfaceDecl *ClassReceiver = nullptr); bool makeUnavailableInSystemHeader(SourceLocation loc, UnavailableAttr::ImplicitReason reason); /// Issue any -Wunguarded-availability warnings in \c FD void DiagnoseUnguardedAvailabilityViolations(Decl *FD); //===--------------------------------------------------------------------===// // Expression Parsing Callbacks: SemaExpr.cpp. bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid); bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef Locs, const ObjCInterfaceDecl *UnknownObjCClass = nullptr, bool ObjCPropertyAccess = false, bool AvoidPartialAvailabilityChecks = false, ObjCInterfaceDecl *ClassReciever = nullptr); void NoteDeletedFunction(FunctionDecl *FD); void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD); bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD, ObjCMethodDecl *Getter, SourceLocation Loc); void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, ArrayRef Args); void PushExpressionEvaluationContext( ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr, ExpressionEvaluationContextRecord::ExpressionKind Type = ExpressionEvaluationContextRecord::EK_Other); enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl }; void PushExpressionEvaluationContext( ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t, ExpressionEvaluationContextRecord::ExpressionKind Type = ExpressionEvaluationContextRecord::EK_Other); void PopExpressionEvaluationContext(); void DiscardCleanupsInEvaluationContext(); ExprResult TransformToPotentiallyEvaluated(Expr *E); ExprResult HandleExprEvaluationContextForTypeof(Expr *E); ExprResult ActOnConstantExpression(ExprResult Res); // Functions for marking a declaration referenced. These functions also // contain the relevant logic for marking if a reference to a function or // variable is an odr-use (in the C++11 sense). There are separate variants // for expressions referring to a decl; these exist because odr-use marking // needs to be delayed for some constant variables when we build one of the // named expressions. // // MightBeOdrUse indicates whether the use could possibly be an odr-use, and // should usually be true. This only needs to be set to false if the lack of // odr-use cannot be determined from the current context (for instance, // because the name denotes a virtual function and was written without an // explicit nested-name-specifier). void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse); void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func, bool MightBeOdrUse = true); void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var); void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr); void MarkMemberReferenced(MemberExpr *E); void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E); void MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc, unsigned CapturingScopeIndex); ExprResult CheckLValueToRValueConversionOperand(Expr *E); void CleanupVarDeclMarking(); enum TryCaptureKind { TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef }; /// Try to capture the given variable. /// /// \param Var The variable to capture. /// /// \param Loc The location at which the capture occurs. /// /// \param Kind The kind of capture, which may be implicit (for either a /// block or a lambda), or explicit by-value or by-reference (for a lambda). /// /// \param EllipsisLoc The location of the ellipsis, if one is provided in /// an explicit lambda capture. /// /// \param BuildAndDiagnose Whether we are actually supposed to add the /// captures or diagnose errors. If false, this routine merely check whether /// the capture can occur without performing the capture itself or complaining /// if the variable cannot be captured. /// /// \param CaptureType Will be set to the type of the field used to capture /// this variable in the innermost block or lambda. Only valid when the /// variable can be captured. /// /// \param DeclRefType Will be set to the type of a reference to the capture /// from within the current scope. Only valid when the variable can be /// captured. /// /// \param FunctionScopeIndexToStopAt If non-null, it points to the index /// of the FunctionScopeInfo stack beyond which we do not attempt to capture. /// This is useful when enclosing lambdas must speculatively capture /// variables that may or may not be used in certain specializations of /// a nested generic lambda. /// /// \returns true if an error occurred (i.e., the variable cannot be /// captured) and false if the capture succeeded. bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt); /// Try to capture the given variable. bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind = TryCapture_Implicit, SourceLocation EllipsisLoc = SourceLocation()); /// Checks if the variable must be captured. bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc); /// Given a variable, determine the type that a reference to that /// variable will have in the given scope. QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc); /// Mark all of the declarations referenced within a particular AST node as /// referenced. Used when template instantiation instantiates a non-dependent /// type -- entities referenced by the type are now referenced. void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T); void MarkDeclarationsReferencedInExpr(Expr *E, bool SkipLocalVariables = false); /// Try to recover by turning the given expression into a /// call. Returns true if recovery was attempted or an error was /// emitted; this may also leave the ExprResult invalid. bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD, bool ForceComplain = false, bool (*IsPlausibleResult)(QualType) = nullptr); /// Figure out if an expression could be turned into a call. bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy, UnresolvedSetImpl &NonTemplateOverloads); /// Conditionally issue a diagnostic based on the current /// evaluation context. /// /// \param Statement If Statement is non-null, delay reporting the /// diagnostic until the function body is parsed, and then do a basic /// reachability analysis to determine if the statement is reachable. /// If it is unreachable, the diagnostic will not be emitted. bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, const PartialDiagnostic &PD); /// Similar, but diagnostic is only produced if all the specified statements /// are reachable. bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef Stmts, const PartialDiagnostic &PD); // Primary Expressions. SourceRange getExprRange(Expr *E) const; ExprResult ActOnIdExpression( Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand, CorrectionCandidateCallback *CCC = nullptr, bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr); void DecomposeUnqualifiedId(const UnqualifiedId &Id, TemplateArgumentListInfo &Buffer, DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *&TemplateArgs); bool DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, CorrectionCandidateCallback &CCC, TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr, ArrayRef Args = None, TypoExpr **Out = nullptr); ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S, IdentifierInfo *II, bool AllowBuiltinCreation=false); ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, bool isAddressOfOperand, const TemplateArgumentListInfo *TemplateArgs); /// If \p D cannot be odr-used in the current expression evaluation context, /// return a reason explaining why. Otherwise, return NOUR_None. NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D); DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, SourceLocation Loc, const CXXScopeSpec *SS = nullptr); DeclRefExpr * BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, const DeclarationNameInfo &NameInfo, const CXXScopeSpec *SS = nullptr, NamedDecl *FoundD = nullptr, SourceLocation TemplateKWLoc = SourceLocation(), const TemplateArgumentListInfo *TemplateArgs = nullptr); DeclRefExpr * BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, const DeclarationNameInfo &NameInfo, NestedNameSpecifierLoc NNS, NamedDecl *FoundD = nullptr, SourceLocation TemplateKWLoc = SourceLocation(), const TemplateArgumentListInfo *TemplateArgs = nullptr); ExprResult BuildAnonymousStructUnionMemberReference( const CXXScopeSpec &SS, SourceLocation nameLoc, IndirectFieldDecl *indirectField, DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none), Expr *baseObjectExpr = nullptr, SourceLocation opLoc = SourceLocation()); ExprResult BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, const Scope *S); ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, bool IsDefiniteInstance, const Scope *S); bool UseArgumentDependentLookup(const CXXScopeSpec &SS, const LookupResult &R, bool HasTrailingLParen); ExprResult BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI = nullptr); ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool NeedsADL, bool AcceptInvalidDecl = false); ExprResult BuildDeclarationNameExpr( const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, NamedDecl *FoundD = nullptr, const TemplateArgumentListInfo *TemplateArgs = nullptr, bool AcceptInvalidDecl = false); ExprResult BuildLiteralOperatorCall(LookupResult &R, DeclarationNameInfo &SuffixInfo, ArrayRef Args, SourceLocation LitEndLoc, TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr); ExprResult BuildPredefinedExpr(SourceLocation Loc, PredefinedExpr::IdentKind IK); ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind); ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val); bool CheckLoopHintExpr(Expr *E, SourceLocation Loc); ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr); ExprResult ActOnCharacterConstant(const Token &Tok, Scope *UDLScope = nullptr); ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E); ExprResult ActOnParenListExpr(SourceLocation L, SourceLocation R, MultiExprArg Val); /// ActOnStringLiteral - The specified tokens were lexed as pasted string /// fragments (e.g. "foo" "bar" L"baz"). ExprResult ActOnStringLiteral(ArrayRef StringToks, Scope *UDLScope = nullptr); ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, ArrayRef ArgTypes, ArrayRef ArgExprs); ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, ArrayRef Types, ArrayRef Exprs); // Binary/Unary Operators. 'Tok' is the token for the operator. ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *InputExpr); ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *Input); ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, Expr *Input); bool isQualifiedMemberAccess(Expr *E); QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc); ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, SourceRange R); ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind); ExprResult ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, bool IsType, void *TyOrEx, SourceRange ArgRange); ExprResult CheckPlaceholderExpr(Expr *E); bool CheckVecStepExpr(Expr *E); bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind); bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc, SourceRange ExprRange, UnaryExprOrTypeTrait ExprKind); ExprResult ActOnSizeofParameterPackExpr(Scope *S, SourceLocation OpLoc, IdentifierInfo &Name, SourceLocation NameLoc, SourceLocation RParenLoc); ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Kind, Expr *Input); ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc); ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc); ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, Expr *LowerBound, SourceLocation ColonLoc, Expr *Length, SourceLocation RBLoc); // This struct is for use by ActOnMemberAccess to allow // BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after // changing the access operator from a '.' to a '->' (to see if that is the // change needed to fix an error about an unknown member, e.g. when the class // defines a custom operator->). struct ActOnMemberAccessExtraArgs { Scope *S; UnqualifiedId &Id; Decl *ObjCImpDecl; }; ExprResult BuildMemberReferenceExpr( Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs, const Scope *S, ActOnMemberAccessExtraArgs *ExtraArgs = nullptr); ExprResult BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, const Scope *S, bool SuppressQualifierCheck = false, ActOnMemberAccessExtraArgs *ExtraArgs = nullptr); ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, FieldDecl *Field, DeclAccessPair FoundDecl, const DeclarationNameInfo &MemberNameInfo); ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow); bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType, const CXXScopeSpec &SS, const LookupResult &R); ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Member, Decl *ObjCImpDecl); MemberExpr * BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS, SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK, ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr); MemberExpr * BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK, ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr); void ActOnDefaultCtorInitializers(Decl *CDtorDecl); bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, FunctionDecl *FDecl, const FunctionProtoType *Proto, ArrayRef Args, SourceLocation RParenLoc, bool ExecConfig = false); void CheckStaticArrayArgument(SourceLocation CallLoc, ParmVarDecl *Param, const Expr *ArgExpr); /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. /// This provides the location of the left/right parens and a list of comma /// locations. ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, MultiExprArg ArgExprs, SourceLocation RParenLoc, Expr *ExecConfig = nullptr); ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, MultiExprArg ArgExprs, SourceLocation RParenLoc, Expr *ExecConfig = nullptr, bool IsExecConfig = false); enum class AtomicArgumentOrder { API, AST }; ExprResult BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, SourceLocation RParenLoc, MultiExprArg Args, AtomicExpr::AtomicOp Op, AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API); ExprResult BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc, ArrayRef Arg, SourceLocation RParenLoc, Expr *Config = nullptr, bool IsExecConfig = false, ADLCallKind UsesADL = ADLCallKind::NotADL); ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, MultiExprArg ExecConfig, SourceLocation GGGLoc); ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc, Declarator &D, ParsedType &Ty, SourceLocation RParenLoc, Expr *CastExpr); ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty, SourceLocation RParenLoc, Expr *Op); CastKind PrepareScalarCast(ExprResult &src, QualType destType); /// Build an altivec or OpenCL literal. ExprResult BuildVectorLiteral(SourceLocation LParenLoc, SourceLocation RParenLoc, Expr *E, TypeSourceInfo *TInfo); ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME); ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, SourceLocation RParenLoc, Expr *InitExpr); ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, SourceLocation RParenLoc, Expr *LiteralExpr); ExprResult ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, SourceLocation RBraceLoc); ExprResult BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, SourceLocation RBraceLoc); ExprResult ActOnDesignatedInitializer(Designation &Desig, SourceLocation EqualOrColonLoc, bool GNUSyntax, ExprResult Init); private: static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind); public: ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr); ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr); ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr); void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc); /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null /// in the case of a the GNU conditional expr extension. ExprResult ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr); /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, LabelDecl *TheDecl); void ActOnStartStmtExpr(); ExprResult ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, SourceLocation RPLoc); // "({..})" // Handle the final expression in a statement expression. ExprResult ActOnStmtExprResult(ExprResult E); void ActOnStmtExprError(); // __builtin_offsetof(type, identifier(.identifier|[expr])*) struct OffsetOfComponent { SourceLocation LocStart, LocEnd; bool isBrackets; // true if [expr], false if .ident union { IdentifierInfo *IdentInfo; Expr *E; } U; }; /// __builtin_offsetof(type, a.b[123][456].c) ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, TypeSourceInfo *TInfo, ArrayRef Components, SourceLocation RParenLoc); ExprResult ActOnBuiltinOffsetOf(Scope *S, SourceLocation BuiltinLoc, SourceLocation TypeLoc, ParsedType ParsedArgTy, ArrayRef Components, SourceLocation RParenLoc); // __builtin_choose_expr(constExpr, expr1, expr2) ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr, SourceLocation RPLoc); // __builtin_va_arg(expr, type) ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty, SourceLocation RPLoc); ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E, TypeSourceInfo *TInfo, SourceLocation RPLoc); // __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(), // __builtin_COLUMN() ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind, SourceLocation BuiltinLoc, SourceLocation RPLoc); // Build a potentially resolved SourceLocExpr. ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind, SourceLocation BuiltinLoc, SourceLocation RPLoc, DeclContext *ParentContext); // __null ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc); bool CheckCaseExpression(Expr *E); /// Describes the result of an "if-exists" condition check. enum IfExistsResult { /// The symbol exists. IER_Exists, /// The symbol does not exist. IER_DoesNotExist, /// The name is a dependent name, so the results will differ /// from one instantiation to the next. IER_Dependent, /// An error occurred. IER_Error }; IfExistsResult CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS, const DeclarationNameInfo &TargetNameInfo); IfExistsResult CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name); StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested); StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name, Stmt *Nested); //===------------------------- "Block" Extension ------------------------===// /// ActOnBlockStart - This callback is invoked when a block literal is /// started. void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockArguments - This callback allows processing of block arguments. /// If there are no arguments, this is still invoked. void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo, Scope *CurScope); /// ActOnBlockError - If there is an error parsing a block, this callback /// is invoked to pop the information about the block from the action impl. void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockStmtExpr - This is called when the body of a block statement /// literal was successfully completed. ^(int x){...} ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body, Scope *CurScope); //===---------------------------- Clang Extensions ----------------------===// /// __builtin_convertvector(...) ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy, SourceLocation BuiltinLoc, SourceLocation RParenLoc); //===---------------------------- OpenCL Features -----------------------===// /// __builtin_astype(...) ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, SourceLocation BuiltinLoc, SourceLocation RParenLoc); //===---------------------------- C++ Features --------------------------===// // Act on C++ namespaces Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc, SourceLocation NamespaceLoc, SourceLocation IdentLoc, IdentifierInfo *Ident, SourceLocation LBrace, const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UsingDecl); void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace); NamespaceDecl *getStdNamespace() const; NamespaceDecl *getOrCreateStdNamespace(); NamespaceDecl *lookupStdExperimentalNamespace(); CXXRecordDecl *getStdBadAlloc() const; EnumDecl *getStdAlignValT() const; private: // A cache representing if we've fully checked the various comparison category // types stored in ASTContext. The bit-index corresponds to the integer value // of a ComparisonCategoryType enumerator. llvm::SmallBitVector FullyCheckedComparisonCategories; ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, CXXScopeSpec &SS, ParsedType TemplateTypeTy, IdentifierInfo *MemberOrBase); public: /// Lookup the specified comparison category types in the standard /// library, an check the VarDecls possibly returned by the operator<=> /// builtins for that type. /// /// \return The type of the comparison category type corresponding to the /// specified Kind, or a null type if an error occurs QualType CheckComparisonCategoryType(ComparisonCategoryType Kind, SourceLocation Loc); /// Tests whether Ty is an instance of std::initializer_list and, if /// it is and Element is not NULL, assigns the element type to Element. bool isStdInitializerList(QualType Ty, QualType *Element); /// Looks for the std::initializer_list template and instantiates it /// with Element, or emits an error if it's not found. /// /// \returns The instantiated template, or null on error. QualType BuildStdInitializerList(QualType Element, SourceLocation Loc); /// Determine whether Ctor is an initializer-list constructor, as /// defined in [dcl.init.list]p2. bool isInitListConstructor(const FunctionDecl *Ctor); Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc, SourceLocation NamespcLoc, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *NamespcName, const ParsedAttributesView &AttrList); void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir); Decl *ActOnNamespaceAliasDef(Scope *CurScope, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *Ident); void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow); bool CheckUsingShadowDecl(UsingDecl *UD, NamedDecl *Target, const LookupResult &PreviousDecls, UsingShadowDecl *&PrevShadow); UsingShadowDecl *BuildUsingShadowDecl(Scope *S, UsingDecl *UD, NamedDecl *Target, UsingShadowDecl *PrevDecl); bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc, bool HasTypenameKeyword, const CXXScopeSpec &SS, SourceLocation NameLoc, const LookupResult &Previous); bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, SourceLocation NameLoc); NamedDecl *BuildUsingDeclaration( Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, const ParsedAttributesView &AttrList, bool IsInstantiation); NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom, ArrayRef Expansions); bool CheckInheritingConstructorUsingDecl(UsingDecl *UD); /// Given a derived-class using shadow declaration for a constructor and the /// correspnding base class constructor, find or create the implicit /// synthesized derived class constructor to use for this initialization. CXXConstructorDecl * findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor, ConstructorUsingShadowDecl *DerivedShadow); Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS, SourceLocation UsingLoc, SourceLocation TypenameLoc, CXXScopeSpec &SS, UnqualifiedId &Name, SourceLocation EllipsisLoc, const ParsedAttributesView &AttrList); Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS, MultiTemplateParamsArg TemplateParams, SourceLocation UsingLoc, UnqualifiedId &Name, const ParsedAttributesView &AttrList, TypeResult Type, Decl *DeclFromDeclSpec); /// BuildCXXConstructExpr - Creates a complete call to a constructor, /// including handling of its default argument expressions. /// /// \param ConstructKind - a CXXConstructExpr::ConstructionKind ExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, CXXConstructorDecl *Constructor, MultiExprArg Exprs, bool HadMultipleCandidates, bool IsListInitialization, bool IsStdInitListInitialization, bool RequiresZeroInit, unsigned ConstructKind, SourceRange ParenRange); /// Build a CXXConstructExpr whose constructor has already been resolved if /// it denotes an inherited constructor. ExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg Exprs, bool HadMultipleCandidates, bool IsListInitialization, bool IsStdInitListInitialization, bool RequiresZeroInit, unsigned ConstructKind, SourceRange ParenRange); // FIXME: Can we remove this and have the above BuildCXXConstructExpr check if // the constructor can be elidable? ExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg Exprs, bool HadMultipleCandidates, bool IsListInitialization, bool IsStdInitListInitialization, bool RequiresZeroInit, unsigned ConstructKind, SourceRange ParenRange); ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field); /// Instantiate or parse a C++ default argument expression as necessary. /// Return true on error. bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param); /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating /// the default expr if needed. ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param); /// FinalizeVarWithDestructor - Prepare for calling destructor on the /// constructed variable. void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType); /// Helper class that collects exception specifications for /// implicitly-declared special member functions. class ImplicitExceptionSpecification { // Pointer to allow copying Sema *Self; // We order exception specifications thus: // noexcept is the most restrictive, but is only used in C++11. // throw() comes next. // Then a throw(collected exceptions) // Finally no specification, which is expressed as noexcept(false). // throw(...) is used instead if any called function uses it. ExceptionSpecificationType ComputedEST; llvm::SmallPtrSet ExceptionsSeen; SmallVector Exceptions; void ClearExceptions() { ExceptionsSeen.clear(); Exceptions.clear(); } public: explicit ImplicitExceptionSpecification(Sema &Self) : Self(&Self), ComputedEST(EST_BasicNoexcept) { if (!Self.getLangOpts().CPlusPlus11) ComputedEST = EST_DynamicNone; } /// Get the computed exception specification type. ExceptionSpecificationType getExceptionSpecType() const { assert(!isComputedNoexcept(ComputedEST) && "noexcept(expr) should not be a possible result"); return ComputedEST; } /// The number of exceptions in the exception specification. unsigned size() const { return Exceptions.size(); } /// The set of exceptions in the exception specification. const QualType *data() const { return Exceptions.data(); } /// Integrate another called method into the collected data. void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method); /// Integrate an invoked expression into the collected data. void CalledExpr(Expr *E); /// Overwrite an EPI's exception specification with this /// computed exception specification. FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const { FunctionProtoType::ExceptionSpecInfo ESI; ESI.Type = getExceptionSpecType(); if (ESI.Type == EST_Dynamic) { ESI.Exceptions = Exceptions; } else if (ESI.Type == EST_None) { /// C++11 [except.spec]p14: /// The exception-specification is noexcept(false) if the set of /// potential exceptions of the special member function contains "any" ESI.Type = EST_NoexceptFalse; ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(), tok::kw_false).get(); } return ESI; } }; /// Determine what sort of exception specification a defaulted /// copy constructor of a class will have. ImplicitExceptionSpecification ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD); /// Determine what sort of exception specification a defaulted /// default constructor of a class will have, and whether the parameter /// will be const. ImplicitExceptionSpecification ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD); /// Determine what sort of exception specification a defaulted /// copy assignment operator of a class will have, and whether the /// parameter will be const. ImplicitExceptionSpecification ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD); /// Determine what sort of exception specification a defaulted move /// constructor of a class will have. ImplicitExceptionSpecification ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD); /// Determine what sort of exception specification a defaulted move /// assignment operator of a class will have. ImplicitExceptionSpecification ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD); /// Determine what sort of exception specification a defaulted /// destructor of a class will have. ImplicitExceptionSpecification ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD); /// Determine what sort of exception specification an inheriting /// constructor of a class will have. ImplicitExceptionSpecification ComputeInheritingCtorExceptionSpec(SourceLocation Loc, CXXConstructorDecl *CD); /// Evaluate the implicit exception specification for a defaulted /// special member function. void EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD); /// Check the given noexcept-specifier, convert its expression, and compute /// the appropriate ExceptionSpecificationType. ExprResult ActOnNoexceptSpec(SourceLocation NoexceptLoc, Expr *NoexceptExpr, ExceptionSpecificationType &EST); /// Check the given exception-specification and update the /// exception specification information with the results. void checkExceptionSpecification(bool IsTopLevel, ExceptionSpecificationType EST, ArrayRef DynamicExceptions, ArrayRef DynamicExceptionRanges, Expr *NoexceptExpr, SmallVectorImpl &Exceptions, FunctionProtoType::ExceptionSpecInfo &ESI); /// Determine if we're in a case where we need to (incorrectly) eagerly /// parse an exception specification to work around a libstdc++ bug. bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D); /// Add an exception-specification to the given member function /// (or member function template). The exception-specification was parsed /// after the method itself was declared. void actOnDelayedExceptionSpecification(Decl *Method, ExceptionSpecificationType EST, SourceRange SpecificationRange, ArrayRef DynamicExceptions, ArrayRef DynamicExceptionRanges, Expr *NoexceptExpr); class InheritedConstructorInfo; /// Determine if a special member function should have a deleted /// definition when it is defaulted. bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, InheritedConstructorInfo *ICI = nullptr, bool Diagnose = false); /// Declare the implicit default constructor for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// default constructor will be added. /// /// \returns The implicitly-declared default constructor. CXXConstructorDecl *DeclareImplicitDefaultConstructor( CXXRecordDecl *ClassDecl); /// DefineImplicitDefaultConstructor - Checks for feasibility of /// defining this constructor as the default constructor. void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// Declare the implicit destructor for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// destructor will be added. /// /// \returns The implicitly-declared destructor. CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl); /// DefineImplicitDestructor - Checks for feasibility of /// defining this destructor as the default destructor. void DefineImplicitDestructor(SourceLocation CurrentLocation, CXXDestructorDecl *Destructor); /// Build an exception spec for destructors that don't have one. /// /// C++11 says that user-defined destructors with no exception spec get one /// that looks as if the destructor was implicitly declared. void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor); /// Define the specified inheriting constructor. void DefineInheritingConstructor(SourceLocation UseLoc, CXXConstructorDecl *Constructor); /// Declare the implicit copy constructor for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// copy constructor will be added. /// /// \returns The implicitly-declared copy constructor. CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl); /// DefineImplicitCopyConstructor - Checks for feasibility of /// defining this constructor as the copy constructor. void DefineImplicitCopyConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// Declare the implicit move constructor for the given class. /// /// \param ClassDecl The Class declaration into which the implicit /// move constructor will be added. /// /// \returns The implicitly-declared move constructor, or NULL if it wasn't /// declared. CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl); /// DefineImplicitMoveConstructor - Checks for feasibility of /// defining this constructor as the move constructor. void DefineImplicitMoveConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// Declare the implicit copy assignment operator for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// copy assignment operator will be added. /// /// \returns The implicitly-declared copy assignment operator. CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl); /// Defines an implicitly-declared copy assignment operator. void DefineImplicitCopyAssignment(SourceLocation CurrentLocation, CXXMethodDecl *MethodDecl); /// Declare the implicit move assignment operator for the given class. /// /// \param ClassDecl The Class declaration into which the implicit /// move assignment operator will be added. /// /// \returns The implicitly-declared move assignment operator, or NULL if it /// wasn't declared. CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl); /// Defines an implicitly-declared move assignment operator. void DefineImplicitMoveAssignment(SourceLocation CurrentLocation, CXXMethodDecl *MethodDecl); /// Force the declaration of any implicitly-declared members of this /// class. void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class); /// Check a completed declaration of an implicit special member. void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD); /// Determine whether the given function is an implicitly-deleted /// special member function. bool isImplicitlyDeleted(FunctionDecl *FD); /// Check whether 'this' shows up in the type of a static member /// function after the (naturally empty) cv-qualifier-seq would be. /// /// \returns true if an error occurred. bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method); /// Whether this' shows up in the exception specification of a static /// member function. bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method); /// Check whether 'this' shows up in the attributes of the given /// static member function. /// /// \returns true if an error occurred. bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method); /// MaybeBindToTemporary - If the passed in expression has a record type with /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise /// it simply returns the passed in expression. ExprResult MaybeBindToTemporary(Expr *E); bool CompleteConstructorCall(CXXConstructorDecl *Constructor, MultiExprArg ArgsPtr, SourceLocation Loc, SmallVectorImpl &ConvertedArgs, bool AllowExplicit = false, bool IsListInitialization = false); ParsedType getInheritingConstructorName(CXXScopeSpec &SS, SourceLocation NameLoc, IdentifierInfo &Name); ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec &SS, bool EnteringContext); ParsedType getDestructorName(SourceLocation TildeLoc, IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec &SS, ParsedType ObjectType, bool EnteringContext); ParsedType getDestructorTypeForDecltype(const DeclSpec &DS, ParsedType ObjectType); // Checks that reinterpret casts don't have undefined behavior. void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType, bool IsDereference, SourceRange Range); /// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's. ExprResult ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, SourceLocation LAngleBracketLoc, Declarator &D, SourceLocation RAngleBracketLoc, SourceLocation LParenLoc, Expr *E, SourceLocation RParenLoc); ExprResult BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, TypeSourceInfo *Ty, Expr *E, SourceRange AngleBrackets, SourceRange Parens); ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl, ExprResult Operand, SourceLocation RParenLoc); ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI, Expr *Operand, SourceLocation RParenLoc); ExprResult BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc); ExprResult BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc); /// ActOnCXXTypeid - Parse typeid( something ). ExprResult ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc); ExprResult BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc); ExprResult BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc); /// ActOnCXXUuidof - Parse __uuidof( something ). ExprResult ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc); /// Handle a C++1z fold-expression: ( expr op ... op expr ). ExprResult ActOnCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS, tok::TokenKind Operator, SourceLocation EllipsisLoc, Expr *RHS, SourceLocation RParenLoc); ExprResult BuildCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS, BinaryOperatorKind Operator, SourceLocation EllipsisLoc, Expr *RHS, SourceLocation RParenLoc, Optional NumExpansions); ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc, BinaryOperatorKind Operator); //// ActOnCXXThis - Parse 'this' pointer. ExprResult ActOnCXXThis(SourceLocation loc); /// Build a CXXThisExpr and mark it referenced in the current context. Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit); void MarkThisReferenced(CXXThisExpr *This); /// Try to retrieve the type of the 'this' pointer. /// /// \returns The type of 'this', if possible. Otherwise, returns a NULL type. QualType getCurrentThisType(); /// When non-NULL, the C++ 'this' expression is allowed despite the /// current context not being a non-static member function. In such cases, /// this provides the type used for 'this'. QualType CXXThisTypeOverride; /// RAII object used to temporarily allow the C++ 'this' expression /// to be used, with the given qualifiers on the current class type. class CXXThisScopeRAII { Sema &S; QualType OldCXXThisTypeOverride; bool Enabled; public: /// Introduce a new scope where 'this' may be allowed (when enabled), /// using the given declaration (which is either a class template or a /// class) along with the given qualifiers. /// along with the qualifiers placed on '*this'. CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals, bool Enabled = true); ~CXXThisScopeRAII(); }; /// Make sure the value of 'this' is actually available in the current /// context, if it is a potentially evaluated context. /// /// \param Loc The location at which the capture of 'this' occurs. /// /// \param Explicit Whether 'this' is explicitly captured in a lambda /// capture list. /// /// \param FunctionScopeIndexToStopAt If non-null, it points to the index /// of the FunctionScopeInfo stack beyond which we do not attempt to capture. /// This is useful when enclosing lambdas must speculatively capture /// 'this' that may or may not be used in certain specializations of /// a nested generic lambda (depending on whether the name resolves to /// a non-static member function or a static function). /// \return returns 'true' if failed, 'false' if success. bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false, bool BuildAndDiagnose = true, const unsigned *const FunctionScopeIndexToStopAt = nullptr, bool ByCopy = false); /// Determine whether the given type is the type of *this that is used /// outside of the body of a member function for a type that is currently /// being defined. bool isThisOutsideMemberFunctionBody(QualType BaseType); /// ActOnCXXBoolLiteral - Parse {true,false} literals. ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals. ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); ExprResult ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef AvailSpecs, SourceLocation AtLoc, SourceLocation RParen); /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc); //// ActOnCXXThrow - Parse throw expressions. ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr); ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, bool IsThrownVarInScope); bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E); /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep, SourceLocation LParenOrBraceLoc, MultiExprArg Exprs, SourceLocation RParenOrBraceLoc, bool ListInitialization); ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type, SourceLocation LParenLoc, MultiExprArg Exprs, SourceLocation RParenLoc, bool ListInitialization); /// ActOnCXXNew - Parsed a C++ 'new' expression. ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, Declarator &D, Expr *Initializer); ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, QualType AllocType, TypeSourceInfo *AllocTypeInfo, Optional ArraySize, SourceRange DirectInitRange, Expr *Initializer); /// Determine whether \p FD is an aligned allocation or deallocation /// function that is unavailable. bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const; /// Produce diagnostics if \p FD is an aligned allocation or deallocation /// function that is unavailable. void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, SourceLocation Loc); bool CheckAllocatedType(QualType AllocType, SourceLocation Loc, SourceRange R); /// The scope in which to find allocation functions. enum AllocationFunctionScope { /// Only look for allocation functions in the global scope. AFS_Global, /// Only look for allocation functions in the scope of the /// allocated class. AFS_Class, /// Look for allocation functions in both the global scope /// and in the scope of the allocated class. AFS_Both }; /// Finds the overloads of operator new and delete that are appropriate /// for the allocation. bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, AllocationFunctionScope NewScope, AllocationFunctionScope DeleteScope, QualType AllocType, bool IsArray, bool &PassAlignment, MultiExprArg PlaceArgs, FunctionDecl *&OperatorNew, FunctionDecl *&OperatorDelete, bool Diagnose = true); void DeclareGlobalNewDelete(); void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return, ArrayRef Params); bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, DeclarationName Name, FunctionDecl* &Operator, bool Diagnose = true); FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc, bool CanProvideSize, bool Overaligned, DeclarationName Name); FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc, CXXRecordDecl *RD); /// ActOnCXXDelete - Parsed a C++ 'delete' expression ExprResult ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, bool ArrayForm, Expr *Operand); void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, bool IsDelete, bool CallCanBeVirtual, bool WarnOnNonAbstractTypes, SourceLocation DtorLoc); ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen, Expr *Operand, SourceLocation RParen); ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, SourceLocation RParen); /// Parsed one of the type trait support pseudo-functions. ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, ArrayRef Args, SourceLocation RParenLoc); ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, ArrayRef Args, SourceLocation RParenLoc); /// ActOnArrayTypeTrait - Parsed one of the binary type trait support /// pseudo-functions. ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, ParsedType LhsTy, Expr *DimExpr, SourceLocation RParen); ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, TypeSourceInfo *TSInfo, Expr *DimExpr, SourceLocation RParen); /// ActOnExpressionTrait - Parsed one of the unary type trait support /// pseudo-functions. ExprResult ActOnExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc, Expr *Queried, SourceLocation RParen); ExprResult BuildExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc, Expr *Queried, SourceLocation RParen); ExprResult ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, ParsedType &ObjectType, bool &MayBePseudoDestructor); ExprResult BuildPseudoDestructorExpr(Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, const CXXScopeSpec &SS, TypeSourceInfo *ScopeType, SourceLocation CCLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage DestroyedType); ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, UnqualifiedId &FirstTypeName, SourceLocation CCLoc, SourceLocation TildeLoc, UnqualifiedId &SecondTypeName); ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, SourceLocation TildeLoc, const DeclSpec& DS); /// MaybeCreateExprWithCleanups - If the current full-expression /// requires any cleanups, surround it with a ExprWithCleanups node. /// Otherwise, just returns the passed-in expression. Expr *MaybeCreateExprWithCleanups(Expr *SubExpr); Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt); ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr); MaterializeTemporaryExpr * CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, bool BoundToLvalueReference); ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) { return ActOnFinishFullExpr( Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue); } ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC, bool DiscardedValue, bool IsConstexpr = false); StmtResult ActOnFinishFullStmt(Stmt *Stmt); // Marks SS invalid if it represents an incomplete type. bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC); DeclContext *computeDeclContext(QualType T); DeclContext *computeDeclContext(const CXXScopeSpec &SS, bool EnteringContext = false); bool isDependentScopeSpecifier(const CXXScopeSpec &SS); CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS); /// The parser has parsed a global nested-name-specifier '::'. /// /// \param CCLoc The location of the '::'. /// /// \param SS The nested-name-specifier, which will be updated in-place /// to reflect the parsed nested-name-specifier. /// /// \returns true if an error occurred, false otherwise. bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS); /// The parser has parsed a '__super' nested-name-specifier. /// /// \param SuperLoc The location of the '__super' keyword. /// /// \param ColonColonLoc The location of the '::'. /// /// \param SS The nested-name-specifier, which will be updated in-place /// to reflect the parsed nested-name-specifier. /// /// \returns true if an error occurred, false otherwise. bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc, SourceLocation ColonColonLoc, CXXScopeSpec &SS); bool isAcceptableNestedNameSpecifier(const NamedDecl *SD, bool *CanCorrect = nullptr); NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS); /// Keeps information about an identifier in a nested-name-spec. /// struct NestedNameSpecInfo { /// The type of the object, if we're parsing nested-name-specifier in /// a member access expression. ParsedType ObjectType; /// The identifier preceding the '::'. IdentifierInfo *Identifier; /// The location of the identifier. SourceLocation IdentifierLoc; /// The location of the '::'. SourceLocation CCLoc; /// Creates info object for the most typical case. NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc, SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType()) : ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) { } NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc, SourceLocation ColonColonLoc, QualType ObjectType) : ObjectType(ParsedType::make(ObjectType)), Identifier(II), IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) { } }; bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, NestedNameSpecInfo &IdInfo); bool BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo, bool EnteringContext, CXXScopeSpec &SS, NamedDecl *ScopeLookupResult, bool ErrorRecoveryLookup, bool *IsCorrectedToColon = nullptr, bool OnlyNamespace = false); /// The parser has parsed a nested-name-specifier 'identifier::'. /// /// \param S The scope in which this nested-name-specifier occurs. /// /// \param IdInfo Parser information about an identifier in the /// nested-name-spec. /// /// \param EnteringContext Whether we're entering the context nominated by /// this nested-name-specifier. /// /// \param SS The nested-name-specifier, which is both an input /// parameter (the nested-name-specifier before this type) and an /// output parameter (containing the full nested-name-specifier, /// including this new type). /// /// \param ErrorRecoveryLookup If true, then this method is called to improve /// error recovery. In this case do not emit error message. /// /// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':' /// are allowed. The bool value pointed by this parameter is set to 'true' /// if the identifier is treated as if it was followed by ':', not '::'. /// /// \param OnlyNamespace If true, only considers namespaces in lookup. /// /// \returns true if an error occurred, false otherwise. bool ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo, bool EnteringContext, CXXScopeSpec &SS, bool ErrorRecoveryLookup = false, bool *IsCorrectedToColon = nullptr, bool OnlyNamespace = false); ExprResult ActOnDecltypeExpression(Expr *E); bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS, const DeclSpec &DS, SourceLocation ColonColonLoc); bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS, NestedNameSpecInfo &IdInfo, bool EnteringContext); /// The parser has parsed a nested-name-specifier /// 'template[opt] template-name < template-args >::'. /// /// \param S The scope in which this nested-name-specifier occurs. /// /// \param SS The nested-name-specifier, which is both an input /// parameter (the nested-name-specifier before this type) and an /// output parameter (containing the full nested-name-specifier, /// including this new type). /// /// \param TemplateKWLoc the location of the 'template' keyword, if any. /// \param TemplateName the template name. /// \param TemplateNameLoc The location of the template name. /// \param LAngleLoc The location of the opening angle bracket ('<'). /// \param TemplateArgs The template arguments. /// \param RAngleLoc The location of the closing angle bracket ('>'). /// \param CCLoc The location of the '::'. /// /// \param EnteringContext Whether we're entering the context of the /// nested-name-specifier. /// /// /// \returns true if an error occurred, false otherwise. bool ActOnCXXNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy TemplateName, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, SourceLocation CCLoc, bool EnteringContext); /// Given a C++ nested-name-specifier, produce an annotation value /// that the parser can use later to reconstruct the given /// nested-name-specifier. /// /// \param SS A nested-name-specifier. /// /// \returns A pointer containing all of the information in the /// nested-name-specifier \p SS. void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS); /// Given an annotation pointer for a nested-name-specifier, restore /// the nested-name-specifier structure. /// /// \param Annotation The annotation pointer, produced by /// \c SaveNestedNameSpecifierAnnotation(). /// /// \param AnnotationRange The source range corresponding to the annotation. /// /// \param SS The nested-name-specifier that will be updated with the contents /// of the annotation pointer. void RestoreNestedNameSpecifierAnnotation(void *Annotation, SourceRange AnnotationRange, CXXScopeSpec &SS); bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS); /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global /// scope or nested-name-specifier) is parsed, part of a declarator-id. /// After this method is called, according to [C++ 3.4.3p3], names should be /// looked up in the declarator-id's scope, until the declarator is parsed and /// ActOnCXXExitDeclaratorScope is called. /// The 'SS' should be a non-empty valid CXXScopeSpec. bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS); /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. /// Used to indicate that names should revert to being looked up in the /// defining scope. void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS); /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an /// initializer for the declaration 'Dcl'. /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a /// static data member of class X, names should be looked up in the scope of /// class X. void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl); /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an /// initializer for the declaration 'Dcl'. void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl); /// Create a new lambda closure type. CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, bool KnownDependent, LambdaCaptureDefault CaptureDefault); /// Start the definition of a lambda expression. CXXMethodDecl * startLambdaDefinition(CXXRecordDecl *Class, SourceRange IntroducerRange, TypeSourceInfo *MethodType, SourceLocation EndLoc, ArrayRef Params, ConstexprSpecKind ConstexprKind, Optional> Mangling = None); /// Endow the lambda scope info with the relevant properties. void buildLambdaScope(sema::LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, bool Mutable); /// Perform initialization analysis of the init-capture and perform /// any implicit conversions such as an lvalue-to-rvalue conversion if /// not being used to initialize a reference. ParsedType actOnLambdaInitCaptureInitialization( SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) { return ParsedType::make(buildLambdaInitCaptureInitialization( Loc, ByRef, EllipsisLoc, None, Id, InitKind != LambdaCaptureInitKind::CopyInit, Init)); } QualType buildLambdaInitCaptureInitialization( SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, Optional NumExpansions, IdentifierInfo *Id, bool DirectInit, Expr *&Init); /// Create a dummy variable within the declcontext of the lambda's /// call operator, for name lookup purposes for a lambda init capture. /// /// CodeGen handles emission of lambda captures, ignoring these dummy /// variables appropriately. VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc, IdentifierInfo *Id, unsigned InitStyle, Expr *Init); /// Add an init-capture to a lambda scope. void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var); /// Note that we have finished the explicit captures for the /// given lambda. void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI); /// \brief This is called after parsing the explicit template parameter list /// on a lambda (if it exists) in C++2a. void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, ArrayRef TParams, SourceLocation RAngleLoc); /// Introduce the lambda parameters into scope. void addLambdaParameters( ArrayRef Captures, CXXMethodDecl *CallOperator, Scope *CurScope); /// Deduce a block or lambda's return type based on the return /// statements present in the body. void deduceClosureReturnType(sema::CapturingScopeInfo &CSI); /// ActOnStartOfLambdaDefinition - This is called just before we start /// parsing the body of a lambda; it analyzes the explicit captures and /// arguments, and sets up various data-structures for the body of the /// lambda. void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, Declarator &ParamInfo, Scope *CurScope); /// ActOnLambdaError - If there is an error parsing a lambda, this callback /// is invoked to pop the information about the lambda. void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, bool IsInstantiation = false); /// ActOnLambdaExpr - This is called when the body of a lambda expression /// was successfully completed. ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, Scope *CurScope); /// Does copying/destroying the captured variable have side effects? bool CaptureHasSideEffects(const sema::Capture &From); /// Diagnose if an explicit lambda capture is unused. Returns true if a /// diagnostic is emitted. bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, const sema::Capture &From); /// Build a FieldDecl suitable to hold the given capture. FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture); /// Initialize the given capture with a suitable expression. ExprResult BuildCaptureInit(const sema::Capture &Capture, SourceLocation ImplicitCaptureLoc, bool IsOpenMPMapping = false); /// Complete a lambda-expression having processed and attached the /// lambda body. ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, sema::LambdaScopeInfo *LSI); /// Get the return type to use for a lambda's conversion function(s) to /// function pointer type, given the type of the call operator. QualType getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType); /// Define the "body" of the conversion from a lambda object to a /// function pointer. /// /// This routine doesn't actually define a sensible body; rather, it fills /// in the initialization expression needed to copy the lambda object into /// the block, and IR generation actually generates the real body of the /// block pointer conversion. void DefineImplicitLambdaToFunctionPointerConversion( SourceLocation CurrentLoc, CXXConversionDecl *Conv); /// Define the "body" of the conversion from a lambda object to a /// block pointer. /// /// This routine doesn't actually define a sensible body; rather, it fills /// in the initialization expression needed to copy the lambda object into /// the block, and IR generation actually generates the real body of the /// block pointer conversion. void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc, CXXConversionDecl *Conv); ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation, SourceLocation ConvLocation, CXXConversionDecl *Conv, Expr *Src); // ParseObjCStringLiteral - Parse Objective-C string literals. ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs, ArrayRef Strings); ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S); /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the /// numeric literal expression. Type of the expression will be "NSNumber *" /// or "id" if NSNumber is unavailable. ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number); ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc, bool Value); ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements); /// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the /// '@' prefixed parenthesized expression. The type of the expression will /// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type /// of ValueType, which is allowed to be a built-in numeric type, "char *", /// "const char *" or C structure with attribute 'objc_boxable'. ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr); ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, Expr *IndexExpr, ObjCMethodDecl *getterMethod, ObjCMethodDecl *setterMethod); ExprResult BuildObjCDictionaryLiteral(SourceRange SR, MutableArrayRef Elements); ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc, TypeSourceInfo *EncodedTypeInfo, SourceLocation RParenLoc); ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl, CXXConversionDecl *Method, bool HadMultipleCandidates); ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc, SourceLocation EncodeLoc, SourceLocation LParenLoc, ParsedType Ty, SourceLocation RParenLoc); /// ParseObjCSelectorExpression - Build selector expression for \@selector ExprResult ParseObjCSelectorExpression(Selector Sel, SourceLocation AtLoc, SourceLocation SelLoc, SourceLocation LParenLoc, SourceLocation RParenLoc, bool WarnMultipleSelectors); /// ParseObjCProtocolExpression - Build protocol expression for \@protocol ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName, SourceLocation AtLoc, SourceLocation ProtoLoc, SourceLocation LParenLoc, SourceLocation ProtoIdLoc, SourceLocation RParenLoc); //===--------------------------------------------------------------------===// // C++ Declarations // Decl *ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, Expr *LangStr, SourceLocation LBraceLoc); Decl *ActOnFinishLinkageSpecification(Scope *S, Decl *LinkageSpec, SourceLocation RBraceLoc); //===--------------------------------------------------------------------===// // C++ Classes // CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS); bool isCurrentClassName(const IdentifierInfo &II, Scope *S, const CXXScopeSpec *SS = nullptr); bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS); bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, SourceLocation ColonLoc, const ParsedAttributesView &Attrs); NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, MultiTemplateParamsArg TemplateParameterLists, Expr *BitfieldWidth, const VirtSpecifiers &VS, InClassInitStyle InitStyle); void ActOnStartCXXInClassMemberInitializer(); void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl, SourceLocation EqualLoc, Expr *Init); MemInitResult ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, SourceLocation LParenLoc, ArrayRef Args, SourceLocation RParenLoc, SourceLocation EllipsisLoc); MemInitResult ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, Expr *InitList, SourceLocation EllipsisLoc); MemInitResult BuildMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, Expr *Init, SourceLocation EllipsisLoc); MemInitResult BuildMemberInitializer(ValueDecl *Member, Expr *Init, SourceLocation IdLoc); MemInitResult BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, Expr *Init, CXXRecordDecl *ClassDecl, SourceLocation EllipsisLoc); MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, CXXRecordDecl *ClassDecl); bool SetDelegatingInitializer(CXXConstructorDecl *Constructor, CXXCtorInitializer *Initializer); bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, ArrayRef Initializers = None); void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation); /// MarkBaseAndMemberDestructorsReferenced - Given a record decl, /// mark all the non-trivial destructors of its members and bases as /// referenced. void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc, CXXRecordDecl *Record); /// The list of classes whose vtables have been used within /// this translation unit, and the source locations at which the /// first use occurred. typedef std::pair VTableUse; /// The list of vtables that are required but have not yet been /// materialized. SmallVector VTableUses; /// The set of classes whose vtables have been used within /// this translation unit, and a bit that will be true if the vtable is /// required to be emitted (otherwise, it should be emitted only if needed /// by code generation). llvm::DenseMap VTablesUsed; /// Load any externally-stored vtable uses. void LoadExternalVTableUses(); /// Note that the vtable for the given class was used at the /// given location. void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, bool DefinitionRequired = false); /// Mark the exception specifications of all virtual member functions /// in the given class as needed. void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, const CXXRecordDecl *RD); /// MarkVirtualMembersReferenced - Will mark all members of the given /// CXXRecordDecl referenced. void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD, bool ConstexprOnly = false); /// Define all of the vtables that have been used in this /// translation unit and reference any virtual members used by those /// vtables. /// /// \returns true if any work was done, false otherwise. bool DefineUsedVTables(); void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl); void ActOnMemInitializers(Decl *ConstructorDecl, SourceLocation ColonLoc, ArrayRef MemInits, bool AnyErrors); /// Check class-level dllimport/dllexport attribute. The caller must /// ensure that referenceDLLExportedClassMethods is called some point later /// when all outer classes of Class are complete. void checkClassLevelDLLAttribute(CXXRecordDecl *Class); void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class); void referenceDLLExportedClassMethods(); void propagateDLLAttrToBaseClassTemplate( CXXRecordDecl *Class, Attr *ClassAttr, ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc); /// Add gsl::Pointer attribute to std::container::iterator /// \param ND The declaration that introduces the name /// std::container::iterator. \param UnderlyingRecord The record named by ND. void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord); /// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types. void inferGslOwnerPointerAttribute(CXXRecordDecl *Record); /// Add [[gsl::Pointer]] attributes for std:: types. void inferGslPointerAttribute(TypedefNameDecl *TD); void CheckCompletedCXXClass(CXXRecordDecl *Record); /// Check that the C++ class annoated with "trivial_abi" satisfies all the /// conditions that are needed for the attribute to have an effect. void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD); void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, SourceLocation RBrac, const ParsedAttributesView &AttrList); void ActOnFinishCXXMemberDecls(); void ActOnFinishCXXNonNestedClass(Decl *D); void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param); unsigned ActOnReenterTemplateScope(Scope *S, Decl *Template); void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record); void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method); void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param); void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record); void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method); void ActOnFinishDelayedMemberInitializers(Decl *Record); void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, CachedTokens &Toks); void UnmarkAsLateParsedTemplate(FunctionDecl *FD); bool IsInsideALocalClassWithinATemplateFunction(); Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, Expr *AssertExpr, Expr *AssertMessageExpr, SourceLocation RParenLoc); Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, Expr *AssertExpr, StringLiteral *AssertMessageExpr, SourceLocation RParenLoc, bool Failed); FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart, SourceLocation FriendLoc, TypeSourceInfo *TSInfo); Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, MultiTemplateParamsArg TemplateParams); NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParams); QualType CheckConstructorDeclarator(Declarator &D, QualType R, StorageClass& SC); void CheckConstructor(CXXConstructorDecl *Constructor); QualType CheckDestructorDeclarator(Declarator &D, QualType R, StorageClass& SC); bool CheckDestructor(CXXDestructorDecl *Destructor); void CheckConversionDeclarator(Declarator &D, QualType &R, StorageClass& SC); Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion); void CheckDeductionGuideDeclarator(Declarator &D, QualType &R, StorageClass &SC); void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD); void CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD); void CheckDelayedMemberExceptionSpecs(); //===--------------------------------------------------------------------===// // C++ Derived Classes // /// ActOnBaseSpecifier - Parsed a base specifier CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, TypeSourceInfo *TInfo, SourceLocation EllipsisLoc); BaseResult ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, ParsedAttributes &Attrs, bool Virtual, AccessSpecifier Access, ParsedType basetype, SourceLocation BaseLoc, SourceLocation EllipsisLoc); bool AttachBaseSpecifiers(CXXRecordDecl *Class, MutableArrayRef Bases); void ActOnBaseSpecifiers(Decl *ClassDecl, MutableArrayRef Bases); bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base); bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, CXXBasePaths &Paths); // FIXME: I don't like this name. void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath); bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, SourceLocation Loc, SourceRange Range, CXXCastPath *BasePath = nullptr, bool IgnoreAccess = false); bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, unsigned InaccessibleBaseID, unsigned AmbigiousBaseConvID, SourceLocation Loc, SourceRange Range, DeclarationName Name, CXXCastPath *BasePath, bool IgnoreAccess = false); std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths); bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New, const CXXMethodDecl *Old); /// CheckOverridingFunctionReturnType - Checks whether the return types are /// covariant, according to C++ [class.virtual]p5. bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New, const CXXMethodDecl *Old); /// CheckOverridingFunctionExceptionSpec - Checks whether the exception /// spec is a subset of base spec. bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, const CXXMethodDecl *Old); bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange); /// CheckOverrideControl - Check C++11 override control semantics. void CheckOverrideControl(NamedDecl *D); /// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was /// not used in the declaration of an overriding method. void DiagnoseAbsenceOfOverrideControl(NamedDecl *D); /// CheckForFunctionMarkedFinal - Checks whether a virtual member function /// overrides a virtual member function marked 'final', according to /// C++11 [class.virtual]p4. bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, const CXXMethodDecl *Old); //===--------------------------------------------------------------------===// // C++ Access Control // enum AccessResult { AR_accessible, AR_inaccessible, AR_dependent, AR_delayed }; bool SetMemberAccessSpecifier(NamedDecl *MemberDecl, NamedDecl *PrevMemberDecl, AccessSpecifier LexicalAS); AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E, DeclAccessPair FoundDecl); AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E, DeclAccessPair FoundDecl); AccessResult CheckAllocationAccess(SourceLocation OperatorLoc, SourceRange PlacementRange, CXXRecordDecl *NamingClass, DeclAccessPair FoundDecl, bool Diagnose = true); AccessResult CheckConstructorAccess(SourceLocation Loc, CXXConstructorDecl *D, DeclAccessPair FoundDecl, const InitializedEntity &Entity, bool IsCopyBindingRefToTemp = false); AccessResult CheckConstructorAccess(SourceLocation Loc, CXXConstructorDecl *D, DeclAccessPair FoundDecl, const InitializedEntity &Entity, const PartialDiagnostic &PDiag); AccessResult CheckDestructorAccess(SourceLocation Loc, CXXDestructorDecl *Dtor, const PartialDiagnostic &PDiag, QualType objectType = QualType()); AccessResult CheckFriendAccess(NamedDecl *D); AccessResult CheckMemberAccess(SourceLocation UseLoc, CXXRecordDecl *NamingClass, DeclAccessPair Found); AccessResult CheckStructuredBindingMemberAccess(SourceLocation UseLoc, CXXRecordDecl *DecomposedClass, DeclAccessPair Field); AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr, Expr *ArgExpr, DeclAccessPair FoundDecl); AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr, DeclAccessPair FoundDecl); AccessResult CheckBaseClassAccess(SourceLocation AccessLoc, QualType Base, QualType Derived, const CXXBasePath &Path, unsigned DiagID, bool ForceCheck = false, bool ForceUnprivileged = false); void CheckLookupAccess(const LookupResult &R); bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass, QualType BaseType); bool isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl, AccessSpecifier access, QualType objectType); void HandleDependentAccessCheck(const DependentDiagnostic &DD, const MultiLevelTemplateArgumentList &TemplateArgs); void PerformDependentDiagnostics(const DeclContext *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx); /// When true, access checking violations are treated as SFINAE /// failures rather than hard errors. bool AccessCheckingSFINAE; enum AbstractDiagSelID { AbstractNone = -1, AbstractReturnType, AbstractParamType, AbstractVariableType, AbstractFieldType, AbstractIvarType, AbstractSynthesizedIvarType, AbstractArrayType }; bool isAbstractType(SourceLocation Loc, QualType T); bool RequireNonAbstractType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser); template bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID, const Ts &...Args) { BoundTypeDiagnoser Diagnoser(DiagID, Args...); return RequireNonAbstractType(Loc, T, Diagnoser); } void DiagnoseAbstractType(const CXXRecordDecl *RD); //===--------------------------------------------------------------------===// // C++ Overloaded Operators [C++ 13.5] // bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl); bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl); //===--------------------------------------------------------------------===// // C++ Templates [C++ 14] // void FilterAcceptableTemplateNames(LookupResult &R, bool AllowFunctionTemplates = true, bool AllowDependent = true); bool hasAnyAcceptableTemplateNames(LookupResult &R, bool AllowFunctionTemplates = true, bool AllowDependent = true, bool AllowNonTemplateFunctions = false); /// Try to interpret the lookup result D as a template-name. /// /// \param D A declaration found by name lookup. /// \param AllowFunctionTemplates Whether function templates should be /// considered valid results. /// \param AllowDependent Whether unresolved using declarations (that might /// name templates) should be considered valid results. NamedDecl *getAsTemplateNameDecl(NamedDecl *D, bool AllowFunctionTemplates = true, bool AllowDependent = true); enum class AssumedTemplateKind { /// This is not assumed to be a template name. None, /// This is assumed to be a template name because lookup found nothing. FoundNothing, /// This is assumed to be a template name because lookup found one or more /// functions (but no function templates). FoundFunctions, }; bool LookupTemplateName(LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType, bool EnteringContext, bool &MemberOfUnknownSpecialization, SourceLocation TemplateKWLoc = SourceLocation(), AssumedTemplateKind *ATK = nullptr); TemplateNameKind isTemplateName(Scope *S, CXXScopeSpec &SS, bool hasTemplateKeyword, const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext, TemplateTy &Template, bool &MemberOfUnknownSpecialization); /// Try to resolve an undeclared template name as a type template. /// /// Sets II to the identifier corresponding to the template name, and updates /// Name to a corresponding (typo-corrected) type template name and TNK to /// the corresponding kind, if possible. void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name, TemplateNameKind &TNK, SourceLocation NameLoc, IdentifierInfo *&II); bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, SourceLocation NameLoc, bool Diagnose = true); /// Determine whether a particular identifier might be the name in a C++1z /// deduction-guide declaration. bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name, SourceLocation NameLoc, ParsedTemplateTy *Template = nullptr); bool DiagnoseUnknownTemplateName(const IdentifierInfo &II, SourceLocation IILoc, Scope *S, const CXXScopeSpec *SS, TemplateTy &SuggestedTemplate, TemplateNameKind &SuggestedKind); bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, NamedDecl *Instantiation, bool InstantiatedFromMember, const NamedDecl *Pattern, const NamedDecl *PatternDef, TemplateSpecializationKind TSK, bool Complain = true); void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl); TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl); NamedDecl *ActOnTypeParameter(Scope *S, bool Typename, SourceLocation EllipsisLoc, SourceLocation KeyLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position, SourceLocation EqualLoc, ParsedType DefaultArg); QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, SourceLocation Loc); QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc); NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, unsigned Depth, unsigned Position, SourceLocation EqualLoc, Expr *DefaultArg); NamedDecl *ActOnTemplateTemplateParameter(Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params, SourceLocation EllipsisLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position, SourceLocation EqualLoc, ParsedTemplateArgument DefaultArg); TemplateParameterList * ActOnTemplateParameterList(unsigned Depth, SourceLocation ExportLoc, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ArrayRef Params, SourceLocation RAngleLoc, Expr *RequiresClause); /// The context in which we are checking a template parameter list. enum TemplateParamListContext { TPC_ClassTemplate, TPC_VarTemplate, TPC_FunctionTemplate, TPC_ClassTemplateMember, TPC_FriendClassTemplate, TPC_FriendFunctionTemplate, TPC_FriendFunctionTemplateDefinition, TPC_TypeAliasTemplate }; bool CheckTemplateParameterList(TemplateParameterList *NewParams, TemplateParameterList *OldParams, TemplateParamListContext TPC, SkipBodyInfo *SkipBody = nullptr); TemplateParameterList *MatchTemplateParametersToScopeSpecifier( SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId, ArrayRef ParamLists, bool IsFriend, bool &IsMemberSpecialization, bool &Invalid); DeclResult CheckClassTemplate( Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, AccessSpecifier AS, SourceLocation ModulePrivateLoc, SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody = nullptr); TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, QualType NTTPType, SourceLocation Loc); void translateTemplateArguments(const ASTTemplateArgsPtr &In, TemplateArgumentListInfo &Out); ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType); void NoteAllFoundTemplates(TemplateName Name); QualType CheckTemplateIdType(TemplateName Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &TemplateArgs); TypeResult ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy Template, IdentifierInfo *TemplateII, SourceLocation TemplateIILoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, bool IsCtorOrDtorName = false, bool IsClassName = false); /// Parsed an elaborated-type-specifier that refers to a template-id, /// such as \c class T::template apply. TypeResult ActOnTagTemplateIdType(TagUseKind TUK, TypeSpecifierType TagSpec, SourceLocation TagLoc, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy TemplateD, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc); DeclResult ActOnVarTemplateSpecialization( Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams, StorageClass SC, bool IsPartialSpecialization); DeclResult CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, SourceLocation TemplateNameLoc, const TemplateArgumentListInfo &TemplateArgs); ExprResult CheckVarTemplateId(const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, VarTemplateDecl *Template, SourceLocation TemplateLoc, const TemplateArgumentListInfo *TemplateArgs); ExprResult CheckConceptTemplateId(const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, ConceptDecl *Template, SourceLocation TemplateLoc, const TemplateArgumentListInfo *TemplateArgs); void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc); ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, bool RequiresADL, const TemplateArgumentListInfo *TemplateArgs); ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); TemplateNameKind ActOnDependentTemplateName( Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext, TemplateTy &Template, bool AllowInjectedClassName = false); DeclResult ActOnClassTemplateSpecialization( Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, SourceLocation ModulePrivateLoc, TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody = nullptr); bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc, TemplateDecl *PrimaryTemplate, unsigned NumExplicitArgs, ArrayRef Args); void CheckTemplatePartialSpecialization( ClassTemplatePartialSpecializationDecl *Partial); void CheckTemplatePartialSpecialization( VarTemplatePartialSpecializationDecl *Partial); Decl *ActOnTemplateDeclarator(Scope *S, MultiTemplateParamsArg TemplateParameterLists, Declarator &D); bool CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, TemplateSpecializationKind NewTSK, NamedDecl *PrevDecl, TemplateSpecializationKind PrevTSK, SourceLocation PrevPtOfInstantiation, bool &SuppressNew); bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, const TemplateArgumentListInfo &ExplicitTemplateArgs, LookupResult &Previous); bool CheckFunctionTemplateSpecialization( FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, LookupResult &Previous, bool QualifiedFriend = false); bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous); void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous); DeclResult ActOnExplicitInstantiation( Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, TemplateTy Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, const ParsedAttributesView &Attr); DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, unsigned TagSpec, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr); DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, Declarator &D); TemplateArgumentLoc SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, SourceLocation TemplateLoc, SourceLocation RAngleLoc, Decl *Param, SmallVectorImpl &Converted, bool &HasDefaultArg); /// Specifies the context in which a particular template /// argument is being checked. enum CheckTemplateArgumentKind { /// The template argument was specified in the code or was /// instantiated with some deduced template arguments. CTAK_Specified, /// The template argument was deduced via template argument /// deduction. CTAK_Deduced, /// The template argument was deduced from an array bound /// via template argument deduction. CTAK_DeducedFromArrayBound }; bool CheckTemplateArgument(NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template, SourceLocation TemplateLoc, SourceLocation RAngleLoc, unsigned ArgumentPackIndex, SmallVectorImpl &Converted, CheckTemplateArgumentKind CTAK = CTAK_Specified); /// Check that the given template arguments can be be provided to /// the given template, converting the arguments along the way. /// /// \param Template The template to which the template arguments are being /// provided. /// /// \param TemplateLoc The location of the template name in the source. /// /// \param TemplateArgs The list of template arguments. If the template is /// a template template parameter, this function may extend the set of /// template arguments to also include substituted, defaulted template /// arguments. /// /// \param PartialTemplateArgs True if the list of template arguments is /// intentionally partial, e.g., because we're checking just the initial /// set of template arguments. /// /// \param Converted Will receive the converted, canonicalized template /// arguments. /// /// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to /// contain the converted forms of the template arguments as written. /// Otherwise, \p TemplateArgs will not be modified. /// /// \returns true if an error occurred, false otherwise. bool CheckTemplateArgumentList(TemplateDecl *Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, SmallVectorImpl &Converted, bool UpdateArgsWithConversions = true); bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, TemplateArgumentLoc &Arg, SmallVectorImpl &Converted); bool CheckTemplateArgument(TemplateTypeParmDecl *Param, TypeSourceInfo *Arg); ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param, QualType InstantiatedParamType, Expr *Arg, TemplateArgument &Converted, CheckTemplateArgumentKind CTAK = CTAK_Specified); bool CheckTemplateTemplateArgument(TemplateParameterList *Params, TemplateArgumentLoc &Arg); ExprResult BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc); ExprResult BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, SourceLocation Loc); /// Enumeration describing how template parameter lists are compared /// for equality. enum TemplateParameterListEqualKind { /// We are matching the template parameter lists of two templates /// that might be redeclarations. /// /// \code /// template struct X; /// template struct X; /// \endcode TPL_TemplateMatch, /// We are matching the template parameter lists of two template /// template parameters as part of matching the template parameter lists /// of two templates that might be redeclarations. /// /// \code /// template class TT> struct X; /// template class Other> struct X; /// \endcode TPL_TemplateTemplateParmMatch, /// We are matching the template parameter lists of a template /// template argument against the template parameter lists of a template /// template parameter. /// /// \code /// template class Metafun> struct X; /// template struct integer_c; /// X xic; /// \endcode TPL_TemplateTemplateArgumentMatch }; bool TemplateParameterListsAreEqual(TemplateParameterList *New, TemplateParameterList *Old, bool Complain, TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc = SourceLocation()); bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams); /// Called when the parser has parsed a C++ typename /// specifier, e.g., "typename T::type". /// /// \param S The scope in which this typename type occurs. /// \param TypenameLoc the location of the 'typename' keyword /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). /// \param II the identifier we're retrieving (e.g., 'type' in the example). /// \param IdLoc the location of the identifier. TypeResult ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, const CXXScopeSpec &SS, const IdentifierInfo &II, SourceLocation IdLoc); /// Called when the parser has parsed a C++ typename /// specifier that ends in a template-id, e.g., /// "typename MetaFun::template apply". /// /// \param S The scope in which this typename type occurs. /// \param TypenameLoc the location of the 'typename' keyword /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). /// \param TemplateLoc the location of the 'template' keyword, if any. /// \param TemplateName The template name. /// \param TemplateII The identifier used to name the template. /// \param TemplateIILoc The location of the template name. /// \param LAngleLoc The location of the opening angle bracket ('<'). /// \param TemplateArgs The template arguments. /// \param RAngleLoc The location of the closing angle bracket ('>'). TypeResult ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, const CXXScopeSpec &SS, SourceLocation TemplateLoc, TemplateTy TemplateName, IdentifierInfo *TemplateII, SourceLocation TemplateIILoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc); QualType CheckTypenameType(ElaboratedTypeKeyword Keyword, SourceLocation KeywordLoc, NestedNameSpecifierLoc QualifierLoc, const IdentifierInfo &II, SourceLocation IILoc); TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, SourceLocation Loc, DeclarationName Name); bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS); ExprResult RebuildExprInCurrentInstantiation(Expr *E); bool RebuildTemplateParamsInCurrentInstantiation( TemplateParameterList *Params); std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args); std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgument *Args, unsigned NumArgs); // Concepts Decl *ActOnConceptDefinition( Scope *S, MultiTemplateParamsArg TemplateParameterLists, IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr); //===--------------------------------------------------------------------===// // C++ Variadic Templates (C++0x [temp.variadic]) //===--------------------------------------------------------------------===// /// Determine whether an unexpanded parameter pack might be permitted in this /// location. Useful for error recovery. bool isUnexpandedParameterPackPermitted(); /// The context in which an unexpanded parameter pack is /// being diagnosed. /// /// Note that the values of this enumeration line up with the first /// argument to the \c err_unexpanded_parameter_pack diagnostic. enum UnexpandedParameterPackContext { /// An arbitrary expression. UPPC_Expression = 0, /// The base type of a class type. UPPC_BaseType, /// The type of an arbitrary declaration. UPPC_DeclarationType, /// The type of a data member. UPPC_DataMemberType, /// The size of a bit-field. UPPC_BitFieldWidth, /// The expression in a static assertion. UPPC_StaticAssertExpression, /// The fixed underlying type of an enumeration. UPPC_FixedUnderlyingType, /// The enumerator value. UPPC_EnumeratorValue, /// A using declaration. UPPC_UsingDeclaration, /// A friend declaration. UPPC_FriendDeclaration, /// A declaration qualifier. UPPC_DeclarationQualifier, /// An initializer. UPPC_Initializer, /// A default argument. UPPC_DefaultArgument, /// The type of a non-type template parameter. UPPC_NonTypeTemplateParameterType, /// The type of an exception. UPPC_ExceptionType, /// Partial specialization. UPPC_PartialSpecialization, /// Microsoft __if_exists. UPPC_IfExists, /// Microsoft __if_not_exists. UPPC_IfNotExists, /// Lambda expression. UPPC_Lambda, /// Block expression, UPPC_Block }; /// Diagnose unexpanded parameter packs. /// /// \param Loc The location at which we should emit the diagnostic. /// /// \param UPPC The context in which we are diagnosing unexpanded /// parameter packs. /// /// \param Unexpanded the set of unexpanded parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc, UnexpandedParameterPackContext UPPC, ArrayRef Unexpanded); /// If the given type contains an unexpanded parameter pack, /// diagnose the error. /// /// \param Loc The source location where a diagnostc should be emitted. /// /// \param T The type that is being checked for unexpanded parameter /// packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T, UnexpandedParameterPackContext UPPC); /// If the given expression contains an unexpanded parameter /// pack, diagnose the error. /// /// \param E The expression that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(Expr *E, UnexpandedParameterPackContext UPPC = UPPC_Expression); /// If the given nested-name-specifier contains an unexpanded /// parameter pack, diagnose the error. /// /// \param SS The nested-name-specifier that is being checked for /// unexpanded parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS, UnexpandedParameterPackContext UPPC); /// If the given name contains an unexpanded parameter pack, /// diagnose the error. /// /// \param NameInfo The name (with source location information) that /// is being checked for unexpanded parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo, UnexpandedParameterPackContext UPPC); /// If the given template name contains an unexpanded parameter pack, /// diagnose the error. /// /// \param Loc The location of the template name. /// /// \param Template The template name that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TemplateName Template, UnexpandedParameterPackContext UPPC); /// If the given template argument contains an unexpanded parameter /// pack, diagnose the error. /// /// \param Arg The template argument that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg, UnexpandedParameterPackContext UPPC); /// Collect the set of unexpanded parameter packs within the given /// template argument. /// /// \param Arg The template argument that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(TemplateArgument Arg, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// template argument. /// /// \param Arg The template argument that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// type. /// /// \param T The type that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(QualType T, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// type. /// /// \param TL The type that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(TypeLoc TL, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// nested-name-specifier. /// /// \param NNS The nested-name-specifier that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// name. /// /// \param NameInfo The name that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo, SmallVectorImpl &Unexpanded); /// Invoked when parsing a template argument followed by an /// ellipsis, which creates a pack expansion. /// /// \param Arg The template argument preceding the ellipsis, which /// may already be invalid. /// /// \param EllipsisLoc The location of the ellipsis. ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg, SourceLocation EllipsisLoc); /// Invoked when parsing a type followed by an ellipsis, which /// creates a pack expansion. /// /// \param Type The type preceding the ellipsis, which will become /// the pattern of the pack expansion. /// /// \param EllipsisLoc The location of the ellipsis. TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc); /// Construct a pack expansion type from the pattern of the pack /// expansion. TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern, SourceLocation EllipsisLoc, Optional NumExpansions); /// Construct a pack expansion type from the pattern of the pack /// expansion. QualType CheckPackExpansion(QualType Pattern, SourceRange PatternRange, SourceLocation EllipsisLoc, Optional NumExpansions); /// Invoked when parsing an expression followed by an ellipsis, which /// creates a pack expansion. /// /// \param Pattern The expression preceding the ellipsis, which will become /// the pattern of the pack expansion. /// /// \param EllipsisLoc The location of the ellipsis. ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc); /// Invoked when parsing an expression followed by an ellipsis, which /// creates a pack expansion. /// /// \param Pattern The expression preceding the ellipsis, which will become /// the pattern of the pack expansion. /// /// \param EllipsisLoc The location of the ellipsis. ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc, Optional NumExpansions); /// Determine whether we could expand a pack expansion with the /// given set of parameter packs into separate arguments by repeatedly /// transforming the pattern. /// /// \param EllipsisLoc The location of the ellipsis that identifies the /// pack expansion. /// /// \param PatternRange The source range that covers the entire pattern of /// the pack expansion. /// /// \param Unexpanded The set of unexpanded parameter packs within the /// pattern. /// /// \param ShouldExpand Will be set to \c true if the transformer should /// expand the corresponding pack expansions into separate arguments. When /// set, \c NumExpansions must also be set. /// /// \param RetainExpansion Whether the caller should add an unexpanded /// pack expansion after all of the expanded arguments. This is used /// when extending explicitly-specified template argument packs per /// C++0x [temp.arg.explicit]p9. /// /// \param NumExpansions The number of separate arguments that will be in /// the expanded form of the corresponding pack expansion. This is both an /// input and an output parameter, which can be set by the caller if the /// number of expansions is known a priori (e.g., due to a prior substitution) /// and will be set by the callee when the number of expansions is known. /// The callee must set this value when \c ShouldExpand is \c true; it may /// set this value in other cases. /// /// \returns true if an error occurred (e.g., because the parameter packs /// are to be instantiated with arguments of different lengths), false /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions) /// must be set. bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc, SourceRange PatternRange, ArrayRef Unexpanded, const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand, bool &RetainExpansion, Optional &NumExpansions); /// Determine the number of arguments in the given pack expansion /// type. /// /// This routine assumes that the number of arguments in the expansion is /// consistent across all of the unexpanded parameter packs in its pattern. /// /// Returns an empty Optional if the type can't be expanded. Optional getNumArgumentsInExpansion(QualType T, const MultiLevelTemplateArgumentList &TemplateArgs); /// Determine whether the given declarator contains any unexpanded /// parameter packs. /// /// This routine is used by the parser to disambiguate function declarators /// with an ellipsis prior to the ')', e.g., /// /// \code /// void f(T...); /// \endcode /// /// To determine whether we have an (unnamed) function parameter pack or /// a variadic function. /// /// \returns true if the declarator contains any unexpanded parameter packs, /// false otherwise. bool containsUnexpandedParameterPacks(Declarator &D); /// Returns the pattern of the pack expansion for a template argument. /// /// \param OrigLoc The template argument to expand. /// /// \param Ellipsis Will be set to the location of the ellipsis. /// /// \param NumExpansions Will be set to the number of expansions that will /// be generated from this pack expansion, if known a priori. TemplateArgumentLoc getTemplateArgumentPackExpansionPattern( TemplateArgumentLoc OrigLoc, SourceLocation &Ellipsis, Optional &NumExpansions) const; /// Given a template argument that contains an unexpanded parameter pack, but /// which has already been substituted, attempt to determine the number of /// elements that will be produced once this argument is fully-expanded. /// /// This is intended for use when transforming 'sizeof...(Arg)' in order to /// avoid actually expanding the pack where possible. Optional getFullyPackExpandedSize(TemplateArgument Arg); //===--------------------------------------------------------------------===// // C++ Template Argument Deduction (C++ [temp.deduct]) //===--------------------------------------------------------------------===// /// Adjust the type \p ArgFunctionType to match the calling convention, /// noreturn, and optionally the exception specification of \p FunctionType. /// Deduction often wants to ignore these properties when matching function /// types. QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType, bool AdjustExceptionSpec = false); /// Describes the result of template argument deduction. /// /// The TemplateDeductionResult enumeration describes the result of /// template argument deduction, as returned from /// DeduceTemplateArguments(). The separate TemplateDeductionInfo /// structure provides additional information about the results of /// template argument deduction, e.g., the deduced template argument /// list (if successful) or the specific template parameters or /// deduced arguments that were involved in the failure. enum TemplateDeductionResult { /// Template argument deduction was successful. TDK_Success = 0, /// The declaration was invalid; do nothing. TDK_Invalid, /// Template argument deduction exceeded the maximum template /// instantiation depth (which has already been diagnosed). TDK_InstantiationDepth, /// Template argument deduction did not deduce a value /// for every template parameter. TDK_Incomplete, /// Template argument deduction did not deduce a value for every /// expansion of an expanded template parameter pack. TDK_IncompletePack, /// Template argument deduction produced inconsistent /// deduced values for the given template parameter. TDK_Inconsistent, /// Template argument deduction failed due to inconsistent /// cv-qualifiers on a template parameter type that would /// otherwise be deduced, e.g., we tried to deduce T in "const T" /// but were given a non-const "X". TDK_Underqualified, /// Substitution of the deduced template argument values /// resulted in an error. TDK_SubstitutionFailure, /// After substituting deduced template arguments, a dependent /// parameter type did not match the corresponding argument. TDK_DeducedMismatch, /// After substituting deduced template arguments, an element of /// a dependent parameter type did not match the corresponding element /// of the corresponding argument (when deducing from an initializer list). TDK_DeducedMismatchNested, /// A non-depnedent component of the parameter did not match the /// corresponding component of the argument. TDK_NonDeducedMismatch, /// When performing template argument deduction for a function /// template, there were too many call arguments. TDK_TooManyArguments, /// When performing template argument deduction for a function /// template, there were too few call arguments. TDK_TooFewArguments, /// The explicitly-specified template arguments were not valid /// template arguments for the given template. TDK_InvalidExplicitArguments, /// Checking non-dependent argument conversions failed. TDK_NonDependentConversionFailure, /// Deduction failed; that's all we know. TDK_MiscellaneousDeductionFailure, /// CUDA Target attributes do not match. TDK_CUDATargetMismatch }; TemplateDeductionResult DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, const TemplateArgumentList &TemplateArgs, sema::TemplateDeductionInfo &Info); TemplateDeductionResult DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, const TemplateArgumentList &TemplateArgs, sema::TemplateDeductionInfo &Info); TemplateDeductionResult SubstituteExplicitTemplateArguments( FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo &ExplicitTemplateArgs, SmallVectorImpl &Deduced, SmallVectorImpl &ParamTypes, QualType *FunctionType, sema::TemplateDeductionInfo &Info); /// brief A function argument from which we performed template argument // deduction for a call. struct OriginalCallArg { OriginalCallArg(QualType OriginalParamType, bool DecomposedParam, unsigned ArgIdx, QualType OriginalArgType) : OriginalParamType(OriginalParamType), DecomposedParam(DecomposedParam), ArgIdx(ArgIdx), OriginalArgType(OriginalArgType) {} QualType OriginalParamType; bool DecomposedParam; unsigned ArgIdx; QualType OriginalArgType; }; TemplateDeductionResult FinishTemplateArgumentDeduction( FunctionTemplateDecl *FunctionTemplate, SmallVectorImpl &Deduced, unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, SmallVectorImpl const *OriginalCallArgs = nullptr, bool PartialOverloading = false, llvm::function_ref CheckNonDependent = []{ return false; }); TemplateDeductionResult DeduceTemplateArguments( FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, bool PartialOverloading, llvm::function_ref)> CheckNonDependent); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, bool IsAddressOfFunction = false); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, QualType ToType, CXXConversionDecl *&Specialization, sema::TemplateDeductionInfo &Info); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, bool IsAddressOfFunction = false); /// Substitute Replacement for \p auto in \p TypeWithAuto QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement); /// Substitute Replacement for auto in TypeWithAuto TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, QualType Replacement); /// Completely replace the \c auto in \p TypeWithAuto by /// \p Replacement. This does not retain any \c auto type sugar. QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement); /// Result type of DeduceAutoType. enum DeduceAutoResult { DAR_Succeeded, DAR_Failed, DAR_FailedAlreadyDiagnosed }; DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result, Optional DependentDeductionDepth = None); DeduceAutoResult DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer, QualType &Result, Optional DependentDeductionDepth = None); void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init); bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, bool Diagnose = true); /// Declare implicit deduction guides for a class template if we've /// not already done so. void DeclareImplicitDeductionGuides(TemplateDecl *Template, SourceLocation Loc); QualType DeduceTemplateSpecializationFromInitializer( TypeSourceInfo *TInfo, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Init); QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name, QualType Type, TypeSourceInfo *TSI, SourceRange Range, bool DirectInit, Expr *Init); TypeLoc getReturnTypeLoc(FunctionDecl *FD) const; bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, SourceLocation ReturnLoc, Expr *&RetExpr, AutoType *AT); FunctionTemplateDecl *getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, unsigned NumCallArguments2); UnresolvedSetIterator getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd, TemplateSpecCandidateSet &FailedCandidates, SourceLocation Loc, const PartialDiagnostic &NoneDiag, const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, bool Complain = true, QualType TargetType = QualType()); ClassTemplatePartialSpecializationDecl * getMoreSpecializedPartialSpecialization( ClassTemplatePartialSpecializationDecl *PS1, ClassTemplatePartialSpecializationDecl *PS2, SourceLocation Loc); bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T, sema::TemplateDeductionInfo &Info); VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization( VarTemplatePartialSpecializationDecl *PS1, VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc); bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T, sema::TemplateDeductionInfo &Info); bool isTemplateTemplateParameterAtLeastAsSpecializedAs( TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc); void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used); void MarkDeducedTemplateParameters( const FunctionTemplateDecl *FunctionTemplate, llvm::SmallBitVector &Deduced) { return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced); } static void MarkDeducedTemplateParameters(ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, llvm::SmallBitVector &Deduced); //===--------------------------------------------------------------------===// // C++ Template Instantiation // MultiLevelTemplateArgumentList getTemplateInstantiationArgs(NamedDecl *D, const TemplateArgumentList *Innermost = nullptr, bool RelativeToPrimary = false, const FunctionDecl *Pattern = nullptr); /// A context in which code is being synthesized (where a source location /// alone is not sufficient to identify the context). This covers template /// instantiation and various forms of implicitly-generated functions. struct CodeSynthesisContext { /// The kind of template instantiation we are performing enum SynthesisKind { /// We are instantiating a template declaration. The entity is /// the declaration we're instantiating (e.g., a CXXRecordDecl). TemplateInstantiation, /// We are instantiating a default argument for a template /// parameter. The Entity is the template parameter whose argument is /// being instantiated, the Template is the template, and the /// TemplateArgs/NumTemplateArguments provide the template arguments as /// specified. DefaultTemplateArgumentInstantiation, /// We are instantiating a default argument for a function. /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs /// provides the template arguments as specified. DefaultFunctionArgumentInstantiation, /// We are substituting explicit template arguments provided for /// a function template. The entity is a FunctionTemplateDecl. ExplicitTemplateArgumentSubstitution, /// We are substituting template argument determined as part of /// template argument deduction for either a class template /// partial specialization or a function template. The /// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or /// a TemplateDecl. DeducedTemplateArgumentSubstitution, /// We are substituting prior template arguments into a new /// template parameter. The template parameter itself is either a /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl. PriorTemplateArgumentSubstitution, /// We are checking the validity of a default template argument that /// has been used when naming a template-id. DefaultTemplateArgumentChecking, /// We are computing the exception specification for a defaulted special /// member function. ExceptionSpecEvaluation, /// We are instantiating the exception specification for a function /// template which was deferred until it was needed. ExceptionSpecInstantiation, /// We are declaring an implicit special member function. DeclaringSpecialMember, /// We are defining a synthesized function (such as a defaulted special /// member). DefiningSynthesizedFunction, /// Added for Template instantiation observation. /// Memoization means we are _not_ instantiating a template because /// it is already instantiated (but we entered a context where we /// would have had to if it was not already instantiated). Memoization } Kind; /// Was the enclosing context a non-instantiation SFINAE context? bool SavedInNonInstantiationSFINAEContext; /// The point of instantiation or synthesis within the source code. SourceLocation PointOfInstantiation; /// The entity that is being synthesized. Decl *Entity; /// The template (or partial specialization) in which we are /// performing the instantiation, for substitutions of prior template /// arguments. NamedDecl *Template; /// The list of template arguments we are substituting, if they /// are not part of the entity. const TemplateArgument *TemplateArgs; // FIXME: Wrap this union around more members, or perhaps store the // kind-specific members in the RAII object owning the context. union { /// The number of template arguments in TemplateArgs. unsigned NumTemplateArgs; /// The special member being declared or defined. CXXSpecialMember SpecialMember; }; ArrayRef template_arguments() const { assert(Kind != DeclaringSpecialMember); return {TemplateArgs, NumTemplateArgs}; } /// The template deduction info object associated with the /// substitution or checking of explicit or deduced template arguments. sema::TemplateDeductionInfo *DeductionInfo; /// The source range that covers the construct that cause /// the instantiation, e.g., the template-id that causes a class /// template instantiation. SourceRange InstantiationRange; CodeSynthesisContext() : Kind(TemplateInstantiation), SavedInNonInstantiationSFINAEContext(false), Entity(nullptr), Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0), DeductionInfo(nullptr) {} /// Determines whether this template is an actual instantiation /// that should be counted toward the maximum instantiation depth. bool isInstantiationRecord() const; }; /// List of active code synthesis contexts. /// /// This vector is treated as a stack. As synthesis of one entity requires /// synthesis of another, additional contexts are pushed onto the stack. SmallVector CodeSynthesisContexts; /// Specializations whose definitions are currently being instantiated. llvm::DenseSet> InstantiatingSpecializations; /// Non-dependent types used in templates that have already been instantiated /// by some template instantiation. llvm::DenseSet InstantiatedNonDependentTypes; /// Extra modules inspected when performing a lookup during a template /// instantiation. Computed lazily. SmallVector CodeSynthesisContextLookupModules; /// Cache of additional modules that should be used for name lookup /// within the current template instantiation. Computed lazily; use /// getLookupModules() to get a complete set. llvm::DenseSet LookupModulesCache; /// Get the set of additional modules that should be checked during /// name lookup. A module and its imports become visible when instanting a /// template defined within it. llvm::DenseSet &getLookupModules(); /// Map from the most recent declaration of a namespace to the most /// recent visible declaration of that namespace. llvm::DenseMap VisibleNamespaceCache; /// Whether we are in a SFINAE context that is not associated with /// template instantiation. /// /// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside /// of a template instantiation or template argument deduction. bool InNonInstantiationSFINAEContext; /// The number of \p CodeSynthesisContexts that are not template /// instantiations and, therefore, should not be counted as part of the /// instantiation depth. /// /// When the instantiation depth reaches the user-configurable limit /// \p LangOptions::InstantiationDepth we will abort instantiation. // FIXME: Should we have a similar limit for other forms of synthesis? unsigned NonInstantiationEntries; /// The depth of the context stack at the point when the most recent /// error or warning was produced. /// /// This value is used to suppress printing of redundant context stacks /// when there are multiple errors or warnings in the same instantiation. // FIXME: Does this belong in Sema? It's tough to implement it anywhere else. unsigned LastEmittedCodeSynthesisContextDepth = 0; /// The template instantiation callbacks to trace or track /// instantiations (objects can be chained). /// /// This callbacks is used to print, trace or track template /// instantiations as they are being constructed. std::vector> TemplateInstCallbacks; /// The current index into pack expansion arguments that will be /// used for substitution of parameter packs. /// /// The pack expansion index will be -1 to indicate that parameter packs /// should be instantiated as themselves. Otherwise, the index specifies /// which argument within the parameter pack will be used for substitution. int ArgumentPackSubstitutionIndex; /// RAII object used to change the argument pack substitution index /// within a \c Sema object. /// /// See \c ArgumentPackSubstitutionIndex for more information. class ArgumentPackSubstitutionIndexRAII { Sema &Self; int OldSubstitutionIndex; public: ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex) : Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) { Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex; } ~ArgumentPackSubstitutionIndexRAII() { Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex; } }; friend class ArgumentPackSubstitutionRAII; /// For each declaration that involved template argument deduction, the /// set of diagnostics that were suppressed during that template argument /// deduction. /// /// FIXME: Serialize this structure to the AST file. typedef llvm::DenseMap > SuppressedDiagnosticsMap; SuppressedDiagnosticsMap SuppressedDiagnostics; /// A stack object to be created when performing template /// instantiation. /// /// Construction of an object of type \c InstantiatingTemplate /// pushes the current instantiation onto the stack of active /// instantiations. If the size of this stack exceeds the maximum /// number of recursive template instantiations, construction /// produces an error and evaluates true. /// /// Destruction of this object will pop the named instantiation off /// the stack. struct InstantiatingTemplate { /// Note that we are instantiating a class template, /// function template, variable template, alias template, /// or a member thereof. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, Decl *Entity, SourceRange InstantiationRange = SourceRange()); struct ExceptionSpecification {}; /// Note that we are instantiating an exception specification /// of a function template. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, FunctionDecl *Entity, ExceptionSpecification, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating a default argument in a /// template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateParameter Param, TemplateDecl *Template, ArrayRef TemplateArgs, SourceRange InstantiationRange = SourceRange()); /// Note that we are substituting either explicitly-specified or /// deduced template arguments during function template argument deduction. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, FunctionTemplateDecl *FunctionTemplate, ArrayRef TemplateArgs, CodeSynthesisContext::SynthesisKind Kind, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating as part of template /// argument deduction for a class template declaration. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, ArrayRef TemplateArgs, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating as part of template /// argument deduction for a class template partial /// specialization. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ClassTemplatePartialSpecializationDecl *PartialSpec, ArrayRef TemplateArgs, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating as part of template /// argument deduction for a variable template partial /// specialization. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, VarTemplatePartialSpecializationDecl *PartialSpec, ArrayRef TemplateArgs, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating a default argument for a function /// parameter. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ParmVarDecl *Param, ArrayRef TemplateArgs, SourceRange InstantiationRange = SourceRange()); /// Note that we are substituting prior template arguments into a /// non-type parameter. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, NamedDecl *Template, NonTypeTemplateParmDecl *Param, ArrayRef TemplateArgs, SourceRange InstantiationRange); /// Note that we are substituting prior template arguments into a /// template template parameter. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, NamedDecl *Template, TemplateTemplateParmDecl *Param, ArrayRef TemplateArgs, SourceRange InstantiationRange); /// Note that we are checking the default template argument /// against the template parameter for a given template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, NamedDecl *Param, ArrayRef TemplateArgs, SourceRange InstantiationRange); /// Note that we have finished instantiating this template. void Clear(); ~InstantiatingTemplate() { Clear(); } /// Determines whether we have exceeded the maximum /// recursive template instantiations. bool isInvalid() const { return Invalid; } /// Determine whether we are already instantiating this /// specialization in some surrounding active instantiation. bool isAlreadyInstantiating() const { return AlreadyInstantiating; } private: Sema &SemaRef; bool Invalid; bool AlreadyInstantiating; bool CheckInstantiationDepth(SourceLocation PointOfInstantiation, SourceRange InstantiationRange); InstantiatingTemplate( Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind, SourceLocation PointOfInstantiation, SourceRange InstantiationRange, Decl *Entity, NamedDecl *Template = nullptr, ArrayRef TemplateArgs = None, sema::TemplateDeductionInfo *DeductionInfo = nullptr); InstantiatingTemplate(const InstantiatingTemplate&) = delete; InstantiatingTemplate& operator=(const InstantiatingTemplate&) = delete; }; void pushCodeSynthesisContext(CodeSynthesisContext Ctx); void popCodeSynthesisContext(); /// Determine whether we are currently performing template instantiation. bool inTemplateInstantiation() const { return CodeSynthesisContexts.size() > NonInstantiationEntries; } void PrintContextStack() { if (!CodeSynthesisContexts.empty() && CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) { PrintInstantiationStack(); LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size(); } if (PragmaAttributeCurrentTargetDecl) PrintPragmaAttributeInstantiationPoint(); } void PrintInstantiationStack(); void PrintPragmaAttributeInstantiationPoint(); /// Determines whether we are currently in a context where /// template argument substitution failures are not considered /// errors. /// /// \returns An empty \c Optional if we're not in a SFINAE context. /// Otherwise, contains a pointer that, if non-NULL, contains the nearest /// template-deduction context object, which can be used to capture /// diagnostics that will be suppressed. Optional isSFINAEContext() const; /// Determines whether we are currently in a context that /// is not evaluated as per C++ [expr] p5. bool isUnevaluatedContext() const { assert(!ExprEvalContexts.empty() && "Must be in an expression evaluation context"); return ExprEvalContexts.back().isUnevaluated(); } /// RAII class used to determine whether SFINAE has /// trapped any errors that occur during template argument /// deduction. class SFINAETrap { Sema &SemaRef; unsigned PrevSFINAEErrors; bool PrevInNonInstantiationSFINAEContext; bool PrevAccessCheckingSFINAE; bool PrevLastDiagnosticIgnored; public: explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false) : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors), PrevInNonInstantiationSFINAEContext( SemaRef.InNonInstantiationSFINAEContext), PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE), PrevLastDiagnosticIgnored( SemaRef.getDiagnostics().isLastDiagnosticIgnored()) { if (!SemaRef.isSFINAEContext()) SemaRef.InNonInstantiationSFINAEContext = true; SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE; } ~SFINAETrap() { SemaRef.NumSFINAEErrors = PrevSFINAEErrors; SemaRef.InNonInstantiationSFINAEContext = PrevInNonInstantiationSFINAEContext; SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE; SemaRef.getDiagnostics().setLastDiagnosticIgnored( PrevLastDiagnosticIgnored); } /// Determine whether any SFINAE errors have been trapped. bool hasErrorOccurred() const { return SemaRef.NumSFINAEErrors > PrevSFINAEErrors; } }; /// RAII class used to indicate that we are performing provisional /// semantic analysis to determine the validity of a construct, so /// typo-correction and diagnostics in the immediate context (not within /// implicitly-instantiated templates) should be suppressed. class TentativeAnalysisScope { Sema &SemaRef; // FIXME: Using a SFINAETrap for this is a hack. SFINAETrap Trap; bool PrevDisableTypoCorrection; public: explicit TentativeAnalysisScope(Sema &SemaRef) : SemaRef(SemaRef), Trap(SemaRef, true), PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) { SemaRef.DisableTypoCorrection = true; } ~TentativeAnalysisScope() { SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection; } }; /// The current instantiation scope used to store local /// variables. LocalInstantiationScope *CurrentInstantiationScope; /// Tracks whether we are in a context where typo correction is /// disabled. bool DisableTypoCorrection; /// The number of typos corrected by CorrectTypo. unsigned TyposCorrected; typedef llvm::SmallSet SrcLocSet; typedef llvm::DenseMap IdentifierSourceLocations; /// A cache containing identifiers for which typo correction failed and /// their locations, so that repeated attempts to correct an identifier in a /// given location are ignored if typo correction already failed for it. IdentifierSourceLocations TypoCorrectionFailures; /// Worker object for performing CFG-based warnings. sema::AnalysisBasedWarnings AnalysisWarnings; threadSafety::BeforeSet *ThreadSafetyDeclCache; /// An entity for which implicit template instantiation is required. /// /// The source location associated with the declaration is the first place in /// the source code where the declaration was "used". It is not necessarily /// the point of instantiation (which will be either before or after the /// namespace-scope declaration that triggered this implicit instantiation), /// However, it is the location that diagnostics should generally refer to, /// because users will need to know what code triggered the instantiation. typedef std::pair PendingImplicitInstantiation; /// The queue of implicit template instantiations that are required /// but have not yet been performed. std::deque PendingInstantiations; /// Queue of implicit template instantiations that cannot be performed /// eagerly. SmallVector LateParsedInstantiations; class GlobalEagerInstantiationScope { public: GlobalEagerInstantiationScope(Sema &S, bool Enabled) : S(S), Enabled(Enabled) { if (!Enabled) return; SavedPendingInstantiations.swap(S.PendingInstantiations); SavedVTableUses.swap(S.VTableUses); } void perform() { if (Enabled) { S.DefineUsedVTables(); S.PerformPendingInstantiations(); } } ~GlobalEagerInstantiationScope() { if (!Enabled) return; // Restore the set of pending vtables. assert(S.VTableUses.empty() && "VTableUses should be empty before it is discarded."); S.VTableUses.swap(SavedVTableUses); // Restore the set of pending implicit instantiations. assert(S.PendingInstantiations.empty() && "PendingInstantiations should be empty before it is discarded."); S.PendingInstantiations.swap(SavedPendingInstantiations); } private: Sema &S; SmallVector SavedVTableUses; std::deque SavedPendingInstantiations; bool Enabled; }; /// The queue of implicit template instantiations that are required /// and must be performed within the current local scope. /// /// This queue is only used for member functions of local classes in /// templates, which must be instantiated in the same scope as their /// enclosing function, so that they can reference function-local /// types, static variables, enumerators, etc. std::deque PendingLocalImplicitInstantiations; class LocalEagerInstantiationScope { public: LocalEagerInstantiationScope(Sema &S) : S(S) { SavedPendingLocalImplicitInstantiations.swap( S.PendingLocalImplicitInstantiations); } void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); } ~LocalEagerInstantiationScope() { assert(S.PendingLocalImplicitInstantiations.empty() && "there shouldn't be any pending local implicit instantiations"); SavedPendingLocalImplicitInstantiations.swap( S.PendingLocalImplicitInstantiations); } private: Sema &S; std::deque SavedPendingLocalImplicitInstantiations; }; /// A helper class for building up ExtParameterInfos. class ExtParameterInfoBuilder { SmallVector Infos; bool HasInteresting = false; public: /// Set the ExtParameterInfo for the parameter at the given index, /// void set(unsigned index, FunctionProtoType::ExtParameterInfo info) { assert(Infos.size() <= index); Infos.resize(index); Infos.push_back(info); if (!HasInteresting) HasInteresting = (info != FunctionProtoType::ExtParameterInfo()); } /// Return a pointer (suitable for setting in an ExtProtoInfo) to the /// ExtParameterInfo array we've built up. const FunctionProtoType::ExtParameterInfo * getPointerOrNull(unsigned numParams) { if (!HasInteresting) return nullptr; Infos.resize(numParams); return Infos.data(); } }; void PerformPendingInstantiations(bool LocalOnly = false); TypeSourceInfo *SubstType(TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity, bool AllowDeducedTST = false); QualType SubstType(QualType T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity); TypeSourceInfo *SubstType(TypeLoc TL, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity); TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity, CXXRecordDecl *ThisContext, Qualifiers ThisTypeQuals); void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto, const MultiLevelTemplateArgumentList &Args); bool SubstExceptionSpec(SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI, SmallVectorImpl &ExceptionStorage, const MultiLevelTemplateArgumentList &Args); ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D, const MultiLevelTemplateArgumentList &TemplateArgs, int indexAdjustment, Optional NumExpansions, bool ExpectParameterPack); bool SubstParmTypes(SourceLocation Loc, ArrayRef Params, const FunctionProtoType::ExtParameterInfo *ExtParamInfos, const MultiLevelTemplateArgumentList &TemplateArgs, SmallVectorImpl &ParamTypes, SmallVectorImpl *OutParams, ExtParameterInfoBuilder &ParamInfos); ExprResult SubstExpr(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs); /// Substitute the given template arguments into a list of /// expressions, expanding pack expansions if required. /// /// \param Exprs The list of expressions to substitute into. /// /// \param IsCall Whether this is some form of call, in which case /// default arguments will be dropped. /// /// \param TemplateArgs The set of template arguments to substitute. /// /// \param Outputs Will receive all of the substituted arguments. /// /// \returns true if an error occurred, false otherwise. bool SubstExprs(ArrayRef Exprs, bool IsCall, const MultiLevelTemplateArgumentList &TemplateArgs, SmallVectorImpl &Outputs); StmtResult SubstStmt(Stmt *S, const MultiLevelTemplateArgumentList &TemplateArgs); TemplateParameterList * SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs); Decl *SubstDecl(Decl *D, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs); ExprResult SubstInitializer(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs, bool CXXDirectInit); bool SubstBaseSpecifiers(CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); bool InstantiateClass(SourceLocation PointOfInstantiation, CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK, bool Complain = true); bool InstantiateEnum(SourceLocation PointOfInstantiation, EnumDecl *Instantiation, EnumDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK); bool InstantiateInClassInitializer( SourceLocation PointOfInstantiation, FieldDecl *Instantiation, FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); struct LateInstantiatedAttribute { const Attr *TmplAttr; LocalInstantiationScope *Scope; Decl *NewDecl; LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S, Decl *D) : TmplAttr(A), Scope(S), NewDecl(D) { } }; typedef SmallVector LateInstantiatedAttrVec; void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Pattern, Decl *Inst, LateInstantiatedAttrVec *LateAttrs = nullptr, LocalInstantiationScope *OuterMostScope = nullptr); void InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Pattern, Decl *Inst, LateInstantiatedAttrVec *LateAttrs = nullptr, LocalInstantiationScope *OuterMostScope = nullptr); bool usesPartialOrExplicitSpecialization( SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec); bool InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation, ClassTemplateSpecializationDecl *ClassTemplateSpec, TemplateSpecializationKind TSK, bool Complain = true); void InstantiateClassMembers(SourceLocation PointOfInstantiation, CXXRecordDecl *Instantiation, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK); void InstantiateClassTemplateSpecializationMembers( SourceLocation PointOfInstantiation, ClassTemplateSpecializationDecl *ClassTemplateSpec, TemplateSpecializationKind TSK); NestedNameSpecifierLoc SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, const MultiLevelTemplateArgumentList &TemplateArgs); DeclarationNameInfo SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo, const MultiLevelTemplateArgumentList &TemplateArgs); TemplateName SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name, SourceLocation Loc, const MultiLevelTemplateArgumentList &TemplateArgs); bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs, TemplateArgumentListInfo &Result, const MultiLevelTemplateArgumentList &TemplateArgs); void InstantiateExceptionSpec(SourceLocation PointOfInstantiation, FunctionDecl *Function); FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD, const TemplateArgumentList *Args, SourceLocation Loc); void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, FunctionDecl *Function, bool Recursive = false, bool DefinitionRequired = false, bool AtEndOfTU = false); VarTemplateSpecializationDecl *BuildVarTemplateInstantiation( VarTemplateDecl *VarTemplate, VarDecl *FromVar, const TemplateArgumentList &TemplateArgList, const TemplateArgumentListInfo &TemplateArgsInfo, SmallVectorImpl &Converted, SourceLocation PointOfInstantiation, void *InsertPos, LateInstantiatedAttrVec *LateAttrs = nullptr, LocalInstantiationScope *StartingScope = nullptr); VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl( VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, const MultiLevelTemplateArgumentList &TemplateArgs); void BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar, const MultiLevelTemplateArgumentList &TemplateArgs, LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, LocalInstantiationScope *StartingScope, bool InstantiatingVarTemplate = false, VarTemplateSpecializationDecl *PrevVTSD = nullptr); VarDecl *getVarTemplateSpecialization( VarTemplateDecl *VarTempl, const TemplateArgumentListInfo *TemplateArgs, const DeclarationNameInfo &MemberNameInfo, SourceLocation TemplateKWLoc); void InstantiateVariableInitializer( VarDecl *Var, VarDecl *OldVar, const MultiLevelTemplateArgumentList &TemplateArgs); void InstantiateVariableDefinition(SourceLocation PointOfInstantiation, VarDecl *Var, bool Recursive = false, bool DefinitionRequired = false, bool AtEndOfTU = false); void InstantiateMemInitializers(CXXConstructorDecl *New, const CXXConstructorDecl *Tmpl, const MultiLevelTemplateArgumentList &TemplateArgs); NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, const MultiLevelTemplateArgumentList &TemplateArgs, bool FindingInstantiatedContext = false); DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC, const MultiLevelTemplateArgumentList &TemplateArgs); // Objective-C declarations. enum ObjCContainerKind { OCK_None = -1, OCK_Interface = 0, OCK_Protocol, OCK_Category, OCK_ClassExtension, OCK_Implementation, OCK_CategoryImplementation }; ObjCContainerKind getObjCContainerKind() const; DeclResult actOnObjCTypeParam(Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc, unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc, SourceLocation colonLoc, ParsedType typeBound); ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, ArrayRef typeParams, SourceLocation rAngleLoc); void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList); Decl *ActOnStartClassInterface( Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, IdentifierInfo *SuperName, SourceLocation SuperLoc, ArrayRef SuperTypeArgs, SourceRange SuperTypeArgsRange, Decl *const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList); void ActOnSuperClassOfClassInterface(Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperName, SourceLocation SuperLoc, ArrayRef SuperTypeArgs, SourceRange SuperTypeArgsRange); void ActOnTypedefedProtocols(SmallVectorImpl &ProtocolRefs, SmallVectorImpl &ProtocolLocs, IdentifierInfo *SuperName, SourceLocation SuperLoc); Decl *ActOnCompatibilityAlias( SourceLocation AtCompatibilityAliasLoc, IdentifierInfo *AliasName, SourceLocation AliasLocation, IdentifierInfo *ClassName, SourceLocation ClassLocation); bool CheckForwardProtocolDeclarationForCircularDependency( IdentifierInfo *PName, SourceLocation &PLoc, SourceLocation PrevLoc, const ObjCList &PList); Decl *ActOnStartProtocolInterface( SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc, Decl *const *ProtoRefNames, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList); Decl *ActOnStartCategoryInterface( SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, IdentifierInfo *CategoryName, SourceLocation CategoryLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList); Decl *ActOnStartClassImplementation(SourceLocation AtClassImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperClassname, SourceLocation SuperClassLoc, const ParsedAttributesView &AttrList); Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc, const ParsedAttributesView &AttrList); DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef Decls); DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, SourceLocation *IdentLocs, ArrayRef TypeParamLists, unsigned NumElts); DeclGroupPtrTy ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc, ArrayRef IdentList, const ParsedAttributesView &attrList); void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer, ArrayRef ProtocolId, SmallVectorImpl &Protocols); void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, SourceLocation ProtocolLoc, IdentifierInfo *TypeArgId, SourceLocation TypeArgLoc, bool SelectProtocolFirst = false); /// Given a list of identifiers (and their locations), resolve the /// names to either Objective-C protocol qualifiers or type /// arguments, as appropriate. void actOnObjCTypeArgsOrProtocolQualifiers( Scope *S, ParsedType baseType, SourceLocation lAngleLoc, ArrayRef identifiers, ArrayRef identifierLocs, SourceLocation rAngleLoc, SourceLocation &typeArgsLAngleLoc, SmallVectorImpl &typeArgs, SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc, SmallVectorImpl &protocols, SourceLocation &protocolRAngleLoc, bool warnOnIncompleteProtocols); /// Build a an Objective-C protocol-qualified 'id' type where no /// base type was specified. TypeResult actOnObjCProtocolQualifierType( SourceLocation lAngleLoc, ArrayRef protocols, ArrayRef protocolLocs, SourceLocation rAngleLoc); /// Build a specialized and/or protocol-qualified Objective-C type. TypeResult actOnObjCTypeArgsAndProtocolQualifiers( Scope *S, SourceLocation Loc, ParsedType BaseType, SourceLocation TypeArgsLAngleLoc, ArrayRef TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc); /// Build an Objective-C type parameter type. QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc, bool FailOnError = false); /// Build an Objective-C object pointer type. QualType BuildObjCObjectType(QualType BaseType, SourceLocation Loc, SourceLocation TypeArgsLAngleLoc, ArrayRef TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc, bool FailOnError = false); /// Ensure attributes are consistent with type. /// \param [in, out] Attributes The attributes to check; they will /// be modified to be consistent with \p PropertyTy. void CheckObjCPropertyAttributes(Decl *PropertyPtrTy, SourceLocation Loc, unsigned &Attributes, bool propertyInPrimaryClass); /// Process the specified property declaration and create decls for the /// setters and getters as needed. /// \param property The property declaration being processed void ProcessPropertyDecl(ObjCPropertyDecl *property); void DiagnosePropertyMismatch(ObjCPropertyDecl *Property, ObjCPropertyDecl *SuperProperty, const IdentifierInfo *Name, bool OverridingProtocolProperty); void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID); Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef allMethods = None, ArrayRef allTUVars = None); Decl *ActOnProperty(Scope *S, SourceLocation AtLoc, SourceLocation LParenLoc, FieldDeclarator &FD, ObjCDeclSpec &ODS, Selector GetterSel, Selector SetterSel, tok::ObjCKeywordKind MethodImplKind, DeclContext *lexicalDC = nullptr); Decl *ActOnPropertyImplDecl(Scope *S, SourceLocation AtLoc, SourceLocation PropertyLoc, bool ImplKind, IdentifierInfo *PropertyId, IdentifierInfo *PropertyIvar, SourceLocation PropertyIvarLoc, ObjCPropertyQueryKind QueryKind); enum ObjCSpecialMethodKind { OSMK_None, OSMK_Alloc, OSMK_New, OSMK_Copy, OSMK_RetainingInit, OSMK_NonRetainingInit }; struct ObjCArgInfo { IdentifierInfo *Name; SourceLocation NameLoc; // The Type is null if no type was specified, and the DeclSpec is invalid // in this case. ParsedType Type; ObjCDeclSpec DeclSpec; /// ArgAttrs - Attribute list for this argument. ParsedAttributesView ArgAttrs; }; Decl *ActOnMethodDeclaration( Scope *S, SourceLocation BeginLoc, // location of the + or -. SourceLocation EndLoc, // location of the ; or {. tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, ArrayRef SelectorLocs, Selector Sel, // optional arguments. The number of types/arguments is obtained // from the Sel.getNumArgs(). ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind, bool isVariadic, bool MethodDefinition); ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel, const ObjCObjectPointerType *OPT, bool IsInstance); ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty, bool IsInstance); bool CheckARCMethodDecl(ObjCMethodDecl *method); bool inferObjCARCLifetime(ValueDecl *decl); ExprResult HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, Expr *BaseExpr, SourceLocation OpLoc, DeclarationName MemberName, SourceLocation MemberLoc, SourceLocation SuperLoc, QualType SuperType, bool Super); ExprResult ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, IdentifierInfo &propertyName, SourceLocation receiverNameLoc, SourceLocation propertyNameLoc); ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc); /// Describes the kind of message expression indicated by a message /// send that starts with an identifier. enum ObjCMessageKind { /// The message is sent to 'super'. ObjCSuperMessage, /// The message is an instance message. ObjCInstanceMessage, /// The message is a class message, and the identifier is a type /// name. ObjCClassMessage }; ObjCMessageKind getObjCMessageKind(Scope *S, IdentifierInfo *Name, SourceLocation NameLoc, bool IsSuper, bool HasTrailingDot, ParsedType &ReceiverType); ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc, Selector Sel, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args); ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, QualType ReceiverType, SourceLocation SuperLoc, Selector Sel, ObjCMethodDecl *Method, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args, bool isImplicit = false); ExprResult BuildClassMessageImplicit(QualType ReceiverType, bool isSuperReceiver, SourceLocation Loc, Selector Sel, ObjCMethodDecl *Method, MultiExprArg Args); ExprResult ActOnClassMessage(Scope *S, ParsedType Receiver, Selector Sel, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args); ExprResult BuildInstanceMessage(Expr *Receiver, QualType ReceiverType, SourceLocation SuperLoc, Selector Sel, ObjCMethodDecl *Method, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args, bool isImplicit = false); ExprResult BuildInstanceMessageImplicit(Expr *Receiver, QualType ReceiverType, SourceLocation Loc, Selector Sel, ObjCMethodDecl *Method, MultiExprArg Args); ExprResult ActOnInstanceMessage(Scope *S, Expr *Receiver, Selector Sel, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args); ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc, ObjCBridgeCastKind Kind, SourceLocation BridgeKeywordLoc, TypeSourceInfo *TSInfo, Expr *SubExpr); ExprResult ActOnObjCBridgedCast(Scope *S, SourceLocation LParenLoc, ObjCBridgeCastKind Kind, SourceLocation BridgeKeywordLoc, ParsedType Type, SourceLocation RParenLoc, Expr *SubExpr); void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr); void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr); bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr, CastKind &Kind); bool checkObjCBridgeRelatedComponents(SourceLocation Loc, QualType DestType, QualType SrcType, ObjCInterfaceDecl *&RelatedClass, ObjCMethodDecl *&ClassMethod, ObjCMethodDecl *&InstanceMethod, TypedefNameDecl *&TDNDecl, bool CfToNs, bool Diagnose = true); bool CheckObjCBridgeRelatedConversions(SourceLocation Loc, QualType DestType, QualType SrcType, Expr *&SrcExpr, bool Diagnose = true); bool ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&SrcExpr, bool Diagnose = true); bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall); /// Check whether the given new method is a valid override of the /// given overridden method, and set any properties that should be inherited. void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, const ObjCMethodDecl *Overridden); /// Describes the compatibility of a result type with its method. enum ResultTypeCompatibilityKind { RTC_Compatible, RTC_Incompatible, RTC_Unknown }; void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, ObjCInterfaceDecl *CurrentClass, ResultTypeCompatibilityKind RTC); enum PragmaOptionsAlignKind { POAK_Native, // #pragma options align=native POAK_Natural, // #pragma options align=natural POAK_Packed, // #pragma options align=packed POAK_Power, // #pragma options align=power POAK_Mac68k, // #pragma options align=mac68k POAK_Reset // #pragma options align=reset }; /// ActOnPragmaClangSection - Called on well formed \#pragma clang section void ActOnPragmaClangSection(SourceLocation PragmaLoc, PragmaClangSectionAction Action, PragmaClangSectionKind SecKind, StringRef SecName); /// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align. void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind, SourceLocation PragmaLoc); /// ActOnPragmaPack - Called on well formed \#pragma pack(...). void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action, StringRef SlotLabel, Expr *Alignment); enum class PragmaPackDiagnoseKind { NonDefaultStateAtInclude, ChangedStateAtExit }; void DiagnoseNonDefaultPragmaPack(PragmaPackDiagnoseKind Kind, SourceLocation IncludeLoc); void DiagnoseUnterminatedPragmaPack(); /// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off]. void ActOnPragmaMSStruct(PragmaMSStructKind Kind); /// ActOnPragmaMSComment - Called on well formed /// \#pragma comment(kind, "arg"). void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind, StringRef Arg); /// ActOnPragmaMSPointersToMembers - called on well formed \#pragma /// pointers_to_members(representation method[, general purpose /// representation]). void ActOnPragmaMSPointersToMembers( LangOptions::PragmaMSPointersToMembersKind Kind, SourceLocation PragmaLoc); /// Called on well formed \#pragma vtordisp(). void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action, SourceLocation PragmaLoc, MSVtorDispAttr::Mode Value); enum PragmaSectionKind { PSK_DataSeg, PSK_BSSSeg, PSK_ConstSeg, PSK_CodeSeg, }; bool UnifySection(StringRef SectionName, int SectionFlags, DeclaratorDecl *TheDecl); bool UnifySection(StringRef SectionName, int SectionFlags, SourceLocation PragmaSectionLocation); /// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg. void ActOnPragmaMSSeg(SourceLocation PragmaLocation, PragmaMsStackAction Action, llvm::StringRef StackSlotLabel, StringLiteral *SegmentName, llvm::StringRef PragmaName); /// Called on well formed \#pragma section(). void ActOnPragmaMSSection(SourceLocation PragmaLocation, int SectionFlags, StringLiteral *SegmentName); /// Called on well-formed \#pragma init_seg(). void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation, StringLiteral *SegmentName); /// Called on #pragma clang __debug dump II void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II); /// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name, StringRef Value); /// ActOnPragmaUnused - Called on well-formed '\#pragma unused'. void ActOnPragmaUnused(const Token &Identifier, Scope *curScope, SourceLocation PragmaLoc); /// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... . void ActOnPragmaVisibility(const IdentifierInfo* VisType, SourceLocation PragmaLoc); NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, SourceLocation Loc); void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W); /// ActOnPragmaWeakID - Called on well formed \#pragma weak ident. void ActOnPragmaWeakID(IdentifierInfo* WeakName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc); /// ActOnPragmaRedefineExtname - Called on well formed /// \#pragma redefine_extname oldname newname. void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName, IdentifierInfo* AliasName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc, SourceLocation AliasNameLoc); /// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident. void ActOnPragmaWeakAlias(IdentifierInfo* WeakName, IdentifierInfo* AliasName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc, SourceLocation AliasNameLoc); /// ActOnPragmaFPContract - Called on well formed /// \#pragma {STDC,OPENCL} FP_CONTRACT and /// \#pragma clang fp contract void ActOnPragmaFPContract(LangOptions::FPContractModeKind FPC); /// ActOnPragmaFenvAccess - Called on well formed /// \#pragma STDC FENV_ACCESS void ActOnPragmaFEnvAccess(LangOptions::FEnvAccessModeKind FPC); /// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to /// a the record decl, to handle '\#pragma pack' and '\#pragma options align'. void AddAlignmentAttributesForRecord(RecordDecl *RD); /// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record. void AddMsStructLayoutForRecord(RecordDecl *RD); /// FreePackedContext - Deallocate and null out PackContext. void FreePackedContext(); /// PushNamespaceVisibilityAttr - Note that we've entered a /// namespace with a visibility attribute. void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr, SourceLocation Loc); /// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used, /// add an appropriate visibility attribute. void AddPushedVisibilityAttribute(Decl *RD); /// PopPragmaVisibility - Pop the top element of the visibility stack; used /// for '\#pragma GCC visibility' and visibility attributes on namespaces. void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc); /// FreeVisContext - Deallocate and null out VisContext. void FreeVisContext(); /// AddCFAuditedAttribute - Check whether we're currently within /// '\#pragma clang arc_cf_code_audited' and, if so, consider adding /// the appropriate attribute. void AddCFAuditedAttribute(Decl *D); void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute, SourceLocation PragmaLoc, attr::ParsedSubjectMatchRuleSet Rules); void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc, const IdentifierInfo *Namespace); /// Called on well-formed '\#pragma clang attribute pop'. void ActOnPragmaAttributePop(SourceLocation PragmaLoc, const IdentifierInfo *Namespace); /// Adds the attributes that have been specified using the /// '\#pragma clang attribute push' directives to the given declaration. void AddPragmaAttributes(Scope *S, Decl *D); void DiagnoseUnterminatedPragmaAttribute(); /// Called on well formed \#pragma clang optimize. void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc); /// Get the location for the currently active "\#pragma clang optimize /// off". If this location is invalid, then the state of the pragma is "on". SourceLocation getOptimizeOffPragmaLocation() const { return OptimizeOffPragmaLocation; } /// Only called on function definitions; if there is a pragma in scope /// with the effect of a range-based optnone, consider marking the function /// with attribute optnone. void AddRangeBasedOptnone(FunctionDecl *FD); /// Adds the 'optnone' attribute to the function declaration if there /// are no conflicts; Loc represents the location causing the 'optnone' /// attribute to be added (usually because of a pragma). void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc); /// AddAlignedAttr - Adds an aligned attribute to a particular declaration. void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, bool IsPackExpansion); void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T, bool IsPackExpansion); /// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular /// declaration. void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, Expr *OE); /// AddAllocAlignAttr - Adds an alloc_align attribute to a particular /// declaration. void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, Expr *ParamExpr); /// AddAlignValueAttr - Adds an align_value attribute to a particular /// declaration. void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E); /// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular /// declaration. void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, Expr *MaxThreads, Expr *MinBlocks); /// AddModeAttr - Adds a mode attribute to a particular declaration. void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name, bool InInstantiation = false); void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, ParameterABI ABI); enum class RetainOwnershipKind {NS, CF, OS}; void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, RetainOwnershipKind K, bool IsTemplateInstantiation); /// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size /// attribute to a particular declaration. void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI, Expr *Min, Expr *Max); /// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a /// particular declaration. void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI, Expr *Min, Expr *Max); bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type); //===--------------------------------------------------------------------===// // C++ Coroutines TS // bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc, StringRef Keyword); ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E); ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E); StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E); ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *E, bool IsImplicit = false); ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *E, UnresolvedLookupExpr* Lookup); ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E); StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E, bool IsImplicit = false); StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs); bool buildCoroutineParameterMoves(SourceLocation Loc); VarDecl *buildCoroutinePromise(SourceLocation Loc); void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body); ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc, SourceLocation FuncLoc); //===--------------------------------------------------------------------===// // OpenCL extensions. // private: std::string CurrOpenCLExtension; /// Extensions required by an OpenCL type. llvm::DenseMap> OpenCLTypeExtMap; /// Extensions required by an OpenCL declaration. llvm::DenseMap> OpenCLDeclExtMap; public: llvm::StringRef getCurrentOpenCLExtension() const { return CurrOpenCLExtension; } /// Check if a function declaration \p FD associates with any /// extensions present in OpenCLDeclExtMap and if so return the /// extension(s) name(s). std::string getOpenCLExtensionsFromDeclExtMap(FunctionDecl *FD); /// Check if a function type \p FT associates with any /// extensions present in OpenCLTypeExtMap and if so return the /// extension(s) name(s). std::string getOpenCLExtensionsFromTypeExtMap(FunctionType *FT); /// Find an extension in an appropriate extension map and return its name template std::string getOpenCLExtensionsFromExtMap(T* FT, MapT &Map); void setCurrentOpenCLExtension(llvm::StringRef Ext) { CurrOpenCLExtension = Ext; } /// Set OpenCL extensions for a type which can only be used when these /// OpenCL extensions are enabled. If \p Exts is empty, do nothing. /// \param Exts A space separated list of OpenCL extensions. void setOpenCLExtensionForType(QualType T, llvm::StringRef Exts); /// Set OpenCL extensions for a declaration which can only be /// used when these OpenCL extensions are enabled. If \p Exts is empty, do /// nothing. /// \param Exts A space separated list of OpenCL extensions. void setOpenCLExtensionForDecl(Decl *FD, llvm::StringRef Exts); /// Set current OpenCL extensions for a type which can only be used /// when these OpenCL extensions are enabled. If current OpenCL extension is /// empty, do nothing. void setCurrentOpenCLExtensionForType(QualType T); /// Set current OpenCL extensions for a declaration which /// can only be used when these OpenCL extensions are enabled. If current /// OpenCL extension is empty, do nothing. void setCurrentOpenCLExtensionForDecl(Decl *FD); bool isOpenCLDisabledDecl(Decl *FD); /// Check if type \p T corresponding to declaration specifier \p DS /// is disabled due to required OpenCL extensions being disabled. If so, /// emit diagnostics. /// \return true if type is disabled. bool checkOpenCLDisabledTypeDeclSpec(const DeclSpec &DS, QualType T); /// Check if declaration \p D used by expression \p E /// is disabled due to required OpenCL extensions being disabled. If so, /// emit diagnostics. /// \return true if type is disabled. bool checkOpenCLDisabledDecl(const NamedDecl &D, const Expr &E); //===--------------------------------------------------------------------===// // OpenMP directives and clauses. // private: void *VarDataSharingAttributesStack; /// Number of nested '#pragma omp declare target' directives. unsigned DeclareTargetNestingLevel = 0; /// Initialization of data-sharing attributes stack. void InitDataSharingAttributesStack(); void DestroyDataSharingAttributesStack(); ExprResult VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind, bool StrictlyPositive = true); /// Returns OpenMP nesting level for current directive. unsigned getOpenMPNestingLevel() const; /// Adjusts the function scopes index for the target-based regions. void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex, unsigned Level) const; /// Push new OpenMP function region for non-capturing function. void pushOpenMPFunctionRegion(); /// Pop OpenMP function region for non-capturing function. void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI); /// Check whether we're allowed to call Callee from the current function. void checkOpenMPDeviceFunction(SourceLocation Loc, FunctionDecl *Callee, bool CheckForDelayedContext = true); /// Check whether we're allowed to call Callee from the current function. void checkOpenMPHostFunction(SourceLocation Loc, FunctionDecl *Callee, bool CheckCaller = true); /// Check if the expression is allowed to be used in expressions for the /// OpenMP devices. void checkOpenMPDeviceExpr(const Expr *E); /// Finishes analysis of the deferred functions calls that may be declared as /// host/nohost during device/host compilation. void finalizeOpenMPDelayedAnalysis(); /// Checks if a type or a declaration is disabled due to the owning extension /// being disabled, and emits diagnostic messages if it is disabled. /// \param D type or declaration to be checked. /// \param DiagLoc source location for the diagnostic message. /// \param DiagInfo information to be emitted for the diagnostic message. /// \param SrcRange source range of the declaration. /// \param Map maps type or declaration to the extensions. /// \param Selector selects diagnostic message: 0 for type and 1 for /// declaration. /// \return true if the type or declaration is disabled. template bool checkOpenCLDisabledTypeOrDecl(T D, DiagLocT DiagLoc, DiagInfoT DiagInfo, MapT &Map, unsigned Selector = 0, SourceRange SrcRange = SourceRange()); /// Marks all the functions that might be required for the currently active /// OpenMP context. void markOpenMPDeclareVariantFuncsReferenced(SourceLocation Loc, FunctionDecl *Func, bool MightBeOdrUse); public: /// Struct to store the context selectors info for declare variant directive. struct OpenMPDeclareVariantCtsSelectorData { OMPDeclareVariantAttr::CtxSelectorSetType CtxSet = OMPDeclareVariantAttr::CtxSetUnknown; OMPDeclareVariantAttr::CtxSelectorType Ctx = OMPDeclareVariantAttr::CtxUnknown; StringRef ImplVendor; ExprResult CtxScore; explicit OpenMPDeclareVariantCtsSelectorData() = default; explicit OpenMPDeclareVariantCtsSelectorData( OMPDeclareVariantAttr::CtxSelectorSetType CtxSet, OMPDeclareVariantAttr::CtxSelectorType Ctx, StringRef ImplVendor, ExprResult CtxScore) : CtxSet(CtxSet), Ctx(Ctx), ImplVendor(ImplVendor), CtxScore(CtxScore) { } }; /// Checks if the variant/multiversion functions are compatible. bool areMultiversionVariantFunctionsCompatible( const FunctionDecl *OldFD, const FunctionDecl *NewFD, const PartialDiagnostic &NoProtoDiagID, const PartialDiagnosticAt &NoteCausedDiagIDAt, const PartialDiagnosticAt &NoSupportDiagIDAt, const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported, bool ConstexprSupported, bool CLinkageMayDiffer); /// Function tries to capture lambda's captured variables in the OpenMP region /// before the original lambda is captured. void tryCaptureOpenMPLambdas(ValueDecl *V); /// Return true if the provided declaration \a VD should be captured by /// reference. /// \param Level Relative level of nested OpenMP construct for that the check /// is performed. /// \param OpenMPCaptureLevel Capture level within an OpenMP construct. bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level, unsigned OpenMPCaptureLevel) const; /// Check if the specified variable is used in one of the private /// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP /// constructs. VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false, unsigned StopAt = 0); ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK, ExprObjectKind OK, SourceLocation Loc); /// If the current region is a loop-based region, mark the start of the loop /// construct. void startOpenMPLoop(); /// If the current region is a range loop-based region, mark the start of the /// loop construct. void startOpenMPCXXRangeFor(); /// Check if the specified variable is used in 'private' clause. /// \param Level Relative level of nested OpenMP construct for that the check /// is performed. bool isOpenMPPrivateDecl(const ValueDecl *D, unsigned Level) const; /// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.) /// for \p FD based on DSA for the provided corresponding captured declaration /// \p D. void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level); /// Check if the specified variable is captured by 'target' directive. /// \param Level Relative level of nested OpenMP construct for that the check /// is performed. bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level) const; ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc, Expr *Op); /// Called on start of new data sharing attribute block. void StartOpenMPDSABlock(OpenMPDirectiveKind K, const DeclarationNameInfo &DirName, Scope *CurScope, SourceLocation Loc); /// Start analysis of clauses. void StartOpenMPClause(OpenMPClauseKind K); /// End analysis of clauses. void EndOpenMPClause(); /// Called on end of data sharing attribute block. void EndOpenMPDSABlock(Stmt *CurDirective); /// Check if the current region is an OpenMP loop region and if it is, /// mark loop control variable, used in \p Init for loop initialization, as /// private by default. /// \param Init First part of the for loop. void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init); // OpenMP directives and clauses. /// Called on correct id-expression from the '#pragma omp /// threadprivate'. ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec, const DeclarationNameInfo &Id, OpenMPDirectiveKind Kind); /// Called on well-formed '#pragma omp threadprivate'. DeclGroupPtrTy ActOnOpenMPThreadprivateDirective( SourceLocation Loc, ArrayRef VarList); /// Builds a new OpenMPThreadPrivateDecl and checks its correctness. OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc, ArrayRef VarList); /// Called on well-formed '#pragma omp allocate'. DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc, ArrayRef VarList, ArrayRef Clauses, DeclContext *Owner = nullptr); /// Called on well-formed '#pragma omp requires'. DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc, ArrayRef ClauseList); /// Check restrictions on Requires directive OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc, ArrayRef Clauses); /// Check if the specified type is allowed to be used in 'omp declare /// reduction' construct. QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc, TypeResult ParsedType); /// Called on start of '#pragma omp declare reduction'. DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart( Scope *S, DeclContext *DC, DeclarationName Name, ArrayRef> ReductionTypes, AccessSpecifier AS, Decl *PrevDeclInScope = nullptr); /// Initialize declare reduction construct initializer. void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D); /// Finish current declare reduction construct initializer. void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner); /// Initialize declare reduction construct initializer. /// \return omp_priv variable. VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D); /// Finish current declare reduction construct initializer. void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer, VarDecl *OmpPrivParm); /// Called at the end of '#pragma omp declare reduction'. DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd( Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid); /// Check variable declaration in 'omp declare mapper' construct. TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D); /// Check if the specified type is allowed to be used in 'omp declare /// mapper' construct. QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc, TypeResult ParsedType); /// Called on start of '#pragma omp declare mapper'. OMPDeclareMapperDecl *ActOnOpenMPDeclareMapperDirectiveStart( Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType, SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS, Decl *PrevDeclInScope = nullptr); /// Build the mapper variable of '#pragma omp declare mapper'. void ActOnOpenMPDeclareMapperDirectiveVarDecl(OMPDeclareMapperDecl *DMD, Scope *S, QualType MapperType, SourceLocation StartLoc, DeclarationName VN); /// Called at the end of '#pragma omp declare mapper'. DeclGroupPtrTy ActOnOpenMPDeclareMapperDirectiveEnd(OMPDeclareMapperDecl *D, Scope *S, ArrayRef ClauseList); /// Called on the start of target region i.e. '#pragma omp declare target'. bool ActOnStartOpenMPDeclareTargetDirective(SourceLocation Loc); /// Called at the end of target region i.e. '#pragme omp end declare target'. void ActOnFinishOpenMPDeclareTargetDirective(); /// Searches for the provided declaration name for OpenMP declare target /// directive. NamedDecl * lookupOpenMPDeclareTargetName(Scope *CurScope, CXXScopeSpec &ScopeSpec, const DeclarationNameInfo &Id, NamedDeclSetType &SameDirectiveDecls); /// Called on correct id-expression from the '#pragma omp declare target'. void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc, OMPDeclareTargetDeclAttr::MapTypeTy MT, OMPDeclareTargetDeclAttr::DevTypeTy DT); /// Check declaration inside target region. void checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D, SourceLocation IdLoc = SourceLocation()); /// Return true inside OpenMP declare target region. bool isInOpenMPDeclareTargetContext() const { return DeclareTargetNestingLevel > 0; } /// Return true inside OpenMP target region. bool isInOpenMPTargetExecutionDirective() const; /// Return the number of captured regions created for an OpenMP directive. static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind); /// Initialization of captured region for OpenMP region. void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope); /// End of OpenMP region. /// /// \param S Statement associated with the current OpenMP region. /// \param Clauses List of clauses for the current OpenMP region. /// /// \returns Statement for finished OpenMP region. StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef Clauses); StmtResult ActOnOpenMPExecutableDirective( OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName, OpenMPDirectiveKind CancelRegion, ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp parallel' after parsing /// of the associated statement. StmtResult ActOnOpenMPParallelDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); using VarsWithInheritedDSAType = llvm::SmallDenseMap; /// Called on well-formed '\#pragma omp simd' after parsing /// of the associated statement. StmtResult ActOnOpenMPSimdDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp for' after parsing /// of the associated statement. StmtResult ActOnOpenMPForDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp for simd' after parsing /// of the associated statement. StmtResult ActOnOpenMPForSimdDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp sections' after parsing /// of the associated statement. StmtResult ActOnOpenMPSectionsDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp section' after parsing of the /// associated statement. StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp single' after parsing of the /// associated statement. StmtResult ActOnOpenMPSingleDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp master' after parsing of the /// associated statement. StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp critical' after parsing of the /// associated statement. StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName, ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp parallel for' after parsing /// of the associated statement. StmtResult ActOnOpenMPParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel for simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel sections' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp task' after parsing of the /// associated statement. StmtResult ActOnOpenMPTaskDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp taskyield'. StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp barrier'. StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp taskwait'. StmtResult ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp taskgroup'. StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp flush'. StmtResult ActOnOpenMPFlushDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp ordered' after parsing of the /// associated statement. StmtResult ActOnOpenMPOrderedDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp atomic' after parsing of the /// associated statement. StmtResult ActOnOpenMPAtomicDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target' after parsing of the /// associated statement. StmtResult ActOnOpenMPTargetDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target data' after parsing of /// the associated statement. StmtResult ActOnOpenMPTargetDataDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target enter data' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc, Stmt *AStmt); /// Called on well-formed '\#pragma omp target exit data' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc, Stmt *AStmt); /// Called on well-formed '\#pragma omp target parallel' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target parallel for' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams' after parsing of the /// associated statement. StmtResult ActOnOpenMPTeamsDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp cancellation point'. StmtResult ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc, SourceLocation EndLoc, OpenMPDirectiveKind CancelRegion); /// Called on well-formed '\#pragma omp cancel'. StmtResult ActOnOpenMPCancelDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc, OpenMPDirectiveKind CancelRegion); /// Called on well-formed '\#pragma omp taskloop' after parsing of the /// associated statement. StmtResult ActOnOpenMPTaskLoopDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp taskloop simd' after parsing of /// the associated statement. StmtResult ActOnOpenMPTaskLoopSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp distribute' after parsing /// of the associated statement. StmtResult ActOnOpenMPDistributeDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target update'. StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc, Stmt *AStmt); /// Called on well-formed '\#pragma omp distribute parallel for' after /// parsing of the associated statement. StmtResult ActOnOpenMPDistributeParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp distribute parallel for simd' /// after parsing of the associated statement. StmtResult ActOnOpenMPDistributeParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp distribute simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPDistributeSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target parallel for simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target simd' after parsing of /// the associated statement. StmtResult ActOnOpenMPTargetSimdDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams distribute' after parsing of /// the associated statement. StmtResult ActOnOpenMPTeamsDistributeDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams distribute simd' after parsing /// of the associated statement. StmtResult ActOnOpenMPTeamsDistributeSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams distribute parallel for simd' /// after parsing of the associated statement. StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams distribute parallel for' /// after parsing of the associated statement. StmtResult ActOnOpenMPTeamsDistributeParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams' after parsing of the /// associated statement. StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target teams distribute' after parsing /// of the associated statement. StmtResult ActOnOpenMPTargetTeamsDistributeDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams distribute parallel for' /// after parsing of the associated statement. StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams distribute parallel for /// simd' after parsing of the associated statement. StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams distribute simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Checks correctness of linear modifiers. bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind, SourceLocation LinLoc); /// Checks that the specified declaration matches requirements for the linear /// decls. bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc, OpenMPLinearClauseKind LinKind, QualType Type); /// Called on well-formed '\#pragma omp declare simd' after parsing of /// the associated method/function. DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective( DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS, Expr *Simdlen, ArrayRef Uniforms, ArrayRef Aligneds, ArrayRef Alignments, ArrayRef Linears, ArrayRef LinModifiers, ArrayRef Steps, SourceRange SR); /// Checks '\#pragma omp declare variant' variant function and original /// functions after parsing of the associated method/function. /// \param DG Function declaration to which declare variant directive is /// applied to. /// \param VariantRef Expression that references the variant function, which /// must be used instead of the original one, specified in \p DG. /// \returns None, if the function/variant function are not compatible with /// the pragma, pair of original function/variant ref expression otherwise. Optional> checkOpenMPDeclareVariantFunction( DeclGroupPtrTy DG, Expr *VariantRef, SourceRange SR); /// Called on well-formed '\#pragma omp declare variant' after parsing of /// the associated method/function. /// \param FD Function declaration to which declare variant directive is /// applied to. /// \param VariantRef Expression that references the variant function, which /// must be used instead of the original one, specified in \p DG. /// \param Data Set of context-specific data for the specified context /// selector. void ActOnOpenMPDeclareVariantDirective( FunctionDecl *FD, Expr *VariantRef, SourceRange SR, const Sema::OpenMPDeclareVariantCtsSelectorData &Data); OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind, Expr *Expr, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'allocator' clause. OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'if' clause. OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier, Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation NameModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc); /// Called on well-formed 'final' clause. OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'num_threads' clause. OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'safelen' clause. OMPClause *ActOnOpenMPSafelenClause(Expr *Length, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'simdlen' clause. OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'collapse' clause. OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'ordered' clause. OMPClause * ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc, SourceLocation LParenLoc = SourceLocation(), Expr *NumForLoops = nullptr); /// Called on well-formed 'grainsize' clause. OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'num_tasks' clause. OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'hint' clause. OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind, unsigned Argument, SourceLocation ArgumentLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'default' clause. OMPClause *ActOnOpenMPDefaultClause(OpenMPDefaultClauseKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'proc_bind' clause. OMPClause *ActOnOpenMPProcBindClause(OpenMPProcBindClauseKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); OMPClause *ActOnOpenMPSingleExprWithArgClause( OpenMPClauseKind Kind, ArrayRef Arguments, Expr *Expr, SourceLocation StartLoc, SourceLocation LParenLoc, ArrayRef ArgumentsLoc, SourceLocation DelimLoc, SourceLocation EndLoc); /// Called on well-formed 'schedule' clause. OMPClause *ActOnOpenMPScheduleClause( OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc, SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc); OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'nowait' clause. OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'untied' clause. OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'mergeable' clause. OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'read' clause. OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'write' clause. OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'update' clause. OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'capture' clause. OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'seq_cst' clause. OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'threads' clause. OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'simd' clause. OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'nogroup' clause. OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'unified_address' clause. OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'unified_address' clause. OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'reverse_offload' clause. OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'dynamic_allocators' clause. OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'atomic_default_mem_order' clause. OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause( OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); OMPClause *ActOnOpenMPVarListClause( OpenMPClauseKind Kind, ArrayRef Vars, Expr *TailExpr, const OMPVarListLocTy &Locs, SourceLocation ColonLoc, CXXScopeSpec &ReductionOrMapperIdScopeSpec, DeclarationNameInfo &ReductionOrMapperId, OpenMPDependClauseKind DepKind, OpenMPLinearClauseKind LinKind, ArrayRef MapTypeModifiers, ArrayRef MapTypeModifiersLoc, OpenMPMapClauseKind MapType, bool IsMapTypeImplicit, SourceLocation DepLinMapLoc); /// Called on well-formed 'allocate' clause. OMPClause * ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef VarList, SourceLocation StartLoc, SourceLocation ColonLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'private' clause. OMPClause *ActOnOpenMPPrivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'firstprivate' clause. OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'lastprivate' clause. OMPClause *ActOnOpenMPLastprivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'shared' clause. OMPClause *ActOnOpenMPSharedClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'reduction' clause. OMPClause *ActOnOpenMPReductionClause( ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId, ArrayRef UnresolvedReductions = llvm::None); /// Called on well-formed 'task_reduction' clause. OMPClause *ActOnOpenMPTaskReductionClause( ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId, ArrayRef UnresolvedReductions = llvm::None); /// Called on well-formed 'in_reduction' clause. OMPClause *ActOnOpenMPInReductionClause( ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId, ArrayRef UnresolvedReductions = llvm::None); /// Called on well-formed 'linear' clause. OMPClause * ActOnOpenMPLinearClause(ArrayRef VarList, Expr *Step, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind LinKind, SourceLocation LinLoc, SourceLocation ColonLoc, SourceLocation EndLoc); /// Called on well-formed 'aligned' clause. OMPClause *ActOnOpenMPAlignedClause(ArrayRef VarList, Expr *Alignment, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc); /// Called on well-formed 'copyin' clause. OMPClause *ActOnOpenMPCopyinClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'copyprivate' clause. OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'flush' pseudo clause. OMPClause *ActOnOpenMPFlushClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'depend' clause. OMPClause * ActOnOpenMPDependClause(OpenMPDependClauseKind DepKind, SourceLocation DepLoc, SourceLocation ColonLoc, ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'device' clause. OMPClause *ActOnOpenMPDeviceClause(Expr *Device, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'map' clause. OMPClause * ActOnOpenMPMapClause(ArrayRef MapTypeModifiers, ArrayRef MapTypeModifiersLoc, CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId, OpenMPMapClauseKind MapType, bool IsMapTypeImplicit, SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef VarList, const OMPVarListLocTy &Locs, ArrayRef UnresolvedMappers = llvm::None); /// Called on well-formed 'num_teams' clause. OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'thread_limit' clause. OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'priority' clause. OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'dist_schedule' clause. OMPClause *ActOnOpenMPDistScheduleClause( OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc); /// Called on well-formed 'defaultmap' clause. OMPClause *ActOnOpenMPDefaultmapClause( OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc, SourceLocation KindLoc, SourceLocation EndLoc); /// Called on well-formed 'to' clause. OMPClause * ActOnOpenMPToClause(ArrayRef VarList, CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId, const OMPVarListLocTy &Locs, ArrayRef UnresolvedMappers = llvm::None); /// Called on well-formed 'from' clause. OMPClause *ActOnOpenMPFromClause( ArrayRef VarList, CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId, const OMPVarListLocTy &Locs, ArrayRef UnresolvedMappers = llvm::None); /// Called on well-formed 'use_device_ptr' clause. OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef VarList, const OMPVarListLocTy &Locs); /// Called on well-formed 'is_device_ptr' clause. OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef VarList, const OMPVarListLocTy &Locs); /// The kind of conversion being performed. enum CheckedConversionKind { /// An implicit conversion. CCK_ImplicitConversion, /// A C-style cast. CCK_CStyleCast, /// A functional-style cast. CCK_FunctionalCast, /// A cast other than a C-style cast. CCK_OtherCast, /// A conversion for an operand of a builtin overloaded operator. CCK_ForBuiltinOverloadedOp }; static bool isCast(CheckedConversionKind CCK) { return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast || CCK == CCK_OtherCast; } /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit /// cast. If there is already an implicit cast, merge into the existing one. /// If isLvalue, the result of the cast is an lvalue. ExprResult ImpCastExprToType(Expr *E, QualType Type, CastKind CK, ExprValueKind VK = VK_RValue, const CXXCastPath *BasePath = nullptr, CheckedConversionKind CCK = CCK_ImplicitConversion); /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding /// to the conversion from scalar type ScalarTy to the Boolean type. static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy); /// IgnoredValueConversions - Given that an expression's result is /// syntactically ignored, perform any conversions that are /// required. ExprResult IgnoredValueConversions(Expr *E); // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts // functions and arrays to their respective pointers (C99 6.3.2.1). ExprResult UsualUnaryConversions(Expr *E); /// CallExprUnaryConversions - a special case of an unary conversion /// performed on a function designator of a call expression. ExprResult CallExprUnaryConversions(Expr *E); // DefaultFunctionArrayConversion - converts functions and arrays // to their respective pointers (C99 6.3.2.1). ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true); // DefaultFunctionArrayLvalueConversion - converts functions and // arrays to their respective pointers and performs the // lvalue-to-rvalue conversion. ExprResult DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose = true); // DefaultLvalueConversion - performs lvalue-to-rvalue conversion on // the operand. This is DefaultFunctionArrayLvalueConversion, // except that it assumes the operand isn't of function or array // type. ExprResult DefaultLvalueConversion(Expr *E); // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that // do not have a prototype. Integer promotions are performed on each // argument, and arguments that have type float are promoted to double. ExprResult DefaultArgumentPromotion(Expr *E); /// If \p E is a prvalue denoting an unmaterialized temporary, materialize /// it as an xvalue. In C++98, the result will still be a prvalue, because /// we don't have xvalues there. ExprResult TemporaryMaterializationConversion(Expr *E); // Used for emitting the right warning by DefaultVariadicArgumentPromotion enum VariadicCallType { VariadicFunction, VariadicBlock, VariadicMethod, VariadicConstructor, VariadicDoesNotApply }; VariadicCallType getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto, Expr *Fn); // Used for determining in which context a type is allowed to be passed to a // vararg function. enum VarArgKind { VAK_Valid, VAK_ValidInCXX11, VAK_Undefined, VAK_MSVCUndefined, VAK_Invalid }; // Determines which VarArgKind fits an expression. VarArgKind isValidVarArgType(const QualType &Ty); /// Check to see if the given expression is a valid argument to a variadic /// function, issuing a diagnostic if not. void checkVariadicArgument(const Expr *E, VariadicCallType CT); /// Check to see if a given expression could have '.c_str()' called on it. bool hasCStrMethod(const Expr *E); /// GatherArgumentsForCall - Collector argument expressions for various /// form of call prototypes. bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, const FunctionProtoType *Proto, unsigned FirstParam, ArrayRef Args, SmallVectorImpl &AllArgs, VariadicCallType CallType = VariadicDoesNotApply, bool AllowExplicit = false, bool IsListInitialization = false); // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but // will create a runtime trap if the resulting type is not a POD type. ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, FunctionDecl *FDecl); // UsualArithmeticConversions - performs the UsualUnaryConversions on it's // operands and then handles various conversions that are common to binary // operators (C99 6.3.1.8). If both operands aren't arithmetic, this // routine returns the first non-arithmetic type found. The client is // responsible for emitting appropriate error diagnostics. QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, bool IsCompAssign = false); /// AssignConvertType - All of the 'assignment' semantic checks return this /// enum to indicate whether the assignment was allowed. These checks are /// done for simple assignments, as well as initialization, return from /// function, argument passing, etc. The query is phrased in terms of a /// source and destination type. enum AssignConvertType { /// Compatible - the types are compatible according to the standard. Compatible, /// PointerToInt - The assignment converts a pointer to an int, which we /// accept as an extension. PointerToInt, /// IntToPointer - The assignment converts an int to a pointer, which we /// accept as an extension. IntToPointer, /// FunctionVoidPointer - The assignment is between a function pointer and /// void*, which the standard doesn't allow, but we accept as an extension. FunctionVoidPointer, /// IncompatiblePointer - The assignment is between two pointers types that /// are not compatible, but we accept them as an extension. IncompatiblePointer, /// IncompatiblePointerSign - The assignment is between two pointers types /// which point to integers which have a different sign, but are otherwise /// identical. This is a subset of the above, but broken out because it's by /// far the most common case of incompatible pointers. IncompatiblePointerSign, /// CompatiblePointerDiscardsQualifiers - The assignment discards /// c/v/r qualifiers, which we accept as an extension. CompatiblePointerDiscardsQualifiers, /// IncompatiblePointerDiscardsQualifiers - The assignment /// discards qualifiers that we don't permit to be discarded, /// like address spaces. IncompatiblePointerDiscardsQualifiers, /// IncompatibleNestedPointerAddressSpaceMismatch - The assignment /// changes address spaces in nested pointer types which is not allowed. /// For instance, converting __private int ** to __generic int ** is /// illegal even though __private could be converted to __generic. IncompatibleNestedPointerAddressSpaceMismatch, /// IncompatibleNestedPointerQualifiers - The assignment is between two /// nested pointer types, and the qualifiers other than the first two /// levels differ e.g. char ** -> const char **, but we accept them as an /// extension. IncompatibleNestedPointerQualifiers, /// IncompatibleVectors - The assignment is between two vector types that /// have the same size, which we accept as an extension. IncompatibleVectors, /// IntToBlockPointer - The assignment converts an int to a block /// pointer. We disallow this. IntToBlockPointer, /// IncompatibleBlockPointer - The assignment is between two block /// pointers types that are not compatible. IncompatibleBlockPointer, /// IncompatibleObjCQualifiedId - The assignment is between a qualified /// id type and something else (that is incompatible with it). For example, /// "id " = "Foo *", where "Foo *" doesn't implement the XXX protocol. IncompatibleObjCQualifiedId, /// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an /// object with __weak qualifier. IncompatibleObjCWeakRef, /// Incompatible - We reject this conversion outright, it is invalid to /// represent it in the AST. Incompatible }; /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the /// assignment conversion type specified by ConvTy. This returns true if the /// conversion was invalid or false if the conversion was accepted. bool DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, AssignmentAction Action, bool *Complained = nullptr); /// IsValueInFlagEnum - Determine if a value is allowed as part of a flag /// enum. If AllowMask is true, then we also allow the complement of a valid /// value, to be used as a mask. bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, bool AllowMask) const; /// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant /// integer not in the range of enum values. void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, Expr *SrcExpr); /// CheckAssignmentConstraints - Perform type checking for assignment, /// argument passing, variable initialization, and function return values. /// C99 6.5.16. AssignConvertType CheckAssignmentConstraints(SourceLocation Loc, QualType LHSType, QualType RHSType); /// Check assignment constraints and optionally prepare for a conversion of /// the RHS to the LHS type. The conversion is prepared for if ConvertRHS /// is true. AssignConvertType CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS, CastKind &Kind, bool ConvertRHS = true); /// Check assignment constraints for an assignment of RHS to LHSType. /// /// \param LHSType The destination type for the assignment. /// \param RHS The source expression for the assignment. /// \param Diagnose If \c true, diagnostics may be produced when checking /// for assignability. If a diagnostic is produced, \p RHS will be /// set to ExprError(). Note that this function may still return /// without producing a diagnostic, even for an invalid assignment. /// \param DiagnoseCFAudited If \c true, the target is a function parameter /// in an audited Core Foundation API and does not need to be checked /// for ARC retain issues. /// \param ConvertRHS If \c true, \p RHS will be updated to model the /// conversions necessary to perform the assignment. If \c false, /// \p Diagnose must also be \c false. AssignConvertType CheckSingleAssignmentConstraints( QualType LHSType, ExprResult &RHS, bool Diagnose = true, bool DiagnoseCFAudited = false, bool ConvertRHS = true); // If the lhs type is a transparent union, check whether we // can initialize the transparent union with the given expression. AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &RHS); bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType); bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, AssignmentAction Action, bool AllowExplicit = false); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, AssignmentAction Action, bool AllowExplicit, ImplicitConversionSequence& ICS); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, const ImplicitConversionSequence& ICS, AssignmentAction Action, CheckedConversionKind CCK = CCK_ImplicitConversion); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, const StandardConversionSequence& SCS, AssignmentAction Action, CheckedConversionKind CCK); ExprResult PerformQualificationConversion( Expr *E, QualType Ty, ExprValueKind VK = VK_RValue, CheckedConversionKind CCK = CCK_ImplicitConversion); /// the following "Check" methods will return a valid/converted QualType /// or a null QualType (indicating an error diagnostic was issued). /// type checking binary operators (subroutines of CreateBuiltinBinOp). QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS, ExprResult &RHS); QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS, ExprResult &RHS); QualType CheckPointerToMemberOperands( // C++ 5.5 ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, SourceLocation OpLoc, bool isIndirect); QualType CheckMultiplyDivideOperands( // C99 6.5.5 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign, bool IsDivide); QualType CheckRemainderOperands( // C99 6.5.5 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign = false); QualType CheckAdditionOperands( // C99 6.5.6 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr); QualType CheckSubtractionOperands( // C99 6.5.6 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, QualType* CompLHSTy = nullptr); QualType CheckShiftOperands( // C99 6.5.7 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc, bool IsCompAssign = false); void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE); QualType CheckCompareOperands( // C99 6.5.8/9 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); QualType CheckBitwiseOperands( // C99 6.5.[10...12] ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); QualType CheckLogicalOperands( // C99 6.5.[13,14] ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); // CheckAssignmentOperands is used for both simple and compound assignment. // For simple assignment, pass both expressions and a null converted type. // For compound assignment, pass both expressions and the converted type. QualType CheckAssignmentOperands( // C99 6.5.16.[1,2] Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType); ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opcode, Expr *Op); ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opcode, Expr *LHS, Expr *RHS); ExprResult checkPseudoObjectRValue(Expr *E); Expr *recreateSyntacticForm(PseudoObjectExpr *E); QualType CheckConditionalOperands( // C99 6.5.15 ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc); QualType CXXCheckConditionalOperands( // C++ 5.16 ExprResult &cond, ExprResult &lhs, ExprResult &rhs, ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc); QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2, bool ConvertArgs = true); QualType FindCompositePointerType(SourceLocation Loc, ExprResult &E1, ExprResult &E2, bool ConvertArgs = true) { Expr *E1Tmp = E1.get(), *E2Tmp = E2.get(); QualType Composite = FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs); E1 = E1Tmp; E2 = E2Tmp; return Composite; } QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, SourceLocation QuestionLoc); bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, SourceLocation QuestionLoc); void DiagnoseAlwaysNonNullPointer(Expr *E, Expr::NullPointerConstantKind NullType, bool IsEqual, SourceRange Range); /// type checking for vector binary operators. QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign, bool AllowBothBool, bool AllowBoolConversion); QualType GetSignedVectorType(QualType V); QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc); bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType); bool isLaxVectorConversion(QualType srcType, QualType destType); /// type checking declaration initializers (C99 6.7.8) bool CheckForConstantInitializer(Expr *e, QualType t); // type checking C++ declaration initializers (C++ [dcl.init]). /// ReferenceCompareResult - Expresses the result of comparing two /// types (cv1 T1 and cv2 T2) to determine their compatibility for the /// purposes of initialization by reference (C++ [dcl.init.ref]p4). enum ReferenceCompareResult { /// Ref_Incompatible - The two types are incompatible, so direct /// reference binding is not possible. Ref_Incompatible = 0, /// Ref_Related - The two types are reference-related, which means /// that their unqualified forms (T1 and T2) are either the same /// or T1 is a base class of T2. Ref_Related, /// Ref_Compatible - The two types are reference-compatible. Ref_Compatible }; ReferenceCompareResult CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2, bool &DerivedToBase, bool &ObjCConversion, bool &ObjCLifetimeConversion); ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType, Expr *CastExpr, CastKind &CastKind, ExprValueKind &VK, CXXCastPath &Path); /// Force an expression with unknown-type to an expression of the /// given type. ExprResult forceUnknownAnyToType(Expr *E, QualType ToType); /// Type-check an expression that's being passed to an /// __unknown_anytype parameter. ExprResult checkUnknownAnyArg(SourceLocation callLoc, Expr *result, QualType ¶mType); // CheckVectorCast - check type constraints for vectors. // Since vectors are an extension, there are no C standard reference for this. // We allow casting between vectors and integer datatypes of the same size. // returns true if the cast is invalid bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, CastKind &Kind); /// Prepare `SplattedExpr` for a vector splat operation, adding /// implicit casts if necessary. ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr); // CheckExtVectorCast - check type constraints for extended vectors. // Since vectors are an extension, there are no C standard reference for this. // We allow casting between vectors and integer datatypes of the same size, // or vectors and the element type of that vector. // returns the cast expr ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr, CastKind &Kind); ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type, SourceLocation LParenLoc, Expr *CastExpr, SourceLocation RParenLoc); enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error }; /// Checks for invalid conversions and casts between /// retainable pointers and other pointer kinds for ARC and Weak. ARCConversionResult CheckObjCConversion(SourceRange castRange, QualType castType, Expr *&op, CheckedConversionKind CCK, bool Diagnose = true, bool DiagnoseCFAudited = false, BinaryOperatorKind Opc = BO_PtrMemD ); Expr *stripARCUnbridgedCast(Expr *e); void diagnoseARCUnbridgedCast(Expr *e); bool CheckObjCARCUnavailableWeakConversion(QualType castType, QualType ExprType); /// checkRetainCycles - Check whether an Objective-C message send /// might create an obvious retain cycle. void checkRetainCycles(ObjCMessageExpr *msg); void checkRetainCycles(Expr *receiver, Expr *argument); void checkRetainCycles(VarDecl *Var, Expr *Init); /// checkUnsafeAssigns - Check whether +1 expr is being assigned /// to weak/__unsafe_unretained type. bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS); /// checkUnsafeExprAssigns - Check whether +1 expr is being assigned /// to weak/__unsafe_unretained expression. void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS); /// CheckMessageArgumentTypes - Check types in an Obj-C message send. /// \param Method - May be null. /// \param [out] ReturnType - The return type of the send. /// \return true iff there were any incompatible types. bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType, MultiExprArg Args, Selector Sel, ArrayRef SelectorLocs, ObjCMethodDecl *Method, bool isClassMessage, bool isSuperMessage, SourceLocation lbrac, SourceLocation rbrac, SourceRange RecRange, QualType &ReturnType, ExprValueKind &VK); /// Determine the result of a message send expression based on /// the type of the receiver, the method expected to receive the message, /// and the form of the message send. QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType, ObjCMethodDecl *Method, bool isClassMessage, bool isSuperMessage); /// If the given expression involves a message send to a method /// with a related result type, emit a note describing what happened. void EmitRelatedResultTypeNote(const Expr *E); /// Given that we had incompatible pointer types in a return /// statement, check whether we're in a method with a related result /// type, and if so, emit a note describing what happened. void EmitRelatedResultTypeNoteForReturn(QualType destType); class ConditionResult { Decl *ConditionVar; FullExprArg Condition; bool Invalid; bool HasKnownValue; bool KnownValue; friend class Sema; ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition, bool IsConstexpr) : ConditionVar(ConditionVar), Condition(Condition), Invalid(false), HasKnownValue(IsConstexpr && Condition.get() && !Condition.get()->isValueDependent()), KnownValue(HasKnownValue && !!Condition.get()->EvaluateKnownConstInt(S.Context)) {} explicit ConditionResult(bool Invalid) : ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid), HasKnownValue(false), KnownValue(false) {} public: ConditionResult() : ConditionResult(false) {} bool isInvalid() const { return Invalid; } std::pair get() const { return std::make_pair(cast_or_null(ConditionVar), Condition.get()); } llvm::Optional getKnownValue() const { if (!HasKnownValue) return None; return KnownValue; } }; static ConditionResult ConditionError() { return ConditionResult(true); } enum class ConditionKind { Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'. ConstexprIf, ///< A constant boolean condition from 'if constexpr'. Switch ///< An integral condition for a 'switch' statement. }; ConditionResult ActOnCondition(Scope *S, SourceLocation Loc, Expr *SubExpr, ConditionKind CK); ConditionResult ActOnConditionVariable(Decl *ConditionVar, SourceLocation StmtLoc, ConditionKind CK); DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D); ExprResult CheckConditionVariable(VarDecl *ConditionVar, SourceLocation StmtLoc, ConditionKind CK); ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond); /// CheckBooleanCondition - Diagnose problems involving the use of /// the given expression as a boolean condition (e.g. in an if /// statement). Also performs the standard function and array /// decays, possibly changing the input variable. /// /// \param Loc - A location associated with the condition, e.g. the /// 'if' keyword. /// \return true iff there were any errors ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E, bool IsConstexpr = false); /// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression /// found in an explicit(bool) specifier. ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E); /// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier. /// Returns true if the explicit specifier is now resolved. bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec); /// DiagnoseAssignmentAsCondition - Given that an expression is /// being used as a boolean condition, warn if it's an assignment. void DiagnoseAssignmentAsCondition(Expr *E); /// Redundant parentheses over an equality comparison can indicate /// that the user intended an assignment used as condition. void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE); /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid. ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false); /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have /// the specified width and sign. If an overflow occurs, detect it and emit /// the specified diagnostic. void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal, unsigned NewWidth, bool NewSign, SourceLocation Loc, unsigned DiagID); /// Checks that the Objective-C declaration is declared in the global scope. /// Emits an error and marks the declaration as invalid if it's not declared /// in the global scope. bool CheckObjCDeclScope(Decl *D); /// Abstract base class used for diagnosing integer constant /// expression violations. class VerifyICEDiagnoser { public: bool Suppress; VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { } virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) =0; virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR); virtual ~VerifyICEDiagnoser() { } }; /// VerifyIntegerConstantExpression - Verifies that an expression is an ICE, /// and reports the appropriate diagnostics. Returns false on success. /// Can optionally return the value of the expression. ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, VerifyICEDiagnoser &Diagnoser, bool AllowFold = true); ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, unsigned DiagID, bool AllowFold = true); ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result = nullptr); /// VerifyBitField - verifies that a bit field expression is an ICE and has /// the correct width, and that the field type is valid. /// Returns false on success. /// Can optionally return whether the bit-field is of width 0 ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, QualType FieldTy, bool IsMsStruct, Expr *BitWidth, bool *ZeroWidth = nullptr); private: unsigned ForceCUDAHostDeviceDepth = 0; public: /// Increments our count of the number of times we've seen a pragma forcing /// functions to be __host__ __device__. So long as this count is greater /// than zero, all functions encountered will be __host__ __device__. void PushForceCUDAHostDevice(); /// Decrements our count of the number of times we've seen a pragma forcing /// functions to be __host__ __device__. Returns false if the count is 0 /// before incrementing, so you can emit an error. bool PopForceCUDAHostDevice(); /// Diagnostics that are emitted only if we discover that the given function /// must be codegen'ed. Because handling these correctly adds overhead to /// compilation, this is currently only enabled for CUDA compilations. llvm::DenseMap, std::vector> DeviceDeferredDiags; /// A pair of a canonical FunctionDecl and a SourceLocation. When used as the /// key in a hashtable, both the FD and location are hashed. struct FunctionDeclAndLoc { CanonicalDeclPtr FD; SourceLocation Loc; }; /// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a /// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the /// same deferred diag twice. llvm::DenseSet LocsWithCUDACallDiags; /// An inverse call graph, mapping known-emitted functions to one of their /// known-emitted callers (plus the location of the call). /// /// Functions that we can tell a priori must be emitted aren't added to this /// map. llvm::DenseMap, /* Caller = */ FunctionDeclAndLoc> DeviceKnownEmittedFns; /// A partial call graph maintained during CUDA/OpenMP device code compilation /// to support deferred diagnostics. /// /// Functions are only added here if, at the time they're considered, they are /// not known-emitted. As soon as we discover that a function is /// known-emitted, we remove it and everything it transitively calls from this /// set and add those functions to DeviceKnownEmittedFns. llvm::DenseMap, /* Callees = */ llvm::MapVector, SourceLocation>> DeviceCallGraph; /// Diagnostic builder for CUDA/OpenMP devices errors which may or may not be /// deferred. /// /// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch) /// which are not allowed to appear inside __device__ functions and are /// allowed to appear in __host__ __device__ functions only if the host+device /// function is never codegen'ed. /// /// To handle this, we use the notion of "deferred diagnostics", where we /// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed. /// /// This class lets you emit either a regular diagnostic, a deferred /// diagnostic, or no diagnostic at all, according to an argument you pass to /// its constructor, thus simplifying the process of creating these "maybe /// deferred" diagnostics. class DeviceDiagBuilder { public: enum Kind { /// Emit no diagnostics. K_Nop, /// Emit the diagnostic immediately (i.e., behave like Sema::Diag()). K_Immediate, /// Emit the diagnostic immediately, and, if it's a warning or error, also /// emit a call stack showing how this function can be reached by an a /// priori known-emitted function. K_ImmediateWithCallStack, /// Create a deferred diagnostic, which is emitted only if the function /// it's attached to is codegen'ed. Also emit a call stack as with /// K_ImmediateWithCallStack. K_Deferred }; DeviceDiagBuilder(Kind K, SourceLocation Loc, unsigned DiagID, FunctionDecl *Fn, Sema &S); DeviceDiagBuilder(DeviceDiagBuilder &&D); DeviceDiagBuilder(const DeviceDiagBuilder &) = default; ~DeviceDiagBuilder(); /// Convertible to bool: True if we immediately emitted an error, false if /// we didn't emit an error or we created a deferred error. /// /// Example usage: /// /// if (DeviceDiagBuilder(...) << foo << bar) /// return ExprError(); /// /// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably /// want to use these instead of creating a DeviceDiagBuilder yourself. operator bool() const { return ImmediateDiag.hasValue(); } template friend const DeviceDiagBuilder &operator<<(const DeviceDiagBuilder &Diag, const T &Value) { if (Diag.ImmediateDiag.hasValue()) *Diag.ImmediateDiag << Value; else if (Diag.PartialDiagId.hasValue()) Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second << Value; return Diag; } private: Sema &S; SourceLocation Loc; unsigned DiagID; FunctionDecl *Fn; bool ShowCallStack; // Invariant: At most one of these Optionals has a value. // FIXME: Switch these to a Variant once that exists. llvm::Optional ImmediateDiag; llvm::Optional PartialDiagId; }; /// Indicate that this function (and thus everything it transtively calls) /// will be codegen'ed, and emit any deferred diagnostics on this function and /// its (transitive) callees. void markKnownEmitted( Sema &S, FunctionDecl *OrigCaller, FunctionDecl *OrigCallee, SourceLocation OrigLoc, const llvm::function_ref IsKnownEmitted); /// Creates a DeviceDiagBuilder that emits the diagnostic if the current context /// is "used as device code". /// /// - If CurContext is a __host__ function, does not emit any diagnostics. /// - If CurContext is a __device__ or __global__ function, emits the /// diagnostics immediately. /// - If CurContext is a __host__ __device__ function and we are compiling for /// the device, creates a diagnostic which is emitted if and when we realize /// that the function will be codegen'ed. /// /// Example usage: /// /// // Variable-length arrays are not allowed in CUDA device code. /// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget()) /// return ExprError(); /// // Otherwise, continue parsing as normal. DeviceDiagBuilder CUDADiagIfDeviceCode(SourceLocation Loc, unsigned DiagID); /// Creates a DeviceDiagBuilder that emits the diagnostic if the current context /// is "used as host code". /// /// Same as CUDADiagIfDeviceCode, with "host" and "device" switched. DeviceDiagBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID); /// Creates a DeviceDiagBuilder that emits the diagnostic if the current /// context is "used as device code". /// /// - If CurContext is a `declare target` function or it is known that the /// function is emitted for the device, emits the diagnostics immediately. /// - If CurContext is a non-`declare target` function and we are compiling /// for the device, creates a diagnostic which is emitted if and when we /// realize that the function will be codegen'ed. /// /// Example usage: /// /// // Variable-length arrays are not allowed in NVPTX device code. /// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported)) /// return ExprError(); /// // Otherwise, continue parsing as normal. DeviceDiagBuilder diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID); /// Creates a DeviceDiagBuilder that emits the diagnostic if the current /// context is "used as host code". /// /// - If CurContext is a `declare target` function or it is known that the /// function is emitted for the host, emits the diagnostics immediately. /// - If CurContext is a non-host function, just ignore it. /// /// Example usage: /// /// // Variable-length arrays are not allowed in NVPTX device code. /// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported)) /// return ExprError(); /// // Otherwise, continue parsing as normal. DeviceDiagBuilder diagIfOpenMPHostCode(SourceLocation Loc, unsigned DiagID); DeviceDiagBuilder targetDiag(SourceLocation Loc, unsigned DiagID); enum CUDAFunctionTarget { CFT_Device, CFT_Global, CFT_Host, CFT_HostDevice, CFT_InvalidTarget }; /// Determines whether the given function is a CUDA device/host/kernel/etc. /// function. /// /// Use this rather than examining the function's attributes yourself -- you /// will get it wrong. Returns CFT_Host if D is null. CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D, bool IgnoreImplicitHDAttr = false); CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs); /// Gets the CUDA target for the current context. CUDAFunctionTarget CurrentCUDATarget() { return IdentifyCUDATarget(dyn_cast(CurContext)); } // CUDA function call preference. Must be ordered numerically from // worst to best. enum CUDAFunctionPreference { CFP_Never, // Invalid caller/callee combination. CFP_WrongSide, // Calls from host-device to host or device // function that do not match current compilation // mode. CFP_HostDevice, // Any calls to host/device functions. CFP_SameSide, // Calls from host-device to host or device // function matching current compilation mode. CFP_Native, // host-to-host or device-to-device calls. }; /// Identifies relative preference of a given Caller/Callee /// combination, based on their host/device attributes. /// \param Caller function which needs address of \p Callee. /// nullptr in case of global context. /// \param Callee target function /// /// \returns preference value for particular Caller/Callee combination. CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller, const FunctionDecl *Callee); /// Determines whether Caller may invoke Callee, based on their CUDA /// host/device attributes. Returns false if the call is not allowed. /// /// Note: Will return true for CFP_WrongSide calls. These may appear in /// semantically correct CUDA programs, but only if they're never codegen'ed. bool IsAllowedCUDACall(const FunctionDecl *Caller, const FunctionDecl *Callee) { return IdentifyCUDAPreference(Caller, Callee) != CFP_Never; } /// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD, /// depending on FD and the current compilation settings. void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD, const LookupResult &Previous); public: /// Check whether we're allowed to call Callee from the current context. /// /// - If the call is never allowed in a semantically-correct program /// (CFP_Never), emits an error and returns false. /// /// - If the call is allowed in semantically-correct programs, but only if /// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to /// be emitted if and when the caller is codegen'ed, and returns true. /// /// Will only create deferred diagnostics for a given SourceLocation once, /// so you can safely call this multiple times without generating duplicate /// deferred errors. /// /// - Otherwise, returns true without emitting any diagnostics. bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee); /// Set __device__ or __host__ __device__ attributes on the given lambda /// operator() method. /// /// CUDA lambdas declared inside __device__ or __global__ functions inherit /// the __device__ attribute. Similarly, lambdas inside __host__ __device__ /// functions become __host__ __device__ themselves. void CUDASetLambdaAttrs(CXXMethodDecl *Method); /// Finds a function in \p Matches with highest calling priority /// from \p Caller context and erases all functions with lower /// calling priority. void EraseUnwantedCUDAMatches( const FunctionDecl *Caller, SmallVectorImpl> &Matches); /// Given a implicit special member, infer its CUDA target from the /// calls it needs to make to underlying base/field special members. /// \param ClassDecl the class for which the member is being created. /// \param CSM the kind of special member. /// \param MemberDecl the special member itself. /// \param ConstRHS true if this is a copy operation with a const object on /// its RHS. /// \param Diagnose true if this call should emit diagnostics. /// \return true if there was an error inferring. /// The result of this call is implicit CUDA target attribute(s) attached to /// the member declaration. bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl, CXXSpecialMember CSM, CXXMethodDecl *MemberDecl, bool ConstRHS, bool Diagnose); /// \return true if \p CD can be considered empty according to CUDA /// (E.2.3.1 in CUDA 7.5 Programming guide). bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD); bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD); // \brief Checks that initializers of \p Var satisfy CUDA restrictions. In // case of error emits appropriate diagnostic and invalidates \p Var. // // \details CUDA allows only empty constructors as initializers for global // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all // __shared__ variables whether they are local or not (they all are implicitly // static in CUDA). One exception is that CUDA allows constant initializers // for __constant__ and __device__ variables. void checkAllowedCUDAInitializer(VarDecl *VD); /// Check whether NewFD is a valid overload for CUDA. Emits /// diagnostics and invalidates NewFD if not. void checkCUDATargetOverload(FunctionDecl *NewFD, const LookupResult &Previous); /// Copies target attributes from the template TD to the function FD. void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD); /// Returns the name of the launch configuration function. This is the name /// of the function that will be called to configure kernel call, with the /// parameters specified via <<<>>>. std::string getCudaConfigureFuncName() const; /// \name Code completion //@{ /// Describes the context in which code completion occurs. enum ParserCompletionContext { /// Code completion occurs at top-level or namespace context. PCC_Namespace, /// Code completion occurs within a class, struct, or union. PCC_Class, /// Code completion occurs within an Objective-C interface, protocol, /// or category. PCC_ObjCInterface, /// Code completion occurs within an Objective-C implementation or /// category implementation PCC_ObjCImplementation, /// Code completion occurs within the list of instance variables /// in an Objective-C interface, protocol, category, or implementation. PCC_ObjCInstanceVariableList, /// Code completion occurs following one or more template /// headers. PCC_Template, /// Code completion occurs following one or more template /// headers within a class. PCC_MemberTemplate, /// Code completion occurs within an expression. PCC_Expression, /// Code completion occurs within a statement, which may /// also be an expression or a declaration. PCC_Statement, /// Code completion occurs at the beginning of the /// initialization statement (or expression) in a for loop. PCC_ForInit, /// Code completion occurs within the condition of an if, /// while, switch, or for statement. PCC_Condition, /// Code completion occurs within the body of a function on a /// recovery path, where we do not have a specific handle on our position /// in the grammar. PCC_RecoveryInFunction, /// Code completion occurs where only a type is permitted. PCC_Type, /// Code completion occurs in a parenthesized expression, which /// might also be a type cast. PCC_ParenthesizedExpression, /// Code completion occurs within a sequence of declaration /// specifiers within a function, method, or block. PCC_LocalDeclarationSpecifiers }; void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path); void CodeCompleteOrdinaryName(Scope *S, ParserCompletionContext CompletionContext); void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS, bool AllowNonIdentifiers, bool AllowNestedNameSpecifiers); struct CodeCompleteExpressionData; void CodeCompleteExpression(Scope *S, const CodeCompleteExpressionData &Data); void CodeCompleteExpression(Scope *S, QualType PreferredType, bool IsParenthesized = false); void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase, SourceLocation OpLoc, bool IsArrow, bool IsBaseExprStatement, QualType PreferredType); void CodeCompletePostfixExpression(Scope *S, ExprResult LHS, QualType PreferredType); void CodeCompleteTag(Scope *S, unsigned TagSpec); void CodeCompleteTypeQualifiers(DeclSpec &DS); void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D, const VirtSpecifiers *VS = nullptr); void CodeCompleteBracketDeclarator(Scope *S); void CodeCompleteCase(Scope *S); /// Reports signatures for a call to CodeCompleteConsumer and returns the /// preferred type for the current argument. Returned type can be null. QualType ProduceCallSignatureHelp(Scope *S, Expr *Fn, ArrayRef Args, SourceLocation OpenParLoc); QualType ProduceConstructorSignatureHelp(Scope *S, QualType Type, SourceLocation Loc, ArrayRef Args, SourceLocation OpenParLoc); QualType ProduceCtorInitMemberSignatureHelp(Scope *S, Decl *ConstructorDecl, CXXScopeSpec SS, ParsedType TemplateTypeTy, ArrayRef ArgExprs, IdentifierInfo *II, SourceLocation OpenParLoc); void CodeCompleteInitializer(Scope *S, Decl *D); void CodeCompleteAfterIf(Scope *S); void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext, QualType BaseType, QualType PreferredType); void CodeCompleteUsing(Scope *S); void CodeCompleteUsingDirective(Scope *S); void CodeCompleteNamespaceDecl(Scope *S); void CodeCompleteNamespaceAliasDecl(Scope *S); void CodeCompleteOperatorName(Scope *S); void CodeCompleteConstructorInitializer( Decl *Constructor, ArrayRef Initializers); void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro, bool AfterAmpersand); void CodeCompleteObjCAtDirective(Scope *S); void CodeCompleteObjCAtVisibility(Scope *S); void CodeCompleteObjCAtStatement(Scope *S); void CodeCompleteObjCAtExpression(Scope *S); void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS); void CodeCompleteObjCPropertyGetter(Scope *S); void CodeCompleteObjCPropertySetter(Scope *S); void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS, bool IsParameter); void CodeCompleteObjCMessageReceiver(Scope *S); void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc, ArrayRef SelIdents, bool AtArgumentExpression); void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver, ArrayRef SelIdents, bool AtArgumentExpression, bool IsSuper = false); void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver, ArrayRef SelIdents, bool AtArgumentExpression, ObjCInterfaceDecl *Super = nullptr); void CodeCompleteObjCForCollection(Scope *S, DeclGroupPtrTy IterationVar); void CodeCompleteObjCSelector(Scope *S, ArrayRef SelIdents); void CodeCompleteObjCProtocolReferences( ArrayRef Protocols); void CodeCompleteObjCProtocolDecl(Scope *S); void CodeCompleteObjCInterfaceDecl(Scope *S); void CodeCompleteObjCSuperclass(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc); void CodeCompleteObjCImplementationDecl(Scope *S); void CodeCompleteObjCInterfaceCategory(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc); void CodeCompleteObjCImplementationCategory(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc); void CodeCompleteObjCPropertyDefinition(Scope *S); void CodeCompleteObjCPropertySynthesizeIvar(Scope *S, IdentifierInfo *PropertyName); void CodeCompleteObjCMethodDecl(Scope *S, Optional IsInstanceMethod, ParsedType ReturnType); void CodeCompleteObjCMethodDeclSelector(Scope *S, bool IsInstanceMethod, bool AtParameterName, ParsedType ReturnType, ArrayRef SelIdents); void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName, SourceLocation ClassNameLoc, bool IsBaseExprStatement); void CodeCompletePreprocessorDirective(bool InConditional); void CodeCompleteInPreprocessorConditionalExclusion(Scope *S); void CodeCompletePreprocessorMacroName(bool IsDefinition); void CodeCompletePreprocessorExpression(); void CodeCompletePreprocessorMacroArgument(Scope *S, IdentifierInfo *Macro, MacroInfo *MacroInfo, unsigned Argument); void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled); void CodeCompleteNaturalLanguage(); void CodeCompleteAvailabilityPlatformName(); void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator, CodeCompletionTUInfo &CCTUInfo, SmallVectorImpl &Results); //@} //===--------------------------------------------------------------------===// // Extra semantic analysis beyond the C type system public: SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL, unsigned ByteNo) const; private: void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, const ArraySubscriptExpr *ASE=nullptr, bool AllowOnePastEnd=true, bool IndexNegated=false); void CheckArrayAccess(const Expr *E); // Used to grab the relevant information from a FormatAttr and a // FunctionDeclaration. struct FormatStringInfo { unsigned FormatIdx; unsigned FirstDataArg; bool HasVAListArg; }; static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, FormatStringInfo *FSI); bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, const FunctionProtoType *Proto); bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc, ArrayRef Args); bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, const FunctionProtoType *Proto); bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto); void CheckConstructorCall(FunctionDecl *FDecl, ArrayRef Args, const FunctionProtoType *Proto, SourceLocation Loc); void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, const Expr *ThisArg, ArrayRef Args, bool IsMemberFunction, SourceLocation Loc, SourceRange Range, VariadicCallType CallType); bool CheckObjCString(Expr *Arg); ExprResult CheckOSLogFormatStringArg(Expr *Arg); ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, CallExpr *TheCall); void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall); bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, unsigned MaxWidth); bool CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckAArch64BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckHexagonBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall); bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall); bool CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall); bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall); bool CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall); bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call); bool SemaBuiltinUnorderedCompare(CallExpr *TheCall); bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs); bool SemaBuiltinVSX(CallExpr *TheCall); bool SemaBuiltinOSLogFormat(CallExpr *TheCall); public: // Used by C++ template instantiation. ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall); ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, SourceLocation BuiltinLoc, SourceLocation RParenLoc); private: bool SemaBuiltinPrefetch(CallExpr *TheCall); bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall); bool SemaBuiltinAssume(CallExpr *TheCall); bool SemaBuiltinAssumeAligned(CallExpr *TheCall); bool SemaBuiltinLongjmp(CallExpr *TheCall); bool SemaBuiltinSetjmp(CallExpr *TheCall); ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult); ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult); ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op); ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, bool IsDelete); bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, llvm::APSInt &Result); bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low, int High, bool RangeIsError = true); bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, unsigned Multiple); bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, int ArgNum, unsigned ExpectedFieldNum, bool AllowName); bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall); public: enum FormatStringType { FST_Scanf, FST_Printf, FST_NSString, FST_Strftime, FST_Strfmon, FST_Kprintf, FST_FreeBSDKPrintf, FST_OSTrace, FST_OSLog, FST_Unknown }; static FormatStringType GetFormatStringType(const FormatAttr *Format); bool FormatStringHasSArg(const StringLiteral *FExpr); static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx); private: bool CheckFormatArguments(const FormatAttr *Format, ArrayRef Args, bool IsCXXMember, VariadicCallType CallType, SourceLocation Loc, SourceRange Range, llvm::SmallBitVector &CheckedVarArgs); bool CheckFormatArguments(ArrayRef Args, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg, FormatStringType Type, VariadicCallType CallType, SourceLocation Loc, SourceRange range, llvm::SmallBitVector &CheckedVarArgs); void CheckAbsoluteValueFunction(const CallExpr *Call, const FunctionDecl *FDecl); void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl); void CheckMemaccessArguments(const CallExpr *Call, unsigned BId, IdentifierInfo *FnName); void CheckStrlcpycatArguments(const CallExpr *Call, IdentifierInfo *FnName); void CheckStrncatArguments(const CallExpr *Call, IdentifierInfo *FnName); void CheckReturnValExpr(Expr *RetValExp, QualType lhsType, SourceLocation ReturnLoc, bool isObjCMethod = false, const AttrVec *Attrs = nullptr, const FunctionDecl *FD = nullptr); public: void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS); private: void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation()); void CheckBoolLikeConversion(Expr *E, SourceLocation CC); void CheckForIntOverflow(Expr *E); void CheckUnsequencedOperations(Expr *E); /// Perform semantic checks on a completed expression. This will either /// be a full-expression or a default argument expression. void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(), bool IsConstexpr = false); void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field, Expr *Init); /// Check if there is a field shadowing. void CheckShadowInheritedFields(const SourceLocation &Loc, DeclarationName FieldName, const CXXRecordDecl *RD, bool DeclIsField = true); /// Check if the given expression contains 'break' or 'continue' /// statement that produces control flow different from GCC. void CheckBreakContinueBinding(Expr *E); /// Check whether receiver is mutable ObjC container which /// attempts to add itself into the container void CheckObjCCircularContainer(ObjCMessageExpr *Message); void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE); void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, bool DeleteWasArrayForm); public: /// Register a magic integral constant to be used as a type tag. void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, uint64_t MagicValue, QualType Type, bool LayoutCompatible, bool MustBeNull); struct TypeTagData { TypeTagData() {} TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) : Type(Type), LayoutCompatible(LayoutCompatible), MustBeNull(MustBeNull) {} QualType Type; /// If true, \c Type should be compared with other expression's types for /// layout-compatibility. unsigned LayoutCompatible : 1; unsigned MustBeNull : 1; }; /// A pair of ArgumentKind identifier and magic value. This uniquely /// identifies the magic value. typedef std::pair TypeTagMagicValue; private: /// A map from magic value to type information. std::unique_ptr> TypeTagForDatatypeMagicValues; /// Peform checks on a call of a function with argument_with_type_tag /// or pointer_with_type_tag attributes. void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, const ArrayRef ExprArgs, SourceLocation CallSiteLoc); /// Check if we are taking the address of a packed field /// as this may be a problem if the pointer value is dereferenced. void CheckAddressOfPackedMember(Expr *rhs); /// The parser's current scope. /// /// The parser maintains this state here. Scope *CurScope; mutable IdentifierInfo *Ident_super; mutable IdentifierInfo *Ident___float128; /// Nullability type specifiers. IdentifierInfo *Ident__Nonnull = nullptr; IdentifierInfo *Ident__Nullable = nullptr; IdentifierInfo *Ident__Null_unspecified = nullptr; IdentifierInfo *Ident_NSError = nullptr; /// The handler for the FileChanged preprocessor events. /// /// Used for diagnostics that implement custom semantic analysis for #include /// directives, like -Wpragma-pack. sema::SemaPPCallbacks *SemaPPCallbackHandler; protected: friend class Parser; friend class InitializationSequence; friend class ASTReader; friend class ASTDeclReader; friend class ASTWriter; public: /// Retrieve the keyword associated IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability); /// The struct behind the CFErrorRef pointer. RecordDecl *CFError = nullptr; /// Retrieve the identifier "NSError". IdentifierInfo *getNSErrorIdent(); /// Retrieve the parser's current scope. /// /// This routine must only be used when it is certain that semantic analysis /// and the parser are in precisely the same context, which is not the case /// when, e.g., we are performing any kind of template instantiation. /// Therefore, the only safe places to use this scope are in the parser /// itself and in routines directly invoked from the parser and *never* from /// template substitution or instantiation. Scope *getCurScope() const { return CurScope; } void incrementMSManglingNumber() const { return CurScope->incrementMSManglingNumber(); } IdentifierInfo *getSuperIdentifier() const; IdentifierInfo *getFloat128Identifier() const; Decl *getObjCDeclContext() const; DeclContext *getCurLexicalContext() const { return OriginalLexicalContext ? OriginalLexicalContext : CurContext; } const DeclContext *getCurObjCLexicalContext() const { const DeclContext *DC = getCurLexicalContext(); // A category implicitly has the attribute of the interface. if (const ObjCCategoryDecl *CatD = dyn_cast(DC)) DC = CatD->getClassInterface(); return DC; } /// To be used for checking whether the arguments being passed to /// function exceeds the number of parameters expected for it. static bool TooManyArguments(size_t NumParams, size_t NumArgs, bool PartialOverloading = false) { // We check whether we're just after a comma in code-completion. if (NumArgs > 0 && PartialOverloading) return NumArgs + 1 > NumParams; // If so, we view as an extra argument. return NumArgs > NumParams; } // Emitting members of dllexported classes is delayed until the class // (including field initializers) is fully parsed. SmallVector DelayedDllExportClasses; SmallVector DelayedDllExportMemberFunctions; private: class SavePendingParsedClassStateRAII { public: SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); } ~SavePendingParsedClassStateRAII() { assert(S.DelayedOverridingExceptionSpecChecks.empty() && "there shouldn't be any pending delayed exception spec checks"); assert(S.DelayedEquivalentExceptionSpecChecks.empty() && "there shouldn't be any pending delayed exception spec checks"); assert(S.DelayedDllExportClasses.empty() && "there shouldn't be any pending delayed DLL export classes"); swapSavedState(); } private: Sema &S; decltype(DelayedOverridingExceptionSpecChecks) SavedOverridingExceptionSpecChecks; decltype(DelayedEquivalentExceptionSpecChecks) SavedEquivalentExceptionSpecChecks; decltype(DelayedDllExportClasses) SavedDllExportClasses; void swapSavedState() { SavedOverridingExceptionSpecChecks.swap( S.DelayedOverridingExceptionSpecChecks); SavedEquivalentExceptionSpecChecks.swap( S.DelayedEquivalentExceptionSpecChecks); SavedDllExportClasses.swap(S.DelayedDllExportClasses); } }; /// Helper class that collects misaligned member designations and /// their location info for delayed diagnostics. struct MisalignedMember { Expr *E; RecordDecl *RD; ValueDecl *MD; CharUnits Alignment; MisalignedMember() : E(), RD(), MD(), Alignment() {} MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD, CharUnits Alignment) : E(E), RD(RD), MD(MD), Alignment(Alignment) {} explicit MisalignedMember(Expr *E) : MisalignedMember(E, nullptr, nullptr, CharUnits()) {} bool operator==(const MisalignedMember &m) { return this->E == m.E; } }; /// Small set of gathered accesses to potentially misaligned members /// due to the packed attribute. SmallVector MisalignedMembers; /// Adds an expression to the set of gathered misaligned members. void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, CharUnits Alignment); public: /// Diagnoses the current set of gathered accesses. This typically /// happens at full expression level. The set is cleared after emitting the /// diagnostics. void DiagnoseMisalignedMembers(); /// This function checks if the expression is in the sef of potentially /// misaligned members and it is converted to some pointer type T with lower /// or equal alignment requirements. If so it removes it. This is used when /// we do not want to diagnose such misaligned access (e.g. in conversions to /// void*). void DiscardMisalignedMemberAddress(const Type *T, Expr *E); /// This function calls Action when it determines that E designates a /// misaligned member due to the packed attribute. This is used to emit /// local diagnostics like in reference binding. void RefersToMemberWithReducedAlignment( Expr *E, llvm::function_ref Action); /// Describes the reason a calling convention specification was ignored, used /// for diagnostics. enum class CallingConventionIgnoredReason { ForThisTarget = 0, VariadicFunction, ConstructorDestructor, BuiltinFunction }; }; /// RAII object that enters a new expression evaluation context. class EnterExpressionEvaluationContext { Sema &Actions; bool Entered = true; public: EnterExpressionEvaluationContext( Sema &Actions, Sema::ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr, Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext = Sema::ExpressionEvaluationContextRecord::EK_Other, bool ShouldEnter = true) : Actions(Actions), Entered(ShouldEnter) { if (Entered) Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl, ExprContext); } EnterExpressionEvaluationContext( Sema &Actions, Sema::ExpressionEvaluationContext NewContext, Sema::ReuseLambdaContextDecl_t, Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext = Sema::ExpressionEvaluationContextRecord::EK_Other) : Actions(Actions) { Actions.PushExpressionEvaluationContext( NewContext, Sema::ReuseLambdaContextDecl, ExprContext); } enum InitListTag { InitList }; EnterExpressionEvaluationContext(Sema &Actions, InitListTag, bool ShouldEnter = true) : Actions(Actions), Entered(false) { // In C++11 onwards, narrowing checks are performed on the contents of // braced-init-lists, even when they occur within unevaluated operands. // Therefore we still need to instantiate constexpr functions used in such // a context. if (ShouldEnter && Actions.isUnevaluatedContext() && Actions.getLangOpts().CPlusPlus11) { Actions.PushExpressionEvaluationContext( Sema::ExpressionEvaluationContext::UnevaluatedList); Entered = true; } } ~EnterExpressionEvaluationContext() { if (Entered) Actions.PopExpressionEvaluationContext(); } }; DeductionFailureInfo MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK, sema::TemplateDeductionInfo &Info); /// Contains a late templated function. /// Will be parsed at the end of the translation unit, used by Sema & Parser. struct LateParsedTemplate { CachedTokens Toks; /// The template function declaration to be late parsed. Decl *D; }; } // end namespace clang namespace llvm { // Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its // SourceLocation. template <> struct DenseMapInfo { using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc; using FDBaseInfo = DenseMapInfo>; static FunctionDeclAndLoc getEmptyKey() { return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()}; } static FunctionDeclAndLoc getTombstoneKey() { return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()}; } static unsigned getHashValue(const FunctionDeclAndLoc &FDL) { return hash_combine(FDBaseInfo::getHashValue(FDL.FD), FDL.Loc.getRawEncoding()); } static bool isEqual(const FunctionDeclAndLoc &LHS, const FunctionDeclAndLoc &RHS) { return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc; } }; } // namespace llvm #endif