//===--- TargetInfo.h - Expose information about the target -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// Defines the clang::TargetInfo interface. /// //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_BASIC_TARGETINFO_H #define LLVM_CLANG_BASIC_TARGETINFO_H #include "clang/Basic/AddressSpaces.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TargetCXXABI.h" #include "clang/Basic/TargetOptions.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/IntrusiveRefCntPtr.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/IR/DataLayout.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/VersionTuple.h" #include #include #include namespace llvm { struct fltSemantics; } namespace clang { class DiagnosticsEngine; class LangOptions; class CodeGenOptions; class MacroBuilder; class QualType; class SourceLocation; class SourceManager; namespace Builtin { struct Info; } /// Fields controlling how types are laid out in memory; these may need to /// be copied for targets like AMDGPU that base their ABIs on an auxiliary /// CPU target. struct TransferrableTargetInfo { unsigned char PointerWidth, PointerAlign; unsigned char BoolWidth, BoolAlign; unsigned char IntWidth, IntAlign; unsigned char HalfWidth, HalfAlign; unsigned char FloatWidth, FloatAlign; unsigned char DoubleWidth, DoubleAlign; unsigned char LongDoubleWidth, LongDoubleAlign, Float128Align; unsigned char LargeArrayMinWidth, LargeArrayAlign; unsigned char LongWidth, LongAlign; unsigned char LongLongWidth, LongLongAlign; // Fixed point bit widths unsigned char ShortAccumWidth, ShortAccumAlign; unsigned char AccumWidth, AccumAlign; unsigned char LongAccumWidth, LongAccumAlign; unsigned char ShortFractWidth, ShortFractAlign; unsigned char FractWidth, FractAlign; unsigned char LongFractWidth, LongFractAlign; // If true, unsigned fixed point types have the same number of fractional bits // as their signed counterparts, forcing the unsigned types to have one extra // bit of padding. Otherwise, unsigned fixed point types have // one more fractional bit than its corresponding signed type. This is false // by default. bool PaddingOnUnsignedFixedPoint; // Fixed point integral and fractional bit sizes // Saturated types share the same integral/fractional bits as their // corresponding unsaturated types. // For simplicity, the fractional bits in a _Fract type will be one less the // width of that _Fract type. This leaves all signed _Fract types having no // padding and unsigned _Fract types will only have 1 bit of padding after the // sign if PaddingOnUnsignedFixedPoint is set. unsigned char ShortAccumScale; unsigned char AccumScale; unsigned char LongAccumScale; unsigned char SuitableAlign; unsigned char DefaultAlignForAttributeAligned; unsigned char MinGlobalAlign; unsigned short NewAlign; unsigned short MaxVectorAlign; unsigned short MaxTLSAlign; const llvm::fltSemantics *HalfFormat, *FloatFormat, *DoubleFormat, *LongDoubleFormat, *Float128Format; ///===---- Target Data Type Query Methods -------------------------------===// enum IntType { NoInt = 0, SignedChar, UnsignedChar, SignedShort, UnsignedShort, SignedInt, UnsignedInt, SignedLong, UnsignedLong, SignedLongLong, UnsignedLongLong }; enum RealType { NoFloat = 255, Float = 0, Double, LongDouble, Float128 }; protected: IntType SizeType, IntMaxType, PtrDiffType, IntPtrType, WCharType, WIntType, Char16Type, Char32Type, Int64Type, SigAtomicType, ProcessIDType; /// Whether Objective-C's built-in boolean type should be signed char. /// /// Otherwise, when this flag is not set, the normal built-in boolean type is /// used. unsigned UseSignedCharForObjCBool : 1; /// Control whether the alignment of bit-field types is respected when laying /// out structures. If true, then the alignment of the bit-field type will be /// used to (a) impact the alignment of the containing structure, and (b) /// ensure that the individual bit-field will not straddle an alignment /// boundary. unsigned UseBitFieldTypeAlignment : 1; /// Whether zero length bitfields (e.g., int : 0;) force alignment of /// the next bitfield. /// /// If the alignment of the zero length bitfield is greater than the member /// that follows it, `bar', `bar' will be aligned as the type of the /// zero-length bitfield. unsigned UseZeroLengthBitfieldAlignment : 1; /// Whether explicit bit field alignment attributes are honored. unsigned UseExplicitBitFieldAlignment : 1; /// If non-zero, specifies a fixed alignment value for bitfields that follow /// zero length bitfield, regardless of the zero length bitfield type. unsigned ZeroLengthBitfieldBoundary; }; /// Exposes information about the current target. /// class TargetInfo : public virtual TransferrableTargetInfo, public RefCountedBase { std::shared_ptr TargetOpts; llvm::Triple Triple; protected: // Target values set by the ctor of the actual target implementation. Default // values are specified by the TargetInfo constructor. bool BigEndian; bool TLSSupported; bool VLASupported; bool NoAsmVariants; // True if {|} are normal characters. bool HasLegalHalfType; // True if the backend supports operations on the half // LLVM IR type. bool HasFloat128; bool HasFloat16; unsigned char MaxAtomicPromoteWidth, MaxAtomicInlineWidth; unsigned short SimdDefaultAlign; std::unique_ptr DataLayout; const char *MCountName; unsigned char RegParmMax, SSERegParmMax; TargetCXXABI TheCXXABI; const LangASMap *AddrSpaceMap; mutable StringRef PlatformName; mutable VersionTuple PlatformMinVersion; unsigned HasAlignMac68kSupport : 1; unsigned RealTypeUsesObjCFPRet : 3; unsigned ComplexLongDoubleUsesFP2Ret : 1; unsigned HasBuiltinMSVaList : 1; unsigned IsRenderScriptTarget : 1; unsigned HasAArch64SVETypes : 1; // TargetInfo Constructor. Default initializes all fields. TargetInfo(const llvm::Triple &T); void resetDataLayout(StringRef DL) { DataLayout.reset(new llvm::DataLayout(DL)); } public: /// Construct a target for the given options. /// /// \param Opts - The options to use to initialize the target. The target may /// modify the options to canonicalize the target feature information to match /// what the backend expects. static TargetInfo * CreateTargetInfo(DiagnosticsEngine &Diags, const std::shared_ptr &Opts); virtual ~TargetInfo(); /// Retrieve the target options. TargetOptions &getTargetOpts() const { assert(TargetOpts && "Missing target options"); return *TargetOpts; } /// The different kinds of __builtin_va_list types defined by /// the target implementation. enum BuiltinVaListKind { /// typedef char* __builtin_va_list; CharPtrBuiltinVaList = 0, /// typedef void* __builtin_va_list; VoidPtrBuiltinVaList, /// __builtin_va_list as defined by the AArch64 ABI /// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055a/IHI0055A_aapcs64.pdf AArch64ABIBuiltinVaList, /// __builtin_va_list as defined by the PNaCl ABI: /// http://www.chromium.org/nativeclient/pnacl/bitcode-abi#TOC-Machine-Types PNaClABIBuiltinVaList, /// __builtin_va_list as defined by the Power ABI: /// https://www.power.org /// /resources/downloads/Power-Arch-32-bit-ABI-supp-1.0-Embedded.pdf PowerABIBuiltinVaList, /// __builtin_va_list as defined by the x86-64 ABI: /// http://refspecs.linuxbase.org/elf/x86_64-abi-0.21.pdf X86_64ABIBuiltinVaList, /// __builtin_va_list as defined by ARM AAPCS ABI /// http://infocenter.arm.com // /help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf AAPCSABIBuiltinVaList, // typedef struct __va_list_tag // { // long __gpr; // long __fpr; // void *__overflow_arg_area; // void *__reg_save_area; // } va_list[1]; SystemZBuiltinVaList }; protected: /// Specify if mangling based on address space map should be used or /// not for language specific address spaces bool UseAddrSpaceMapMangling; public: IntType getSizeType() const { return SizeType; } IntType getSignedSizeType() const { switch (SizeType) { case UnsignedShort: return SignedShort; case UnsignedInt: return SignedInt; case UnsignedLong: return SignedLong; case UnsignedLongLong: return SignedLongLong; default: llvm_unreachable("Invalid SizeType"); } } IntType getIntMaxType() const { return IntMaxType; } IntType getUIntMaxType() const { return getCorrespondingUnsignedType(IntMaxType); } IntType getPtrDiffType(unsigned AddrSpace) const { return AddrSpace == 0 ? PtrDiffType : getPtrDiffTypeV(AddrSpace); } IntType getUnsignedPtrDiffType(unsigned AddrSpace) const { return getCorrespondingUnsignedType(getPtrDiffType(AddrSpace)); } IntType getIntPtrType() const { return IntPtrType; } IntType getUIntPtrType() const { return getCorrespondingUnsignedType(IntPtrType); } IntType getWCharType() const { return WCharType; } IntType getWIntType() const { return WIntType; } IntType getChar16Type() const { return Char16Type; } IntType getChar32Type() const { return Char32Type; } IntType getInt64Type() const { return Int64Type; } IntType getUInt64Type() const { return getCorrespondingUnsignedType(Int64Type); } IntType getSigAtomicType() const { return SigAtomicType; } IntType getProcessIDType() const { return ProcessIDType; } static IntType getCorrespondingUnsignedType(IntType T) { switch (T) { case SignedChar: return UnsignedChar; case SignedShort: return UnsignedShort; case SignedInt: return UnsignedInt; case SignedLong: return UnsignedLong; case SignedLongLong: return UnsignedLongLong; default: llvm_unreachable("Unexpected signed integer type"); } } /// In the event this target uses the same number of fractional bits for its /// unsigned types as it does with its signed counterparts, there will be /// exactly one bit of padding. /// Return true if unsigned fixed point types have padding for this target. bool doUnsignedFixedPointTypesHavePadding() const { return PaddingOnUnsignedFixedPoint; } /// Return the width (in bits) of the specified integer type enum. /// /// For example, SignedInt -> getIntWidth(). unsigned getTypeWidth(IntType T) const; /// Return integer type with specified width. virtual IntType getIntTypeByWidth(unsigned BitWidth, bool IsSigned) const; /// Return the smallest integer type with at least the specified width. virtual IntType getLeastIntTypeByWidth(unsigned BitWidth, bool IsSigned) const; /// Return floating point type with specified width. RealType getRealTypeByWidth(unsigned BitWidth) const; /// Return the alignment (in bits) of the specified integer type enum. /// /// For example, SignedInt -> getIntAlign(). unsigned getTypeAlign(IntType T) const; /// Returns true if the type is signed; false otherwise. static bool isTypeSigned(IntType T); /// Return the width of pointers on this target, for the /// specified address space. uint64_t getPointerWidth(unsigned AddrSpace) const { return AddrSpace == 0 ? PointerWidth : getPointerWidthV(AddrSpace); } uint64_t getPointerAlign(unsigned AddrSpace) const { return AddrSpace == 0 ? PointerAlign : getPointerAlignV(AddrSpace); } /// Return the maximum width of pointers on this target. virtual uint64_t getMaxPointerWidth() const { return PointerWidth; } /// Get integer value for null pointer. /// \param AddrSpace address space of pointee in source language. virtual uint64_t getNullPointerValue(LangAS AddrSpace) const { return 0; } /// Return the size of '_Bool' and C++ 'bool' for this target, in bits. unsigned getBoolWidth() const { return BoolWidth; } /// Return the alignment of '_Bool' and C++ 'bool' for this target. unsigned getBoolAlign() const { return BoolAlign; } unsigned getCharWidth() const { return 8; } // FIXME unsigned getCharAlign() const { return 8; } // FIXME /// Return the size of 'signed short' and 'unsigned short' for this /// target, in bits. unsigned getShortWidth() const { return 16; } // FIXME /// Return the alignment of 'signed short' and 'unsigned short' for /// this target. unsigned getShortAlign() const { return 16; } // FIXME /// getIntWidth/Align - Return the size of 'signed int' and 'unsigned int' for /// this target, in bits. unsigned getIntWidth() const { return IntWidth; } unsigned getIntAlign() const { return IntAlign; } /// getLongWidth/Align - Return the size of 'signed long' and 'unsigned long' /// for this target, in bits. unsigned getLongWidth() const { return LongWidth; } unsigned getLongAlign() const { return LongAlign; } /// getLongLongWidth/Align - Return the size of 'signed long long' and /// 'unsigned long long' for this target, in bits. unsigned getLongLongWidth() const { return LongLongWidth; } unsigned getLongLongAlign() const { return LongLongAlign; } /// getShortAccumWidth/Align - Return the size of 'signed short _Accum' and /// 'unsigned short _Accum' for this target, in bits. unsigned getShortAccumWidth() const { return ShortAccumWidth; } unsigned getShortAccumAlign() const { return ShortAccumAlign; } /// getAccumWidth/Align - Return the size of 'signed _Accum' and /// 'unsigned _Accum' for this target, in bits. unsigned getAccumWidth() const { return AccumWidth; } unsigned getAccumAlign() const { return AccumAlign; } /// getLongAccumWidth/Align - Return the size of 'signed long _Accum' and /// 'unsigned long _Accum' for this target, in bits. unsigned getLongAccumWidth() const { return LongAccumWidth; } unsigned getLongAccumAlign() const { return LongAccumAlign; } /// getShortFractWidth/Align - Return the size of 'signed short _Fract' and /// 'unsigned short _Fract' for this target, in bits. unsigned getShortFractWidth() const { return ShortFractWidth; } unsigned getShortFractAlign() const { return ShortFractAlign; } /// getFractWidth/Align - Return the size of 'signed _Fract' and /// 'unsigned _Fract' for this target, in bits. unsigned getFractWidth() const { return FractWidth; } unsigned getFractAlign() const { return FractAlign; } /// getLongFractWidth/Align - Return the size of 'signed long _Fract' and /// 'unsigned long _Fract' for this target, in bits. unsigned getLongFractWidth() const { return LongFractWidth; } unsigned getLongFractAlign() const { return LongFractAlign; } /// getShortAccumScale/IBits - Return the number of fractional/integral bits /// in a 'signed short _Accum' type. unsigned getShortAccumScale() const { return ShortAccumScale; } unsigned getShortAccumIBits() const { return ShortAccumWidth - ShortAccumScale - 1; } /// getAccumScale/IBits - Return the number of fractional/integral bits /// in a 'signed _Accum' type. unsigned getAccumScale() const { return AccumScale; } unsigned getAccumIBits() const { return AccumWidth - AccumScale - 1; } /// getLongAccumScale/IBits - Return the number of fractional/integral bits /// in a 'signed long _Accum' type. unsigned getLongAccumScale() const { return LongAccumScale; } unsigned getLongAccumIBits() const { return LongAccumWidth - LongAccumScale - 1; } /// getUnsignedShortAccumScale/IBits - Return the number of /// fractional/integral bits in a 'unsigned short _Accum' type. unsigned getUnsignedShortAccumScale() const { return PaddingOnUnsignedFixedPoint ? ShortAccumScale : ShortAccumScale + 1; } unsigned getUnsignedShortAccumIBits() const { return PaddingOnUnsignedFixedPoint ? getShortAccumIBits() : ShortAccumWidth - getUnsignedShortAccumScale(); } /// getUnsignedAccumScale/IBits - Return the number of fractional/integral /// bits in a 'unsigned _Accum' type. unsigned getUnsignedAccumScale() const { return PaddingOnUnsignedFixedPoint ? AccumScale : AccumScale + 1; } unsigned getUnsignedAccumIBits() const { return PaddingOnUnsignedFixedPoint ? getAccumIBits() : AccumWidth - getUnsignedAccumScale(); } /// getUnsignedLongAccumScale/IBits - Return the number of fractional/integral /// bits in a 'unsigned long _Accum' type. unsigned getUnsignedLongAccumScale() const { return PaddingOnUnsignedFixedPoint ? LongAccumScale : LongAccumScale + 1; } unsigned getUnsignedLongAccumIBits() const { return PaddingOnUnsignedFixedPoint ? getLongAccumIBits() : LongAccumWidth - getUnsignedLongAccumScale(); } /// getShortFractScale - Return the number of fractional bits /// in a 'signed short _Fract' type. unsigned getShortFractScale() const { return ShortFractWidth - 1; } /// getFractScale - Return the number of fractional bits /// in a 'signed _Fract' type. unsigned getFractScale() const { return FractWidth - 1; } /// getLongFractScale - Return the number of fractional bits /// in a 'signed long _Fract' type. unsigned getLongFractScale() const { return LongFractWidth - 1; } /// getUnsignedShortFractScale - Return the number of fractional bits /// in a 'unsigned short _Fract' type. unsigned getUnsignedShortFractScale() const { return PaddingOnUnsignedFixedPoint ? getShortFractScale() : getShortFractScale() + 1; } /// getUnsignedFractScale - Return the number of fractional bits /// in a 'unsigned _Fract' type. unsigned getUnsignedFractScale() const { return PaddingOnUnsignedFixedPoint ? getFractScale() : getFractScale() + 1; } /// getUnsignedLongFractScale - Return the number of fractional bits /// in a 'unsigned long _Fract' type. unsigned getUnsignedLongFractScale() const { return PaddingOnUnsignedFixedPoint ? getLongFractScale() : getLongFractScale() + 1; } /// Determine whether the __int128 type is supported on this target. virtual bool hasInt128Type() const { return (getPointerWidth(0) >= 64) || getTargetOpts().ForceEnableInt128; } // FIXME /// Determine whether _Float16 is supported on this target. virtual bool hasLegalHalfType() const { return HasLegalHalfType; } /// Determine whether the __float128 type is supported on this target. virtual bool hasFloat128Type() const { return HasFloat128; } /// Determine whether the _Float16 type is supported on this target. virtual bool hasFloat16Type() const { return HasFloat16; } /// Return the alignment that is suitable for storing any /// object with a fundamental alignment requirement. unsigned getSuitableAlign() const { return SuitableAlign; } /// Return the default alignment for __attribute__((aligned)) on /// this target, to be used if no alignment value is specified. unsigned getDefaultAlignForAttributeAligned() const { return DefaultAlignForAttributeAligned; } /// getMinGlobalAlign - Return the minimum alignment of a global variable, /// unless its alignment is explicitly reduced via attributes. virtual unsigned getMinGlobalAlign (uint64_t) const { return MinGlobalAlign; } /// Return the largest alignment for which a suitably-sized allocation with /// '::operator new(size_t)' is guaranteed to produce a correctly-aligned /// pointer. unsigned getNewAlign() const { return NewAlign ? NewAlign : std::max(LongDoubleAlign, LongLongAlign); } /// getWCharWidth/Align - Return the size of 'wchar_t' for this target, in /// bits. unsigned getWCharWidth() const { return getTypeWidth(WCharType); } unsigned getWCharAlign() const { return getTypeAlign(WCharType); } /// getChar16Width/Align - Return the size of 'char16_t' for this target, in /// bits. unsigned getChar16Width() const { return getTypeWidth(Char16Type); } unsigned getChar16Align() const { return getTypeAlign(Char16Type); } /// getChar32Width/Align - Return the size of 'char32_t' for this target, in /// bits. unsigned getChar32Width() const { return getTypeWidth(Char32Type); } unsigned getChar32Align() const { return getTypeAlign(Char32Type); } /// getHalfWidth/Align/Format - Return the size/align/format of 'half'. unsigned getHalfWidth() const { return HalfWidth; } unsigned getHalfAlign() const { return HalfAlign; } const llvm::fltSemantics &getHalfFormat() const { return *HalfFormat; } /// getFloatWidth/Align/Format - Return the size/align/format of 'float'. unsigned getFloatWidth() const { return FloatWidth; } unsigned getFloatAlign() const { return FloatAlign; } const llvm::fltSemantics &getFloatFormat() const { return *FloatFormat; } /// getDoubleWidth/Align/Format - Return the size/align/format of 'double'. unsigned getDoubleWidth() const { return DoubleWidth; } unsigned getDoubleAlign() const { return DoubleAlign; } const llvm::fltSemantics &getDoubleFormat() const { return *DoubleFormat; } /// getLongDoubleWidth/Align/Format - Return the size/align/format of 'long /// double'. unsigned getLongDoubleWidth() const { return LongDoubleWidth; } unsigned getLongDoubleAlign() const { return LongDoubleAlign; } const llvm::fltSemantics &getLongDoubleFormat() const { return *LongDoubleFormat; } /// getFloat128Width/Align/Format - Return the size/align/format of /// '__float128'. unsigned getFloat128Width() const { return 128; } unsigned getFloat128Align() const { return Float128Align; } const llvm::fltSemantics &getFloat128Format() const { return *Float128Format; } /// Return the mangled code of long double. virtual const char *getLongDoubleMangling() const { return "e"; } /// Return the mangled code of __float128. virtual const char *getFloat128Mangling() const { return "g"; } /// Return the value for the C99 FLT_EVAL_METHOD macro. virtual unsigned getFloatEvalMethod() const { return 0; } // getLargeArrayMinWidth/Align - Return the minimum array size that is // 'large' and its alignment. unsigned getLargeArrayMinWidth() const { return LargeArrayMinWidth; } unsigned getLargeArrayAlign() const { return LargeArrayAlign; } /// Return the maximum width lock-free atomic operation which will /// ever be supported for the given target unsigned getMaxAtomicPromoteWidth() const { return MaxAtomicPromoteWidth; } /// Return the maximum width lock-free atomic operation which can be /// inlined given the supported features of the given target. unsigned getMaxAtomicInlineWidth() const { return MaxAtomicInlineWidth; } /// Set the maximum inline or promote width lock-free atomic operation /// for the given target. virtual void setMaxAtomicWidth() {} /// Returns true if the given target supports lock-free atomic /// operations at the specified width and alignment. virtual bool hasBuiltinAtomic(uint64_t AtomicSizeInBits, uint64_t AlignmentInBits) const { return AtomicSizeInBits <= AlignmentInBits && AtomicSizeInBits <= getMaxAtomicInlineWidth() && (AtomicSizeInBits <= getCharWidth() || llvm::isPowerOf2_64(AtomicSizeInBits / getCharWidth())); } /// Return the maximum vector alignment supported for the given target. unsigned getMaxVectorAlign() const { return MaxVectorAlign; } /// Return default simd alignment for the given target. Generally, this /// value is type-specific, but this alignment can be used for most of the /// types for the given target. unsigned getSimdDefaultAlign() const { return SimdDefaultAlign; } /// Return the alignment (in bits) of the thrown exception object. This is /// only meaningful for targets that allocate C++ exceptions in a system /// runtime, such as those using the Itanium C++ ABI. virtual unsigned getExnObjectAlignment() const { // Itanium says that an _Unwind_Exception has to be "double-word" // aligned (and thus the end of it is also so-aligned), meaning 16 // bytes. Of course, that was written for the actual Itanium, // which is a 64-bit platform. Classically, the ABI doesn't really // specify the alignment on other platforms, but in practice // libUnwind declares the struct with __attribute__((aligned)), so // we assume that alignment here. (It's generally 16 bytes, but // some targets overwrite it.) return getDefaultAlignForAttributeAligned(); } /// Return the size of intmax_t and uintmax_t for this target, in bits. unsigned getIntMaxTWidth() const { return getTypeWidth(IntMaxType); } // Return the size of unwind_word for this target. virtual unsigned getUnwindWordWidth() const { return getPointerWidth(0); } /// Return the "preferred" register width on this target. virtual unsigned getRegisterWidth() const { // Currently we assume the register width on the target matches the pointer // width, we can introduce a new variable for this if/when some target wants // it. return PointerWidth; } /// Returns the name of the mcount instrumentation function. const char *getMCountName() const { return MCountName; } /// Check if the Objective-C built-in boolean type should be signed /// char. /// /// Otherwise, if this returns false, the normal built-in boolean type /// should also be used for Objective-C. bool useSignedCharForObjCBool() const { return UseSignedCharForObjCBool; } void noSignedCharForObjCBool() { UseSignedCharForObjCBool = false; } /// Check whether the alignment of bit-field types is respected /// when laying out structures. bool useBitFieldTypeAlignment() const { return UseBitFieldTypeAlignment; } /// Check whether zero length bitfields should force alignment of /// the next member. bool useZeroLengthBitfieldAlignment() const { return UseZeroLengthBitfieldAlignment; } /// Get the fixed alignment value in bits for a member that follows /// a zero length bitfield. unsigned getZeroLengthBitfieldBoundary() const { return ZeroLengthBitfieldBoundary; } /// Check whether explicit bitfield alignment attributes should be // honored, as in "__attribute__((aligned(2))) int b : 1;". bool useExplicitBitFieldAlignment() const { return UseExplicitBitFieldAlignment; } /// Check whether this target support '\#pragma options align=mac68k'. bool hasAlignMac68kSupport() const { return HasAlignMac68kSupport; } /// Return the user string for the specified integer type enum. /// /// For example, SignedShort -> "short". static const char *getTypeName(IntType T); /// Return the constant suffix for the specified integer type enum. /// /// For example, SignedLong -> "L". const char *getTypeConstantSuffix(IntType T) const; /// Return the printf format modifier for the specified /// integer type enum. /// /// For example, SignedLong -> "l". static const char *getTypeFormatModifier(IntType T); /// Check whether the given real type should use the "fpret" flavor of /// Objective-C message passing on this target. bool useObjCFPRetForRealType(RealType T) const { return RealTypeUsesObjCFPRet & (1 << T); } /// Check whether _Complex long double should use the "fp2ret" flavor /// of Objective-C message passing on this target. bool useObjCFP2RetForComplexLongDouble() const { return ComplexLongDoubleUsesFP2Ret; } /// Check whether llvm intrinsics such as llvm.convert.to.fp16 should be used /// to convert to and from __fp16. /// FIXME: This function should be removed once all targets stop using the /// conversion intrinsics. virtual bool useFP16ConversionIntrinsics() const { return true; } /// Specify if mangling based on address space map should be used or /// not for language specific address spaces bool useAddressSpaceMapMangling() const { return UseAddrSpaceMapMangling; } ///===---- Other target property query methods --------------------------===// /// Appends the target-specific \#define values for this /// target set to the specified buffer. virtual void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const = 0; /// Return information about target-specific builtins for /// the current primary target, and info about which builtins are non-portable /// across the current set of primary and secondary targets. virtual ArrayRef getTargetBuiltins() const = 0; /// The __builtin_clz* and __builtin_ctz* built-in /// functions are specified to have undefined results for zero inputs, but /// on targets that support these operations in a way that provides /// well-defined results for zero without loss of performance, it is a good /// idea to avoid optimizing based on that undef behavior. virtual bool isCLZForZeroUndef() const { return true; } /// Returns the kind of __builtin_va_list type that should be used /// with this target. virtual BuiltinVaListKind getBuiltinVaListKind() const = 0; /// Returns whether or not type \c __builtin_ms_va_list type is /// available on this target. bool hasBuiltinMSVaList() const { return HasBuiltinMSVaList; } /// Returns true for RenderScript. bool isRenderScriptTarget() const { return IsRenderScriptTarget; } /// Returns whether or not the AArch64 SVE built-in types are /// available on this target. bool hasAArch64SVETypes() const { return HasAArch64SVETypes; } /// Returns whether the passed in string is a valid clobber in an /// inline asm statement. /// /// This is used by Sema. bool isValidClobber(StringRef Name) const; /// Returns whether the passed in string is a valid register name /// according to GCC. /// /// This is used by Sema for inline asm statements. virtual bool isValidGCCRegisterName(StringRef Name) const; /// Returns the "normalized" GCC register name. /// /// ReturnCannonical true will return the register name without any additions /// such as "{}" or "%" in it's canonical form, for example: /// ReturnCanonical = true and Name = "rax", will return "ax". StringRef getNormalizedGCCRegisterName(StringRef Name, bool ReturnCanonical = false) const; /// Extracts a register from the passed constraint (if it is a /// single-register constraint) and the asm label expression related to a /// variable in the input or output list of an inline asm statement. /// /// This function is used by Sema in order to diagnose conflicts between /// the clobber list and the input/output lists. virtual StringRef getConstraintRegister(StringRef Constraint, StringRef Expression) const { return ""; } struct ConstraintInfo { enum { CI_None = 0x00, CI_AllowsMemory = 0x01, CI_AllowsRegister = 0x02, CI_ReadWrite = 0x04, // "+r" output constraint (read and write). CI_HasMatchingInput = 0x08, // This output operand has a matching input. CI_ImmediateConstant = 0x10, // This operand must be an immediate constant CI_EarlyClobber = 0x20, // "&" output constraint (early clobber). }; unsigned Flags; int TiedOperand; struct { int Min; int Max; bool isConstrained; } ImmRange; llvm::SmallSet ImmSet; std::string ConstraintStr; // constraint: "=rm" std::string Name; // Operand name: [foo] with no []'s. public: ConstraintInfo(StringRef ConstraintStr, StringRef Name) : Flags(0), TiedOperand(-1), ConstraintStr(ConstraintStr.str()), Name(Name.str()) { ImmRange.Min = ImmRange.Max = 0; ImmRange.isConstrained = false; } const std::string &getConstraintStr() const { return ConstraintStr; } const std::string &getName() const { return Name; } bool isReadWrite() const { return (Flags & CI_ReadWrite) != 0; } bool earlyClobber() { return (Flags & CI_EarlyClobber) != 0; } bool allowsRegister() const { return (Flags & CI_AllowsRegister) != 0; } bool allowsMemory() const { return (Flags & CI_AllowsMemory) != 0; } /// Return true if this output operand has a matching /// (tied) input operand. bool hasMatchingInput() const { return (Flags & CI_HasMatchingInput) != 0; } /// Return true if this input operand is a matching /// constraint that ties it to an output operand. /// /// If this returns true then getTiedOperand will indicate which output /// operand this is tied to. bool hasTiedOperand() const { return TiedOperand != -1; } unsigned getTiedOperand() const { assert(hasTiedOperand() && "Has no tied operand!"); return (unsigned)TiedOperand; } bool requiresImmediateConstant() const { return (Flags & CI_ImmediateConstant) != 0; } bool isValidAsmImmediate(const llvm::APInt &Value) const { if (!ImmSet.empty()) return Value.isSignedIntN(32) && ImmSet.count(Value.getZExtValue()) != 0; return !ImmRange.isConstrained || (Value.sge(ImmRange.Min) && Value.sle(ImmRange.Max)); } void setIsReadWrite() { Flags |= CI_ReadWrite; } void setEarlyClobber() { Flags |= CI_EarlyClobber; } void setAllowsMemory() { Flags |= CI_AllowsMemory; } void setAllowsRegister() { Flags |= CI_AllowsRegister; } void setHasMatchingInput() { Flags |= CI_HasMatchingInput; } void setRequiresImmediate(int Min, int Max) { Flags |= CI_ImmediateConstant; ImmRange.Min = Min; ImmRange.Max = Max; ImmRange.isConstrained = true; } void setRequiresImmediate(llvm::ArrayRef Exacts) { Flags |= CI_ImmediateConstant; for (int Exact : Exacts) ImmSet.insert(Exact); } void setRequiresImmediate(int Exact) { Flags |= CI_ImmediateConstant; ImmSet.insert(Exact); } void setRequiresImmediate() { Flags |= CI_ImmediateConstant; } /// Indicate that this is an input operand that is tied to /// the specified output operand. /// /// Copy over the various constraint information from the output. void setTiedOperand(unsigned N, ConstraintInfo &Output) { Output.setHasMatchingInput(); Flags = Output.Flags; TiedOperand = N; // Don't copy Name or constraint string. } }; /// Validate register name used for global register variables. /// /// This function returns true if the register passed in RegName can be used /// for global register variables on this target. In addition, it returns /// true in HasSizeMismatch if the size of the register doesn't match the /// variable size passed in RegSize. virtual bool validateGlobalRegisterVariable(StringRef RegName, unsigned RegSize, bool &HasSizeMismatch) const { HasSizeMismatch = false; return true; } // validateOutputConstraint, validateInputConstraint - Checks that // a constraint is valid and provides information about it. // FIXME: These should return a real error instead of just true/false. bool validateOutputConstraint(ConstraintInfo &Info) const; bool validateInputConstraint(MutableArrayRef OutputConstraints, ConstraintInfo &info) const; virtual bool validateOutputSize(StringRef /*Constraint*/, unsigned /*Size*/) const { return true; } virtual bool validateInputSize(StringRef /*Constraint*/, unsigned /*Size*/) const { return true; } virtual bool validateConstraintModifier(StringRef /*Constraint*/, char /*Modifier*/, unsigned /*Size*/, std::string &/*SuggestedModifier*/) const { return true; } virtual bool validateAsmConstraint(const char *&Name, TargetInfo::ConstraintInfo &info) const = 0; bool resolveSymbolicName(const char *&Name, ArrayRef OutputConstraints, unsigned &Index) const; // Constraint parm will be left pointing at the last character of // the constraint. In practice, it won't be changed unless the // constraint is longer than one character. virtual std::string convertConstraint(const char *&Constraint) const { // 'p' defaults to 'r', but can be overridden by targets. if (*Constraint == 'p') return std::string("r"); return std::string(1, *Constraint); } /// Returns a string of target-specific clobbers, in LLVM format. virtual const char *getClobbers() const = 0; /// Returns true if NaN encoding is IEEE 754-2008. /// Only MIPS allows a different encoding. virtual bool isNan2008() const { return true; } /// Returns the target triple of the primary target. const llvm::Triple &getTriple() const { return Triple; } const llvm::DataLayout &getDataLayout() const { assert(DataLayout && "Uninitialized DataLayout!"); return *DataLayout; } struct GCCRegAlias { const char * const Aliases[5]; const char * const Register; }; struct AddlRegName { const char * const Names[5]; const unsigned RegNum; }; /// Does this target support "protected" visibility? /// /// Any target which dynamic libraries will naturally support /// something like "default" (meaning that the symbol is visible /// outside this shared object) and "hidden" (meaning that it isn't) /// visibilities, but "protected" is really an ELF-specific concept /// with weird semantics designed around the convenience of dynamic /// linker implementations. Which is not to suggest that there's /// consistent target-independent semantics for "default" visibility /// either; the entire thing is pretty badly mangled. virtual bool hasProtectedVisibility() const { return true; } /// An optional hook that targets can implement to perform semantic /// checking on attribute((section("foo"))) specifiers. /// /// In this case, "foo" is passed in to be checked. If the section /// specifier is invalid, the backend should return a non-empty string /// that indicates the problem. /// /// This hook is a simple quality of implementation feature to catch errors /// and give good diagnostics in cases when the assembler or code generator /// would otherwise reject the section specifier. /// virtual std::string isValidSectionSpecifier(StringRef SR) const { return ""; } /// Set forced language options. /// /// Apply changes to the target information with respect to certain /// language options which change the target configuration and adjust /// the language based on the target options where applicable. virtual void adjust(LangOptions &Opts); /// Adjust target options based on codegen options. virtual void adjustTargetOptions(const CodeGenOptions &CGOpts, TargetOptions &TargetOpts) const {} /// Initialize the map with the default set of target features for the /// CPU this should include all legal feature strings on the target. /// /// \return False on error (invalid features). virtual bool initFeatureMap(llvm::StringMap &Features, DiagnosticsEngine &Diags, StringRef CPU, const std::vector &FeatureVec) const; /// Get the ABI currently in use. virtual StringRef getABI() const { return StringRef(); } /// Get the C++ ABI currently in use. TargetCXXABI getCXXABI() const { return TheCXXABI; } /// Target the specified CPU. /// /// \return False on error (invalid CPU name). virtual bool setCPU(const std::string &Name) { return false; } /// Fill a SmallVectorImpl with the valid values to setCPU. virtual void fillValidCPUList(SmallVectorImpl &Values) const {} /// brief Determine whether this TargetInfo supports the given CPU name. virtual bool isValidCPUName(StringRef Name) const { return true; } /// Use the specified ABI. /// /// \return False on error (invalid ABI name). virtual bool setABI(const std::string &Name) { return false; } /// Use the specified unit for FP math. /// /// \return False on error (invalid unit name). virtual bool setFPMath(StringRef Name) { return false; } /// Enable or disable a specific target feature; /// the feature name must be valid. virtual void setFeatureEnabled(llvm::StringMap &Features, StringRef Name, bool Enabled) const { Features[Name] = Enabled; } /// Determine whether this TargetInfo supports the given feature. virtual bool isValidFeatureName(StringRef Feature) const { return true; } /// Perform initialization based on the user configured /// set of features (e.g., +sse4). /// /// The list is guaranteed to have at most one entry per feature. /// /// The target may modify the features list, to change which options are /// passed onwards to the backend. /// FIXME: This part should be fixed so that we can change handleTargetFeatures /// to merely a TargetInfo initialization routine. /// /// \return False on error. virtual bool handleTargetFeatures(std::vector &Features, DiagnosticsEngine &Diags) { return true; } /// Determine whether the given target has the given feature. virtual bool hasFeature(StringRef Feature) const { return false; } /// Identify whether this target supports multiversioning of functions, /// which requires support for cpu_supports and cpu_is functionality. bool supportsMultiVersioning() const { return getTriple().getArch() == llvm::Triple::x86 || getTriple().getArch() == llvm::Triple::x86_64; } /// Identify whether this target supports IFuncs. bool supportsIFunc() const { return getTriple().isOSBinFormatELF(); } // Validate the contents of the __builtin_cpu_supports(const char*) // argument. virtual bool validateCpuSupports(StringRef Name) const { return false; } // Return the target-specific priority for features/cpus/vendors so // that they can be properly sorted for checking. virtual unsigned multiVersionSortPriority(StringRef Name) const { return 0; } // Validate the contents of the __builtin_cpu_is(const char*) // argument. virtual bool validateCpuIs(StringRef Name) const { return false; } // Validate a cpu_dispatch/cpu_specific CPU option, which is a different list // from cpu_is, since it checks via features rather than CPUs directly. virtual bool validateCPUSpecificCPUDispatch(StringRef Name) const { return false; } // Get the character to be added for mangling purposes for cpu_specific. virtual char CPUSpecificManglingCharacter(StringRef Name) const { llvm_unreachable( "cpu_specific Multiversioning not implemented on this target"); } // Get a list of the features that make up the CPU option for // cpu_specific/cpu_dispatch so that it can be passed to llvm as optimization // options. virtual void getCPUSpecificCPUDispatchFeatures( StringRef Name, llvm::SmallVectorImpl &Features) const { llvm_unreachable( "cpu_specific Multiversioning not implemented on this target"); } // Returns maximal number of args passed in registers. unsigned getRegParmMax() const { assert(RegParmMax < 7 && "RegParmMax value is larger than AST can handle"); return RegParmMax; } /// Whether the target supports thread-local storage. bool isTLSSupported() const { return TLSSupported; } /// Return the maximum alignment (in bits) of a TLS variable /// /// Gets the maximum alignment (in bits) of a TLS variable on this target. /// Returns zero if there is no such constraint. unsigned short getMaxTLSAlign() const { return MaxTLSAlign; } /// Whether target supports variable-length arrays. bool isVLASupported() const { return VLASupported; } /// Whether the target supports SEH __try. bool isSEHTrySupported() const { return getTriple().isOSWindows() && (getTriple().getArch() == llvm::Triple::x86 || getTriple().getArch() == llvm::Triple::x86_64 || getTriple().getArch() == llvm::Triple::aarch64); } /// Return true if {|} are normal characters in the asm string. /// /// If this returns false (the default), then {abc|xyz} is syntax /// that says that when compiling for asm variant #0, "abc" should be /// generated, but when compiling for asm variant #1, "xyz" should be /// generated. bool hasNoAsmVariants() const { return NoAsmVariants; } /// Return the register number that __builtin_eh_return_regno would /// return with the specified argument. /// This corresponds with TargetLowering's getExceptionPointerRegister /// and getExceptionSelectorRegister in the backend. virtual int getEHDataRegisterNumber(unsigned RegNo) const { return -1; } /// Return the section to use for C++ static initialization functions. virtual const char *getStaticInitSectionSpecifier() const { return nullptr; } const LangASMap &getAddressSpaceMap() const { return *AddrSpaceMap; } /// Map from the address space field in builtin description strings to the /// language address space. virtual LangAS getOpenCLBuiltinAddressSpace(unsigned AS) const { return getLangASFromTargetAS(AS); } /// Map from the address space field in builtin description strings to the /// language address space. virtual LangAS getCUDABuiltinAddressSpace(unsigned AS) const { return getLangASFromTargetAS(AS); } /// Return an AST address space which can be used opportunistically /// for constant global memory. It must be possible to convert pointers into /// this address space to LangAS::Default. If no such address space exists, /// this may return None, and such optimizations will be disabled. virtual llvm::Optional getConstantAddressSpace() const { return LangAS::Default; } /// Retrieve the name of the platform as it is used in the /// availability attribute. StringRef getPlatformName() const { return PlatformName; } /// Retrieve the minimum desired version of the platform, to /// which the program should be compiled. VersionTuple getPlatformMinVersion() const { return PlatformMinVersion; } bool isBigEndian() const { return BigEndian; } bool isLittleEndian() const { return !BigEndian; } /// Gets the default calling convention for the given target and /// declaration context. virtual CallingConv getDefaultCallingConv() const { // Not all targets will specify an explicit calling convention that we can // express. This will always do the right thing, even though it's not // an explicit calling convention. return CC_C; } enum CallingConvCheckResult { CCCR_OK, CCCR_Warning, CCCR_Ignore, CCCR_Error, }; /// Determines whether a given calling convention is valid for the /// target. A calling convention can either be accepted, produce a warning /// and be substituted with the default calling convention, or (someday) /// produce an error (such as using thiscall on a non-instance function). virtual CallingConvCheckResult checkCallingConvention(CallingConv CC) const { switch (CC) { default: return CCCR_Warning; case CC_C: return CCCR_OK; } } enum CallingConvKind { CCK_Default, CCK_ClangABI4OrPS4, CCK_MicrosoftWin64 }; virtual CallingConvKind getCallingConvKind(bool ClangABICompat4) const; /// Controls if __builtin_longjmp / __builtin_setjmp can be lowered to /// llvm.eh.sjlj.longjmp / llvm.eh.sjlj.setjmp. virtual bool hasSjLjLowering() const { return false; } /// Check if the target supports CFProtection branch. virtual bool checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const; /// Check if the target supports CFProtection branch. virtual bool checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const; /// Whether target allows to overalign ABI-specified preferred alignment virtual bool allowsLargerPreferedTypeAlignment() const { return true; } /// Set supported OpenCL extensions and optional core features. virtual void setSupportedOpenCLOpts() {} /// Set supported OpenCL extensions as written on command line virtual void setOpenCLExtensionOpts() { for (const auto &Ext : getTargetOpts().OpenCLExtensionsAsWritten) { getTargetOpts().SupportedOpenCLOptions.support(Ext); } } /// Get supported OpenCL extensions and optional core features. OpenCLOptions &getSupportedOpenCLOpts() { return getTargetOpts().SupportedOpenCLOptions; } /// Get const supported OpenCL extensions and optional core features. const OpenCLOptions &getSupportedOpenCLOpts() const { return getTargetOpts().SupportedOpenCLOptions; } enum OpenCLTypeKind { OCLTK_Default, OCLTK_ClkEvent, OCLTK_Event, OCLTK_Image, OCLTK_Pipe, OCLTK_Queue, OCLTK_ReserveID, OCLTK_Sampler, }; /// Get address space for OpenCL type. virtual LangAS getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const; /// \returns Target specific vtbl ptr address space. virtual unsigned getVtblPtrAddressSpace() const { return 0; } /// \returns If a target requires an address within a target specific address /// space \p AddressSpace to be converted in order to be used, then return the /// corresponding target specific DWARF address space. /// /// \returns Otherwise return None and no conversion will be emitted in the /// DWARF. virtual Optional getDWARFAddressSpace(unsigned AddressSpace) const { return None; } /// \returns The version of the SDK which was used during the compilation if /// one was specified, or an empty version otherwise. const llvm::VersionTuple &getSDKVersion() const { return getTargetOpts().SDKVersion; } /// Check the target is valid after it is fully initialized. virtual bool validateTarget(DiagnosticsEngine &Diags) const { return true; } virtual void setAuxTarget(const TargetInfo *Aux) {} protected: /// Copy type and layout related info. void copyAuxTarget(const TargetInfo *Aux); virtual uint64_t getPointerWidthV(unsigned AddrSpace) const { return PointerWidth; } virtual uint64_t getPointerAlignV(unsigned AddrSpace) const { return PointerAlign; } virtual enum IntType getPtrDiffTypeV(unsigned AddrSpace) const { return PtrDiffType; } virtual ArrayRef getGCCRegNames() const = 0; virtual ArrayRef getGCCRegAliases() const = 0; virtual ArrayRef getGCCAddlRegNames() const { return None; } private: // Assert the values for the fractional and integral bits for each fixed point // type follow the restrictions given in clause 6.2.6.3 of N1169. void CheckFixedPointBits() const; }; } // end namespace clang #endif