/* Symbol table manager for Bison. Copyright (C) 1984, 1989, 2000-2002, 2004-2015, 2018-2019 Free Software Foundation, Inc. This file is part of Bison, the GNU Compiler Compiler. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "symtab.h" #include "system.h" #include #include #include "complain.h" #include "gram.h" /*-------------------------------------------------------------------. | Symbols sorted by tag. Allocated by the first invocation of | | symbols_do, after which no more symbols should be created. | `-------------------------------------------------------------------*/ static symbol **symbols_sorted = NULL; static symbol **semantic_types_sorted = NULL; /*------------------------. | Distinguished symbols. | `------------------------*/ symbol *errtoken = NULL; symbol *undeftoken = NULL; symbol *endtoken = NULL; symbol *accept = NULL; symbol *startsymbol = NULL; location startsymbol_location; /* Precedence relation graph. */ static symgraph **prec_nodes; /* Store which associativity is used. */ static bool *used_assoc = NULL; bool tag_seen = false; /*--------------------------. | Create a new sym_content. | `--------------------------*/ static sym_content * sym_content_new (symbol *s) { sym_content *res = xmalloc (sizeof *res); res->symbol = s; res->type_name = NULL; for (int i = 0; i < CODE_PROPS_SIZE; ++i) code_props_none_init (&res->props[i]); res->number = NUMBER_UNDEFINED; res->prec = 0; res->assoc = undef_assoc; res->user_token_number = USER_NUMBER_UNDEFINED; res->class = unknown_sym; res->status = undeclared; return res; } /*---------------------------------. | Create a new symbol, named TAG. | `---------------------------------*/ static symbol * symbol_new (uniqstr tag, location loc) { symbol *res = xmalloc (sizeof *res); uniqstr_assert (tag); /* If the tag is not a string (starts with a double quote), check that it is valid for Yacc. */ if (tag[0] != '\"' && tag[0] != '\'' && strchr (tag, '-')) complain (&loc, Wyacc, _("POSIX Yacc forbids dashes in symbol names: %s"), tag); res->tag = tag; res->location = loc; res->location_of_lhs = false; res->alias = NULL; res->content = sym_content_new (res); res->is_alias = false; if (nsyms == SYMBOL_NUMBER_MAXIMUM) complain (NULL, fatal, _("too many symbols in input grammar (limit is %d)"), SYMBOL_NUMBER_MAXIMUM); nsyms++; return res; } /*--------------------. | Free a sym_content. | `--------------------*/ static void sym_content_free (sym_content *sym) { free (sym); } /*---------------------------------------------------------. | Free a symbol and its associated content if appropriate. | `---------------------------------------------------------*/ static void symbol_free (void *ptr) { symbol *sym = (symbol *)ptr; if (!sym->is_alias) sym_content_free (sym->content); free (sym); } /* If needed, swap first and second so that first has the earliest location (according to location_cmp). Many symbol features (e.g., user token numbers) are not assigned during the parsing, but in a second step, via a traversal of the symbol table sorted on tag. However, error messages make more sense if we keep the first declaration first. */ static void symbols_sort (symbol **first, symbol **second) { if (0 < location_cmp ((*first)->location, (*second)->location)) { symbol* tmp = *first; *first = *second; *second = tmp; } } /* Likewise, for locations. */ static void locations_sort (location *first, location *second) { if (0 < location_cmp (*first, *second)) { location tmp = *first; *first = *second; *second = tmp; } } char const * code_props_type_string (code_props_type kind) { switch (kind) { case destructor: return "%destructor"; case printer: return "%printer"; } abort (); } /*----------------------------------------. | Create a new semantic type, named TAG. | `----------------------------------------*/ static semantic_type * semantic_type_new (uniqstr tag, const location *loc) { semantic_type *res = xmalloc (sizeof *res); uniqstr_assert (tag); res->tag = tag; res->location = loc ? *loc : empty_location; res->status = undeclared; for (int i = 0; i < CODE_PROPS_SIZE; ++i) code_props_none_init (&res->props[i]); return res; } /*-----------------. | Print a symbol. | `-----------------*/ #define SYMBOL_ATTR_PRINT(Attr) \ if (s->content && s->content->Attr) \ fprintf (f, " %s { %s }", #Attr, s->content->Attr) #define SYMBOL_CODE_PRINT(Attr) \ if (s->content && s->content->props[Attr].code) \ fprintf (f, " %s { %s }", #Attr, s->content->props[Attr].code) void symbol_print (symbol const *s, FILE *f) { if (s) { fputs (s->tag, f); SYMBOL_ATTR_PRINT (type_name); SYMBOL_CODE_PRINT (destructor); SYMBOL_CODE_PRINT (printer); } else fputs ("", f); } #undef SYMBOL_ATTR_PRINT #undef SYMBOL_CODE_PRINT /*----------------------------------. | Whether S is a valid identifier. | `----------------------------------*/ static bool is_identifier (uniqstr s) { static char const alphanum[26 + 26 + 1 + 10] = "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "_" "0123456789"; if (!s || ! memchr (alphanum, *s, sizeof alphanum - 10)) return false; for (++s; *s; ++s) if (! memchr (alphanum, *s, sizeof alphanum)) return false; return true; } /*-----------------------------------------------. | Get the identifier associated to this symbol. | `-----------------------------------------------*/ uniqstr symbol_id_get (symbol const *sym) { if (sym->alias) sym = sym->alias; return is_identifier (sym->tag) ? sym->tag : 0; } /*------------------------------------------------------------------. | Complain that S's WHAT is redeclared at SECOND, and was first set | | at FIRST. | `------------------------------------------------------------------*/ static void complain_symbol_redeclared (symbol *s, const char *what, location first, location second) { unsigned i = 0; locations_sort (&first, &second); complain_indent (&second, complaint, &i, _("%s redeclaration for %s"), what, s->tag); i += SUB_INDENT; complain_indent (&first, complaint, &i, _("previous declaration")); } static void complain_semantic_type_redeclared (semantic_type *s, const char *what, location first, location second) { unsigned i = 0; locations_sort (&first, &second); complain_indent (&second, complaint, &i, _("%s redeclaration for <%s>"), what, s->tag); i += SUB_INDENT; complain_indent (&first, complaint, &i, _("previous declaration")); } static void complain_class_redeclared (symbol *sym, symbol_class class, location second) { unsigned i = 0; complain_indent (&second, complaint, &i, class == token_sym ? _("symbol %s redeclared as a token") : _("symbol %s redeclared as a nonterminal"), sym->tag); i += SUB_INDENT; complain_indent (&sym->location, complaint, &i, _("previous definition")); } void symbol_location_as_lhs_set (symbol *sym, location loc) { if (!sym->location_of_lhs) sym->location = loc; } /*-----------------------------------------------------------------. | Set the TYPE_NAME associated with SYM. Does nothing if passed 0 | | as TYPE_NAME. | `-----------------------------------------------------------------*/ void symbol_type_set (symbol *sym, uniqstr type_name, location loc) { if (type_name) { tag_seen = true; if (sym->content->type_name) complain_symbol_redeclared (sym, "%type", sym->content->type_location, loc); else { uniqstr_assert (type_name); sym->content->type_name = type_name; sym->content->type_location = loc; } } } /*--------------------------------------------------------. | Set the DESTRUCTOR or PRINTER associated with the SYM. | `--------------------------------------------------------*/ void symbol_code_props_set (symbol *sym, code_props_type kind, code_props const *code) { if (sym->content->props[kind].code) complain_symbol_redeclared (sym, code_props_type_string (kind), sym->content->props[kind].location, code->location); else sym->content->props[kind] = *code; } /*-----------------------------------------------------. | Set the DESTRUCTOR or PRINTER associated with TYPE. | `-----------------------------------------------------*/ void semantic_type_code_props_set (semantic_type *type, code_props_type kind, code_props const *code) { if (type->props[kind].code) complain_semantic_type_redeclared (type, code_props_type_string (kind), type->props[kind].location, code->location); else type->props[kind] = *code; } /*---------------------------------------------------. | Get the computed %destructor or %printer for SYM. | `---------------------------------------------------*/ code_props * symbol_code_props_get (symbol *sym, code_props_type kind) { /* Per-symbol code props. */ if (sym->content->props[kind].code) return &sym->content->props[kind]; /* Per-type code props. */ if (sym->content->type_name) { code_props *code = &semantic_type_get (sym->content->type_name, NULL)->props[kind]; if (code->code) return code; } /* Apply default code props's only to user-defined symbols. */ if (sym->tag[0] != '$' && sym != errtoken) { code_props *code = &semantic_type_get (sym->content->type_name ? "*" : "", NULL)->props[kind]; if (code->code) return code; } return &code_props_none; } /*-----------------------------------------------------------------. | Set the PRECEDENCE associated with SYM. Does nothing if invoked | | with UNDEF_ASSOC as ASSOC. | `-----------------------------------------------------------------*/ void symbol_precedence_set (symbol *sym, int prec, assoc a, location loc) { if (a != undef_assoc) { sym_content *s = sym->content; if (s->prec) complain_symbol_redeclared (sym, assoc_to_string (a), s->prec_location, loc); else { s->prec = prec; s->assoc = a; s->prec_location = loc; } } /* Only terminals have a precedence. */ symbol_class_set (sym, token_sym, loc, false); } /*------------------------------------. | Set the CLASS associated with SYM. | `------------------------------------*/ void symbol_class_set (symbol *sym, symbol_class class, location loc, bool declaring) { aver (class != unknown_sym); sym_content *s = sym->content; if (s->class != unknown_sym && s->class != class) complain_class_redeclared (sym, class, loc); else { if (class == nterm_sym && s->class != nterm_sym) s->number = nvars++; else if (class == token_sym && s->number == NUMBER_UNDEFINED) s->number = ntokens++; s->class = class; if (declaring) { if (s->status == declared) complain (&loc, Wother, _("symbol %s redeclared"), sym->tag); else s->status = declared; } } } /*------------------------------------------------. | Set the USER_TOKEN_NUMBER associated with SYM. | `------------------------------------------------*/ void symbol_user_token_number_set (symbol *sym, int user_token_number, location loc) { int *user_token_numberp = &sym->content->user_token_number; if (sym->content->class != token_sym) complain (&loc, complaint, _("nonterminals cannot be given an explicit number")); else if (*user_token_numberp != USER_NUMBER_UNDEFINED && *user_token_numberp != user_token_number) complain (&loc, complaint, _("redefining user token number of %s"), sym->tag); else { *user_token_numberp = user_token_number; /* User defined $end token? */ if (user_token_number == 0) { endtoken = sym->content->symbol; /* It is always mapped to 0, so it was already counted in NTOKENS. */ if (endtoken->content->number != NUMBER_UNDEFINED) --ntokens; endtoken->content->number = 0; } } } /*----------------------------------------------------------. | If SYM is not defined, report an error, and consider it a | | nonterminal. | `----------------------------------------------------------*/ static inline bool symbol_check_defined (symbol *sym) { sym_content *s = sym->content; if (s->class == unknown_sym) { assert (s->status != declared); complain (&sym->location, s->status == needed ? complaint : Wother, _("symbol %s is used, but is not defined as a token" " and has no rules"), sym->tag); s->class = nterm_sym; s->number = nvars++; } for (int i = 0; i < 2; ++i) symbol_code_props_get (sym, i)->is_used = true; /* Set the semantic type status associated to the current symbol to 'declared' so that we could check semantic types unnecessary uses. */ if (s->type_name) { semantic_type *sem_type = semantic_type_get (s->type_name, NULL); if (sem_type) sem_type->status = declared; } return true; } static inline bool semantic_type_check_defined (semantic_type *sem_type) { /* <*> and <> do not have to be "declared". */ if (sem_type->status == declared || !*sem_type->tag || STREQ (sem_type->tag, "*")) { for (int i = 0; i < 2; ++i) if (sem_type->props[i].kind != CODE_PROPS_NONE && ! sem_type->props[i].is_used) complain (&sem_type->location, Wother, _("useless %s for type <%s>"), code_props_type_string (i), sem_type->tag); } else complain (&sem_type->location, Wother, _("type <%s> is used, but is not associated to any symbol"), sem_type->tag); return true; } static bool symbol_check_defined_processor (void *sym, void *null ATTRIBUTE_UNUSED) { return symbol_check_defined (sym); } static bool semantic_type_check_defined_processor (void *sem_type, void *null ATTRIBUTE_UNUSED) { return semantic_type_check_defined (sem_type); } /*-------------------------------------------------------------------. | Merge the properties (precedence, associativity, etc.) of SYM, and | | its string-named alias STR; check consistency. | `-------------------------------------------------------------------*/ static void symbol_merge_properties (symbol *sym, symbol *str) { if (str->content->type_name != sym->content->type_name) { if (str->content->type_name) symbol_type_set (sym, str->content->type_name, str->content->type_location); else symbol_type_set (str, sym->content->type_name, sym->content->type_location); } for (int i = 0; i < CODE_PROPS_SIZE; ++i) if (str->content->props[i].code) symbol_code_props_set (sym, i, &str->content->props[i]); else if (sym->content->props[i].code) symbol_code_props_set (str, i, &sym->content->props[i]); if (sym->content->prec || str->content->prec) { if (str->content->prec) symbol_precedence_set (sym, str->content->prec, str->content->assoc, str->content->prec_location); else symbol_precedence_set (str, sym->content->prec, sym->content->assoc, sym->content->prec_location); } } void symbol_make_alias (symbol *sym, symbol *str, location loc) { if (sym->content->class != token_sym) complain (&loc, complaint, _("nonterminals cannot be given a string alias")); else if (str->alias) complain (&loc, Wother, _("symbol %s used more than once as a literal string"), str->tag); else if (sym->alias) complain (&loc, Wother, _("symbol %s given more than one literal string"), sym->tag); else { symbol_merge_properties (sym, str); sym_content_free (str->content); str->content = sym->content; str->content->symbol = str; str->is_alias = true; str->alias = sym; sym->alias = str; } } /*-------------------------------------------------------------------. | Assign a symbol number, and write the definition of the token name | | into FDEFINES. Put in SYMBOLS. | `-------------------------------------------------------------------*/ static inline bool symbol_pack (symbol *this) { aver (this->content->number != NUMBER_UNDEFINED); if (this->content->class == nterm_sym) this->content->number += ntokens; symbols[this->content->number] = this->content->symbol; return true; } static bool symbol_pack_processor (void *this, void *null ATTRIBUTE_UNUSED) { return symbol_pack (this); } static void complain_user_token_number_redeclared (int num, symbol *first, symbol *second) { unsigned i = 0; symbols_sort (&first, &second); complain_indent (&second->location, complaint, &i, _("user token number %d redeclaration for %s"), num, second->tag); i += SUB_INDENT; complain_indent (&first->location, complaint, &i, _("previous declaration for %s"), first->tag); } /*--------------------------------------------------. | Put THIS in TOKEN_TRANSLATIONS if it is a token. | `--------------------------------------------------*/ static inline bool symbol_translation (symbol *this) { /* Nonterminal? */ if (this->content->class == token_sym && !this->is_alias) { /* A token which translation has already been set?*/ if (token_translations[this->content->user_token_number] != undeftoken->content->number) complain_user_token_number_redeclared (this->content->user_token_number, symbols[token_translations[this->content->user_token_number]], this); else token_translations[this->content->user_token_number] = this->content->number; } return true; } static bool symbol_translation_processor (void *this, void *null ATTRIBUTE_UNUSED) { return symbol_translation (this); } /*---------------------------------------. | Symbol and semantic type hash tables. | `---------------------------------------*/ /* Initial capacity of symbol and semantic type hash table. */ #define HT_INITIAL_CAPACITY 257 static struct hash_table *symbol_table = NULL; static struct hash_table *semantic_type_table = NULL; static inline bool hash_compare_symbol (const symbol *m1, const symbol *m2) { /* Since tags are unique, we can compare the pointers themselves. */ return UNIQSTR_EQ (m1->tag, m2->tag); } static inline bool hash_compare_semantic_type (const semantic_type *m1, const semantic_type *m2) { /* Since names are unique, we can compare the pointers themselves. */ return UNIQSTR_EQ (m1->tag, m2->tag); } static bool hash_symbol_comparator (void const *m1, void const *m2) { return hash_compare_symbol (m1, m2); } static bool hash_semantic_type_comparator (void const *m1, void const *m2) { return hash_compare_semantic_type (m1, m2); } static inline size_t hash_symbol (const symbol *m, size_t tablesize) { /* Since tags are unique, we can hash the pointer itself. */ return ((uintptr_t) m->tag) % tablesize; } static inline size_t hash_semantic_type (const semantic_type *m, size_t tablesize) { /* Since names are unique, we can hash the pointer itself. */ return ((uintptr_t) m->tag) % tablesize; } static size_t hash_symbol_hasher (void const *m, size_t tablesize) { return hash_symbol (m, tablesize); } static size_t hash_semantic_type_hasher (void const *m, size_t tablesize) { return hash_semantic_type (m, tablesize); } /*-------------------------------. | Create the symbol hash table. | `-------------------------------*/ void symbols_new (void) { symbol_table = hash_initialize (HT_INITIAL_CAPACITY, NULL, hash_symbol_hasher, hash_symbol_comparator, symbol_free); semantic_type_table = hash_initialize (HT_INITIAL_CAPACITY, NULL, hash_semantic_type_hasher, hash_semantic_type_comparator, free); } /*----------------------------------------------------------------. | Find the symbol named KEY, and return it. If it does not exist | | yet, create it. | `----------------------------------------------------------------*/ symbol * symbol_from_uniqstr (const uniqstr key, location loc) { symbol probe; probe.tag = key; symbol *entry = hash_lookup (symbol_table, &probe); if (!entry) { /* First insertion in the hash. */ aver (!symbols_sorted); entry = symbol_new (key, loc); if (!hash_insert (symbol_table, entry)) xalloc_die (); } return entry; } /*-----------------------------------------------------------------------. | Find the semantic type named KEY, and return it. If it does not exist | | yet, create it. | `-----------------------------------------------------------------------*/ semantic_type * semantic_type_from_uniqstr (const uniqstr key, const location *loc) { semantic_type probe; probe.tag = key; semantic_type *entry = hash_lookup (semantic_type_table, &probe); if (!entry) { /* First insertion in the hash. */ entry = semantic_type_new (key, loc); if (!hash_insert (semantic_type_table, entry)) xalloc_die (); } return entry; } /*----------------------------------------------------------------. | Find the symbol named KEY, and return it. If it does not exist | | yet, create it. | `----------------------------------------------------------------*/ symbol * symbol_get (const char *key, location loc) { return symbol_from_uniqstr (uniqstr_new (key), loc); } /*-----------------------------------------------------------------------. | Find the semantic type named KEY, and return it. If it does not exist | | yet, create it. | `-----------------------------------------------------------------------*/ semantic_type * semantic_type_get (const char *key, const location *loc) { return semantic_type_from_uniqstr (uniqstr_new (key), loc); } /*------------------------------------------------------------------. | Generate a dummy nonterminal, whose name cannot conflict with the | | user's names. | `------------------------------------------------------------------*/ symbol * dummy_symbol_get (location loc) { /* Incremented for each generated symbol. */ static int dummy_count = 0; char buf[32]; int len = snprintf (buf, sizeof buf, "$@%d", ++dummy_count); assure (len < sizeof buf); symbol *sym = symbol_get (buf, loc); sym->content->class = nterm_sym; sym->content->number = nvars++; return sym; } bool symbol_is_dummy (const symbol *sym) { return sym->tag[0] == '@' || (sym->tag[0] == '$' && sym->tag[1] == '@'); } /*-------------------. | Free the symbols. | `-------------------*/ void symbols_free (void) { hash_free (symbol_table); hash_free (semantic_type_table); free (symbols); free (symbols_sorted); free (semantic_types_sorted); } /*---------------------------------------------------------------. | Look for undefined symbols, report an error, and consider them | | terminals. | `---------------------------------------------------------------*/ static int symbols_cmp (symbol const *a, symbol const *b) { return strcmp (a->tag, b->tag); } static int symbols_cmp_qsort (void const *a, void const *b) { return symbols_cmp (*(symbol * const *)a, *(symbol * const *)b); } static void symbols_do (Hash_processor processor, void *processor_data, struct hash_table *table, symbol ***sorted) { size_t count = hash_get_n_entries (table); if (!*sorted) { *sorted = xnmalloc (count, sizeof **sorted); hash_get_entries (table, (void**)*sorted, count); qsort (*sorted, count, sizeof **sorted, symbols_cmp_qsort); } for (size_t i = 0; i < count; ++i) processor ((*sorted)[i], processor_data); } /*--------------------------------------------------------------. | Check that all the symbols are defined. Report any undefined | | symbols and consider them nonterminals. | `--------------------------------------------------------------*/ void symbols_check_defined (void) { symbols_do (symbol_check_defined_processor, NULL, symbol_table, &symbols_sorted); symbols_do (semantic_type_check_defined_processor, NULL, semantic_type_table, &semantic_types_sorted); } /*------------------------------------------------------------------. | Set TOKEN_TRANSLATIONS. Check that no two symbols share the same | | number. | `------------------------------------------------------------------*/ static void symbols_token_translations_init (void) { bool num_256_available_p = true; /* Find the highest user token number, and whether 256, the POSIX preferred user token number for the error token, is used. */ max_user_token_number = 0; for (int i = 0; i < ntokens; ++i) { sym_content *this = symbols[i]->content; if (this->user_token_number != USER_NUMBER_UNDEFINED) { if (this->user_token_number > max_user_token_number) max_user_token_number = this->user_token_number; if (this->user_token_number == 256) num_256_available_p = false; } } /* If 256 is not used, assign it to error, to follow POSIX. */ if (num_256_available_p && errtoken->content->user_token_number == USER_NUMBER_UNDEFINED) errtoken->content->user_token_number = 256; /* Set the missing user numbers. */ if (max_user_token_number < 256) max_user_token_number = 256; for (int i = 0; i < ntokens; ++i) { sym_content *this = symbols[i]->content; if (this->user_token_number == USER_NUMBER_UNDEFINED) this->user_token_number = ++max_user_token_number; if (this->user_token_number > max_user_token_number) max_user_token_number = this->user_token_number; } token_translations = xnmalloc (max_user_token_number + 1, sizeof *token_translations); /* Initialize all entries for literal tokens to the internal token number for $undefined, which represents all invalid inputs. */ for (int i = 0; i < max_user_token_number + 1; i++) token_translations[i] = undeftoken->content->number; symbols_do (symbol_translation_processor, NULL, symbol_table, &symbols_sorted); } /*----------------------------------------------------------------. | Assign symbol numbers, and write definition of token names into | | FDEFINES. Set up vectors SYMBOL_TABLE, TAGS of symbols. | `----------------------------------------------------------------*/ void symbols_pack (void) { symbols = xcalloc (nsyms, sizeof *symbols); symbols_do (symbol_pack_processor, NULL, symbol_table, &symbols_sorted); /* Aliases leave empty slots in symbols, so remove them. */ { int nsyms_old = nsyms; for (int writei = 0, readi = 0; readi < nsyms_old; readi += 1) { if (symbols[readi] == NULL) { nsyms -= 1; ntokens -= 1; } else { symbols[writei] = symbols[readi]; symbols[writei]->content->number = writei; writei += 1; } } } symbols = xnrealloc (symbols, nsyms, sizeof *symbols); symbols_token_translations_init (); if (startsymbol->content->class == unknown_sym) complain (&startsymbol_location, fatal, _("the start symbol %s is undefined"), startsymbol->tag); else if (startsymbol->content->class == token_sym) complain (&startsymbol_location, fatal, _("the start symbol %s is a token"), startsymbol->tag); } /*---------------------------------. | Initialize relation graph nodes. | `---------------------------------*/ static void init_prec_nodes (void) { prec_nodes = xcalloc (nsyms, sizeof *prec_nodes); for (int i = 0; i < nsyms; ++i) { prec_nodes[i] = xmalloc (sizeof *prec_nodes[i]); symgraph *s = prec_nodes[i]; s->id = i; s->succ = 0; s->pred = 0; } } /*----------------. | Create a link. | `----------------*/ static symgraphlink * symgraphlink_new (graphid id, symgraphlink *next) { symgraphlink *l = xmalloc (sizeof *l); l->id = id; l->next = next; return l; } /*------------------------------------------------------------------. | Register the second symbol of the precedence relation, and return | | whether this relation is new. Use only in register_precedence. | `------------------------------------------------------------------*/ static bool register_precedence_second_symbol (symgraphlink **first, graphid sym) { if (!*first || sym < (*first)->id) *first = symgraphlink_new (sym, *first); else { symgraphlink *slist = *first; while (slist->next && slist->next->id <= sym) slist = slist->next; if (slist->id == sym) /* Relation already present. */ return false; slist->next = symgraphlink_new (sym, slist->next); } return true; } /*------------------------------------------------------------------. | Register a new relation between symbols as used. The first symbol | | has a greater precedence than the second one. | `------------------------------------------------------------------*/ void register_precedence (graphid first, graphid snd) { if (!prec_nodes) init_prec_nodes (); register_precedence_second_symbol (&(prec_nodes[first]->succ), snd); register_precedence_second_symbol (&(prec_nodes[snd]->pred), first); } /*---------------------------------------. | Deep clear a linked / adjacency list). | `---------------------------------------*/ static void linkedlist_free (symgraphlink *node) { if (node) { while (node->next) { symgraphlink *tmp = node->next; free (node); node = tmp; } free (node); } } /*----------------------------------------------. | Clear and destroy association tracking table. | `----------------------------------------------*/ static void assoc_free (void) { for (int i = 0; i < nsyms; ++i) { linkedlist_free (prec_nodes[i]->pred); linkedlist_free (prec_nodes[i]->succ); free (prec_nodes[i]); } free (prec_nodes); } /*---------------------------------------. | Initialize association tracking table. | `---------------------------------------*/ static void init_assoc (void) { used_assoc = xcalloc (nsyms, sizeof *used_assoc); for (graphid i = 0; i < nsyms; ++i) used_assoc[i] = false; } /*------------------------------------------------------------------. | Test if the associativity for the symbols is defined and useless. | `------------------------------------------------------------------*/ static inline bool is_assoc_useless (symbol *s) { return s && s->content->assoc != undef_assoc && s->content->assoc != precedence_assoc && !used_assoc[s->content->number]; } /*-------------------------------. | Register a used associativity. | `-------------------------------*/ void register_assoc (graphid i, graphid j) { if (!used_assoc) init_assoc (); used_assoc[i] = true; used_assoc[j] = true; } /*--------------------------------------------------. | Print a warning for unused precedence relations. | `--------------------------------------------------*/ void print_precedence_warnings (void) { if (!prec_nodes) init_prec_nodes (); if (!used_assoc) init_assoc (); for (int i = 0; i < nsyms; ++i) { symbol *s = symbols[i]; if (s && s->content->prec != 0 && !prec_nodes[i]->pred && !prec_nodes[i]->succ) { if (is_assoc_useless (s)) complain (&s->content->prec_location, Wprecedence, _("useless precedence and associativity for %s"), s->tag); else if (s->content->assoc == precedence_assoc) complain (&s->content->prec_location, Wprecedence, _("useless precedence for %s"), s->tag); } else if (is_assoc_useless (s)) complain (&s->content->prec_location, Wprecedence, _("useless associativity for %s, use %%precedence"), s->tag); } free (used_assoc); assoc_free (); }