/* Altera Nios II disassemble routines Copyright (C) 2012-2023 Free Software Foundation, Inc. Contributed by Nigel Gray (ngray@altera.com). Contributed by Mentor Graphics, Inc. This file is part of the GNU opcodes library. This library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this file; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "disassemble.h" #include "opintl.h" #include "opcode/nios2.h" #include "libiberty.h" #include #include /* No symbol table is available when this code runs out in an embedded system as when it is used for disassembler support in a monitor. */ #if !defined(EMBEDDED_ENV) #define SYMTAB_AVAILABLE 1 #include "elf-bfd.h" #include "elf/nios2.h" #endif /* Default length of Nios II instruction in bytes. */ #define INSNLEN 4 /* Data structures used by the opcode hash table. */ typedef struct _nios2_opcode_hash { const struct nios2_opcode *opcode; struct _nios2_opcode_hash *next; } nios2_opcode_hash; /* Hash table size. */ #define OPCODE_HASH_SIZE (IW_R1_OP_UNSHIFTED_MASK + 1) /* Extract the opcode from an instruction word. */ static unsigned int nios2_r1_extract_opcode (unsigned int x) { return GET_IW_R1_OP (x); } static unsigned int nios2_r2_extract_opcode (unsigned int x) { return GET_IW_R2_OP (x); } /* We maintain separate hash tables for R1 and R2 opcodes, and pseudo-ops are stored in a different table than regular instructions. */ typedef struct _nios2_disassembler_state { const struct nios2_opcode *opcodes; const int *num_opcodes; unsigned int (*extract_opcode) (unsigned int); nios2_opcode_hash *hash[OPCODE_HASH_SIZE]; nios2_opcode_hash *ps_hash[OPCODE_HASH_SIZE]; const struct nios2_opcode *nop; bool init; } nios2_disassembler_state; static nios2_disassembler_state nios2_r1_disassembler_state = { nios2_r1_opcodes, &nios2_num_r1_opcodes, nios2_r1_extract_opcode, {}, {}, NULL, 0 }; static nios2_disassembler_state nios2_r2_disassembler_state = { nios2_r2_opcodes, &nios2_num_r2_opcodes, nios2_r2_extract_opcode, {}, {}, NULL, 0 }; /* Function to initialize the opcode hash table. */ static void nios2_init_opcode_hash (nios2_disassembler_state *state) { unsigned int i; register const struct nios2_opcode *op; for (i = 0; i < OPCODE_HASH_SIZE; i++) for (op = state->opcodes; op < &state->opcodes[*(state->num_opcodes)]; op++) { nios2_opcode_hash *new_hash; nios2_opcode_hash **bucket = NULL; if ((op->pinfo & NIOS2_INSN_MACRO) == NIOS2_INSN_MACRO) { if (i == state->extract_opcode (op->match) && (op->pinfo & (NIOS2_INSN_MACRO_MOV | NIOS2_INSN_MACRO_MOVI) & 0x7fffffff)) { bucket = &(state->ps_hash[i]); if (strcmp (op->name, "nop") == 0) state->nop = op; } } else if (i == state->extract_opcode (op->match)) bucket = &(state->hash[i]); if (bucket) { new_hash = (nios2_opcode_hash *) malloc (sizeof (nios2_opcode_hash)); if (new_hash == NULL) { /* xgettext:c-format */ opcodes_error_handler (_("out of memory")); exit (1); } new_hash->opcode = op; new_hash->next = NULL; while (*bucket) bucket = &((*bucket)->next); *bucket = new_hash; } } state->init = 1; #ifdef DEBUG_HASHTABLE for (i = 0; i < OPCODE_HASH_SIZE; ++i) { nios2_opcode_hash *tmp_hash = state->hash[i]; printf ("index: 0x%02X ops: ", i); while (tmp_hash != NULL) { printf ("%s ", tmp_hash->opcode->name); tmp_hash = tmp_hash->next; } printf ("\n"); } for (i = 0; i < OPCODE_HASH_SIZE; ++i) { nios2_opcode_hash *tmp_hash = state->ps_hash[i]; printf ("index: 0x%02X ops: ", i); while (tmp_hash != NULL) { printf ("%s ", tmp_hash->opcode->name); tmp_hash = tmp_hash->next; } printf ("\n"); } #endif /* DEBUG_HASHTABLE */ } /* Return a pointer to an nios2_opcode struct for a given instruction word OPCODE for bfd machine MACH, or NULL if there is an error. */ const struct nios2_opcode * nios2_find_opcode_hash (unsigned long opcode, unsigned long mach) { nios2_opcode_hash *entry; nios2_disassembler_state *state; /* Select the right instruction set, hash tables, and opcode accessor for the mach variant. */ if (mach == bfd_mach_nios2r2) state = &nios2_r2_disassembler_state; else state = &nios2_r1_disassembler_state; /* Build a hash table to shorten the search time. */ if (!state->init) nios2_init_opcode_hash (state); /* Check for NOP first. Both NOP and MOV are macros that expand into an ADD instruction, and we always want to give priority to NOP. */ if (state->nop->match == (opcode & state->nop->mask)) return state->nop; /* First look in the pseudo-op hashtable. */ for (entry = state->ps_hash[state->extract_opcode (opcode)]; entry; entry = entry->next) if (entry->opcode->match == (opcode & entry->opcode->mask)) return entry->opcode; /* Otherwise look in the main hashtable. */ for (entry = state->hash[state->extract_opcode (opcode)]; entry; entry = entry->next) if (entry->opcode->match == (opcode & entry->opcode->mask)) return entry->opcode; return NULL; } /* There are 32 regular registers, 32 coprocessor registers, and 32 control registers. */ #define NUMREGNAMES 32 /* Return a pointer to the base of the coprocessor register name array. */ static struct nios2_reg * nios2_coprocessor_regs (void) { static struct nios2_reg *cached = NULL; if (!cached) { int i; for (i = NUMREGNAMES; i < nios2_num_regs; i++) if (!strcmp (nios2_regs[i].name, "c0")) { cached = nios2_regs + i; break; } assert (cached); } return cached; } /* Return a pointer to the base of the control register name array. */ static struct nios2_reg * nios2_control_regs (void) { static struct nios2_reg *cached = NULL; if (!cached) { int i; for (i = NUMREGNAMES; i < nios2_num_regs; i++) if (!strcmp (nios2_regs[i].name, "status")) { cached = nios2_regs + i; break; } assert (cached); } return cached; } /* Helper routine to report internal errors. */ static void bad_opcode (const struct nios2_opcode *op) { opcodes_error_handler /* xgettext:c-format */ (_("internal error: broken opcode descriptor for `%s %s'"), op->name, op->args); abort (); } /* The function nios2_print_insn_arg uses the character pointed to by ARGPTR to determine how it print the next token or separator character in the arguments to an instruction. */ static int nios2_print_insn_arg (const char *argptr, unsigned long opcode, bfd_vma address, disassemble_info *info, const struct nios2_opcode *op) { unsigned long i = 0; long s = 0; int32_t o = 0; struct nios2_reg *reg_base; switch (*argptr) { case ',': case '(': case ')': (*info->fprintf_func) (info->stream, "%c", *argptr); break; case 'c': /* Control register index. */ switch (op->format) { case iw_r_type: i = GET_IW_R_IMM5 (opcode); break; case iw_F3X6L5_type: i = GET_IW_F3X6L5_IMM5 (opcode); break; default: bad_opcode (op); } reg_base = nios2_control_regs (); (*info->fprintf_func) (info->stream, "%s", reg_base[i].name); break; case 'd': reg_base = nios2_regs; switch (op->format) { case iw_r_type: i = GET_IW_R_C (opcode); break; case iw_custom_type: i = GET_IW_CUSTOM_C (opcode); if (GET_IW_CUSTOM_READC (opcode) == 0) reg_base = nios2_coprocessor_regs (); break; case iw_F3X6L5_type: case iw_F3X6_type: i = GET_IW_F3X6L5_C (opcode); break; case iw_F3X8_type: i = GET_IW_F3X8_C (opcode); if (GET_IW_F3X8_READC (opcode) == 0) reg_base = nios2_coprocessor_regs (); break; case iw_F2_type: i = GET_IW_F2_B (opcode); break; default: bad_opcode (op); } if (i < NUMREGNAMES) (*info->fprintf_func) (info->stream, "%s", reg_base[i].name); else (*info->fprintf_func) (info->stream, "unknown"); break; case 's': reg_base = nios2_regs; switch (op->format) { case iw_r_type: i = GET_IW_R_A (opcode); break; case iw_i_type: i = GET_IW_I_A (opcode); break; case iw_custom_type: i = GET_IW_CUSTOM_A (opcode); if (GET_IW_CUSTOM_READA (opcode) == 0) reg_base = nios2_coprocessor_regs (); break; case iw_F2I16_type: i = GET_IW_F2I16_A (opcode); break; case iw_F2X4I12_type: i = GET_IW_F2X4I12_A (opcode); break; case iw_F1X4I12_type: i = GET_IW_F1X4I12_A (opcode); break; case iw_F1X4L17_type: i = GET_IW_F1X4L17_A (opcode); break; case iw_F3X6L5_type: case iw_F3X6_type: i = GET_IW_F3X6L5_A (opcode); break; case iw_F2X6L10_type: i = GET_IW_F2X6L10_A (opcode); break; case iw_F3X8_type: i = GET_IW_F3X8_A (opcode); if (GET_IW_F3X8_READA (opcode) == 0) reg_base = nios2_coprocessor_regs (); break; case iw_F1X1_type: i = GET_IW_F1X1_A (opcode); break; case iw_F1I5_type: i = 27; /* Implicit stack pointer reference. */ break; case iw_F2_type: i = GET_IW_F2_A (opcode); break; default: bad_opcode (op); } if (i < NUMREGNAMES) (*info->fprintf_func) (info->stream, "%s", reg_base[i].name); else (*info->fprintf_func) (info->stream, "unknown"); break; case 't': reg_base = nios2_regs; switch (op->format) { case iw_r_type: i = GET_IW_R_B (opcode); break; case iw_i_type: i = GET_IW_I_B (opcode); break; case iw_custom_type: i = GET_IW_CUSTOM_B (opcode); if (GET_IW_CUSTOM_READB (opcode) == 0) reg_base = nios2_coprocessor_regs (); break; case iw_F2I16_type: i = GET_IW_F2I16_B (opcode); break; case iw_F2X4I12_type: i = GET_IW_F2X4I12_B (opcode); break; case iw_F3X6L5_type: case iw_F3X6_type: i = GET_IW_F3X6L5_B (opcode); break; case iw_F2X6L10_type: i = GET_IW_F2X6L10_B (opcode); break; case iw_F3X8_type: i = GET_IW_F3X8_B (opcode); if (GET_IW_F3X8_READB (opcode) == 0) reg_base = nios2_coprocessor_regs (); break; case iw_F1I5_type: i = GET_IW_F1I5_B (opcode); break; case iw_F2_type: i = GET_IW_F2_B (opcode); break; case iw_T1X1I6_type: i = 0; break; default: bad_opcode (op); } if (i < NUMREGNAMES) (*info->fprintf_func) (info->stream, "%s", reg_base[i].name); else (*info->fprintf_func) (info->stream, "unknown"); break; case 'D': switch (op->format) { case iw_T1I7_type: i = GET_IW_T1I7_A3 (opcode); break; case iw_T2X1L3_type: i = GET_IW_T2X1L3_B3 (opcode); break; case iw_T2X1I3_type: i = GET_IW_T2X1I3_B3 (opcode); break; case iw_T3X1_type: i = GET_IW_T3X1_C3 (opcode); break; case iw_T2X3_type: if (op->num_args == 3) i = GET_IW_T2X3_A3 (opcode); else i = GET_IW_T2X3_B3 (opcode); break; default: bad_opcode (op); } i = nios2_r2_reg3_mappings[i]; (*info->fprintf_func) (info->stream, "%s", nios2_regs[i].name); break; case 'M': /* 6-bit unsigned immediate with no shift. */ switch (op->format) { case iw_T1X1I6_type: i = GET_IW_T1X1I6_IMM6 (opcode); break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", i); break; case 'N': /* 6-bit unsigned immediate with 2-bit shift. */ switch (op->format) { case iw_T1X1I6_type: i = GET_IW_T1X1I6_IMM6 (opcode) << 2; break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", i); break; case 'S': switch (op->format) { case iw_T1I7_type: i = GET_IW_T1I7_A3 (opcode); break; case iw_T2I4_type: i = GET_IW_T2I4_A3 (opcode); break; case iw_T2X1L3_type: i = GET_IW_T2X1L3_A3 (opcode); break; case iw_T2X1I3_type: i = GET_IW_T2X1I3_A3 (opcode); break; case iw_T3X1_type: i = GET_IW_T3X1_A3 (opcode); break; case iw_T2X3_type: i = GET_IW_T2X3_A3 (opcode); break; case iw_T1X1I6_type: i = GET_IW_T1X1I6_A3 (opcode); break; default: bad_opcode (op); } i = nios2_r2_reg3_mappings[i]; (*info->fprintf_func) (info->stream, "%s", nios2_regs[i].name); break; case 'T': switch (op->format) { case iw_T2I4_type: i = GET_IW_T2I4_B3 (opcode); break; case iw_T3X1_type: i = GET_IW_T3X1_B3 (opcode); break; case iw_T2X3_type: i = GET_IW_T2X3_B3 (opcode); break; default: bad_opcode (op); } i = nios2_r2_reg3_mappings[i]; (*info->fprintf_func) (info->stream, "%s", nios2_regs[i].name); break; case 'i': /* 16-bit signed immediate. */ switch (op->format) { case iw_i_type: s = ((int32_t) ((GET_IW_I_IMM16 (opcode) & 0xffff) ^ 0x8000) - 0x8000); break; case iw_F2I16_type: s = ((int32_t) ((GET_IW_F2I16_IMM16 (opcode) & 0xffff) ^ 0x8000) - 0x8000); break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", s); break; case 'I': /* 12-bit signed immediate. */ switch (op->format) { case iw_F2X4I12_type: s = ((int32_t) ((GET_IW_F2X4I12_IMM12 (opcode) & 0xfff) ^ 0x800) - 0x800); break; case iw_F1X4I12_type: s = ((int32_t) ((GET_IW_F1X4I12_IMM12 (opcode) & 0xfff) ^ 0x800) - 0x800); break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", s); break; case 'u': /* 16-bit unsigned immediate. */ switch (op->format) { case iw_i_type: i = GET_IW_I_IMM16 (opcode); break; case iw_F2I16_type: i = GET_IW_F2I16_IMM16 (opcode); break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", i); break; case 'U': /* 7-bit unsigned immediate with 2-bit shift. */ switch (op->format) { case iw_T1I7_type: i = GET_IW_T1I7_IMM7 (opcode) << 2; break; case iw_X1I7_type: i = GET_IW_X1I7_IMM7 (opcode) << 2; break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", i); break; case 'V': /* 5-bit unsigned immediate with 2-bit shift. */ switch (op->format) { case iw_F1I5_type: i = GET_IW_F1I5_IMM5 (opcode) << 2; break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", i); break; case 'W': /* 4-bit unsigned immediate with 2-bit shift. */ switch (op->format) { case iw_T2I4_type: i = GET_IW_T2I4_IMM4 (opcode) << 2; break; case iw_L5I4X1_type: i = GET_IW_L5I4X1_IMM4 (opcode) << 2; break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", i); break; case 'X': /* 4-bit unsigned immediate with 1-bit shift. */ switch (op->format) { case iw_T2I4_type: i = GET_IW_T2I4_IMM4 (opcode) << 1; break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", i); break; case 'Y': /* 4-bit unsigned immediate without shift. */ switch (op->format) { case iw_T2I4_type: i = GET_IW_T2I4_IMM4 (opcode); break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", i); break; case 'o': /* 16-bit signed immediate address offset. */ switch (op->format) { case iw_i_type: o = ((GET_IW_I_IMM16 (opcode) & 0xffff) ^ 0x8000) - 0x8000; break; case iw_F2I16_type: o = ((GET_IW_F2I16_IMM16 (opcode) & 0xffff) ^ 0x8000) - 0x8000; break; default: bad_opcode (op); } address = address + 4 + o; (*info->print_address_func) (address, info); break; case 'O': /* 10-bit signed address offset with 1-bit shift. */ switch (op->format) { case iw_I10_type: o = (((GET_IW_I10_IMM10 (opcode) & 0x3ff) ^ 0x200) - 0x200) * 2; break; default: bad_opcode (op); } address = address + 2 + o; (*info->print_address_func) (address, info); break; case 'P': /* 7-bit signed address offset with 1-bit shift. */ switch (op->format) { case iw_T1I7_type: o = (((GET_IW_T1I7_IMM7 (opcode) & 0x7f) ^ 0x40) - 0x40) * 2; break; default: bad_opcode (op); } address = address + 2 + o; (*info->print_address_func) (address, info); break; case 'j': /* 5-bit unsigned immediate. */ switch (op->format) { case iw_r_type: i = GET_IW_R_IMM5 (opcode); break; case iw_F3X6L5_type: i = GET_IW_F3X6L5_IMM5 (opcode); break; case iw_F2X6L10_type: i = GET_IW_F2X6L10_MSB (opcode); break; case iw_X2L5_type: i = GET_IW_X2L5_IMM5 (opcode); break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", i); break; case 'k': /* Second 5-bit unsigned immediate field. */ switch (op->format) { case iw_F2X6L10_type: i = GET_IW_F2X6L10_LSB (opcode); break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", i); break; case 'l': /* 8-bit unsigned immediate. */ switch (op->format) { case iw_custom_type: i = GET_IW_CUSTOM_N (opcode); break; case iw_F3X8_type: i = GET_IW_F3X8_N (opcode); break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%lu", i); break; case 'm': /* 26-bit unsigned immediate. */ switch (op->format) { case iw_j_type: i = GET_IW_J_IMM26 (opcode); break; case iw_L26_type: i = GET_IW_L26_IMM26 (opcode); break; default: bad_opcode (op); } /* This translates to an address because it's only used in call instructions. */ address = (address & 0xf0000000) | (i << 2); (*info->print_address_func) (address, info); break; case 'e': /* Encoded enumeration for addi.n/subi.n. */ switch (op->format) { case iw_T2X1I3_type: i = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (opcode)]; break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%lu", i); break; case 'f': /* Encoded enumeration for slli.n/srli.n. */ switch (op->format) { case iw_T2X1L3_type: i = nios2_r2_shi_n_mappings[GET_IW_T2X1I3_IMM3 (opcode)]; break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%lu", i); break; case 'g': /* Encoded enumeration for andi.n. */ switch (op->format) { case iw_T2I4_type: i = nios2_r2_andi_n_mappings[GET_IW_T2I4_IMM4 (opcode)]; break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%lu", i); break; case 'h': /* Encoded enumeration for movi.n. */ switch (op->format) { case iw_T1I7_type: i = GET_IW_T1I7_IMM7 (opcode); if (i == 125) i = 0xff; else if (i == 126) i = -2; else if (i == 127) i = -1; break; default: bad_opcode (op); } (*info->fprintf_func) (info->stream, "%ld", i); break; case 'R': { unsigned long reglist = 0; int dir = 1; int k, t; switch (op->format) { case iw_F1X4L17_type: /* Encoding for ldwm/stwm. */ i = GET_IW_F1X4L17_REGMASK (opcode); if (GET_IW_F1X4L17_RS (opcode)) { reglist = ((i << 14) & 0x00ffc000); if (i & (1 << 10)) reglist |= (1 << 28); if (i & (1 << 11)) reglist |= (1u << 31); } else reglist = i << 2; dir = GET_IW_F1X4L17_REGMASK (opcode) ? 1 : -1; break; case iw_L5I4X1_type: /* Encoding for push.n/pop.n. */ reglist |= (1u << 31); if (GET_IW_L5I4X1_FP (opcode)) reglist |= (1 << 28); if (GET_IW_L5I4X1_CS (opcode)) { int val = GET_IW_L5I4X1_REGRANGE (opcode); reglist |= nios2_r2_reg_range_mappings[val]; } dir = (op->match == MATCH_R2_POP_N ? 1 : -1); break; default: bad_opcode (op); } t = 0; (*info->fprintf_func) (info->stream, "{"); for (k = (dir == 1 ? 0 : 31); (dir == 1 && k < 32) || (dir == -1 && k >= 0); k += dir) if (reglist & (1u << k)) { if (t) (*info->fprintf_func) (info->stream, ","); else t++; (*info->fprintf_func) (info->stream, "%s", nios2_regs[k].name); } (*info->fprintf_func) (info->stream, "}"); break; } case 'B': /* Base register and options for ldwm/stwm. */ switch (op->format) { case iw_F1X4L17_type: if (GET_IW_F1X4L17_ID (opcode) == 0) (*info->fprintf_func) (info->stream, "--"); i = GET_IW_F1X4I12_A (opcode); (*info->fprintf_func) (info->stream, "(%s)", nios2_builtin_regs[i].name); if (GET_IW_F1X4L17_ID (opcode)) (*info->fprintf_func) (info->stream, "++"); if (GET_IW_F1X4L17_WB (opcode)) (*info->fprintf_func) (info->stream, ",writeback"); if (GET_IW_F1X4L17_PC (opcode)) (*info->fprintf_func) (info->stream, ",ret"); break; default: bad_opcode (op); } break; default: (*info->fprintf_func) (info->stream, "unknown"); break; } return 0; } /* nios2_disassemble does all the work of disassembling a Nios II instruction opcode. */ static int nios2_disassemble (bfd_vma address, unsigned long opcode, disassemble_info *info) { const struct nios2_opcode *op; info->bytes_per_line = INSNLEN; info->bytes_per_chunk = INSNLEN; info->display_endian = info->endian; info->insn_info_valid = 1; info->branch_delay_insns = 0; info->data_size = 0; info->insn_type = dis_nonbranch; info->target = 0; info->target2 = 0; /* Find the major opcode and use this to disassemble the instruction and its arguments. */ op = nios2_find_opcode_hash (opcode, info->mach); if (op != NULL) { const char *argstr = op->args; (*info->fprintf_func) (info->stream, "%s", op->name); if (argstr != NULL && *argstr != '\0') { (*info->fprintf_func) (info->stream, "\t"); while (*argstr != '\0') { nios2_print_insn_arg (argstr, opcode, address, info, op); ++argstr; } } /* Tell the caller how far to advance the program counter. */ info->bytes_per_chunk = op->size; return op->size; } else { /* Handle undefined instructions. */ info->insn_type = dis_noninsn; (*info->fprintf_func) (info->stream, "0x%lx", opcode); return INSNLEN; } } /* print_insn_nios2 is the main disassemble function for Nios II. The function diassembler(abfd) (source in disassemble.c) returns a pointer to this either print_insn_big_nios2 or print_insn_little_nios2, which in turn call this function when the bfd machine type is Nios II. print_insn_nios2 reads the instruction word at the address given, and prints the disassembled instruction on the stream info->stream using info->fprintf_func. */ static int print_insn_nios2 (bfd_vma address, disassemble_info *info, enum bfd_endian endianness) { bfd_byte buffer[INSNLEN]; int status; status = (*info->read_memory_func) (address, buffer, INSNLEN, info); if (status == 0) { unsigned long insn; if (endianness == BFD_ENDIAN_BIG) insn = (unsigned long) bfd_getb32 (buffer); else insn = (unsigned long) bfd_getl32 (buffer); return nios2_disassemble (address, insn, info); } /* We might have a 16-bit R2 instruction at the end of memory. Try that. */ if (info->mach == bfd_mach_nios2r2) { status = (*info->read_memory_func) (address, buffer, 2, info); if (status == 0) { unsigned long insn; if (endianness == BFD_ENDIAN_BIG) insn = (unsigned long) bfd_getb16 (buffer); else insn = (unsigned long) bfd_getl16 (buffer); return nios2_disassemble (address, insn, info); } } /* If we got here, we couldn't read anything. */ (*info->memory_error_func) (status, address, info); return -1; } /* These two functions are the main entry points, accessed from disassemble.c. */ int print_insn_big_nios2 (bfd_vma address, disassemble_info *info) { return print_insn_nios2 (address, info, BFD_ENDIAN_BIG); } int print_insn_little_nios2 (bfd_vma address, disassemble_info *info) { return print_insn_nios2 (address, info, BFD_ENDIAN_LITTLE); }