/* Miscellaneous utilities. Copyright (C) 2019-2023 Free Software Foundation, Inc. This file is part of libctf. libctf is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not see . */ #include #include #include "ctf-endian.h" /* Simple doubly-linked list append routine. This implementation assumes that each list element contains an embedded ctf_list_t as the first member. An additional ctf_list_t is used to store the head (l_next) and tail (l_prev) pointers. The current head and tail list elements have their previous and next pointers set to NULL, respectively. */ void ctf_list_append (ctf_list_t *lp, void *newp) { ctf_list_t *p = lp->l_prev; /* p = tail list element. */ ctf_list_t *q = newp; /* q = new list element. */ lp->l_prev = q; q->l_prev = p; q->l_next = NULL; if (p != NULL) p->l_next = q; else lp->l_next = q; } /* Prepend the specified existing element to the given ctf_list_t. The existing pointer should be pointing at a struct with embedded ctf_list_t. */ void ctf_list_prepend (ctf_list_t * lp, void *newp) { ctf_list_t *p = newp; /* p = new list element. */ ctf_list_t *q = lp->l_next; /* q = head list element. */ lp->l_next = p; p->l_prev = NULL; p->l_next = q; if (q != NULL) q->l_prev = p; else lp->l_prev = p; } /* Delete the specified existing element from the given ctf_list_t. The existing pointer should be pointing at a struct with embedded ctf_list_t. */ void ctf_list_delete (ctf_list_t *lp, void *existing) { ctf_list_t *p = existing; if (p->l_prev != NULL) p->l_prev->l_next = p->l_next; else lp->l_next = p->l_next; if (p->l_next != NULL) p->l_next->l_prev = p->l_prev; else lp->l_prev = p->l_prev; } /* Return 1 if the list is empty. */ int ctf_list_empty_p (ctf_list_t *lp) { return (lp->l_next == NULL && lp->l_prev == NULL); } /* Splice one entire list onto the end of another one. The existing list is emptied. */ void ctf_list_splice (ctf_list_t *lp, ctf_list_t *append) { if (ctf_list_empty_p (append)) return; if (lp->l_prev != NULL) lp->l_prev->l_next = append->l_next; else lp->l_next = append->l_next; append->l_next->l_prev = lp->l_prev; lp->l_prev = append->l_prev; append->l_next = NULL; append->l_prev = NULL; } /* Convert a 32-bit ELF symbol to a ctf_link_sym_t. */ ctf_link_sym_t * ctf_elf32_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf32_Sym *src, uint32_t symidx) { Elf32_Sym tmp; int needs_flipping = 0; #ifdef WORDS_BIGENDIAN if (fp->ctf_symsect_little_endian) needs_flipping = 1; #else if (!fp->ctf_symsect_little_endian) needs_flipping = 1; #endif memcpy (&tmp, src, sizeof (Elf32_Sym)); if (needs_flipping) { swap_thing (tmp.st_name); swap_thing (tmp.st_size); swap_thing (tmp.st_shndx); swap_thing (tmp.st_value); } /* The name must be in the external string table. */ if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len) dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name; else dst->st_name = _CTF_NULLSTR; dst->st_nameidx_set = 0; dst->st_symidx = symidx; dst->st_shndx = tmp.st_shndx; dst->st_type = ELF32_ST_TYPE (tmp.st_info); dst->st_value = tmp.st_value; return dst; } /* Convert a 64-bit ELF symbol to a ctf_link_sym_t. */ ctf_link_sym_t * ctf_elf64_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf64_Sym *src, uint32_t symidx) { Elf64_Sym tmp; int needs_flipping = 0; #ifdef WORDS_BIGENDIAN if (fp->ctf_symsect_little_endian) needs_flipping = 1; #else if (!fp->ctf_symsect_little_endian) needs_flipping = 1; #endif memcpy (&tmp, src, sizeof (Elf64_Sym)); if (needs_flipping) { swap_thing (tmp.st_name); swap_thing (tmp.st_size); swap_thing (tmp.st_shndx); swap_thing (tmp.st_value); } /* The name must be in the external string table. */ if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len) dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name; else dst->st_name = _CTF_NULLSTR; dst->st_nameidx_set = 0; dst->st_symidx = symidx; dst->st_shndx = tmp.st_shndx; dst->st_type = ELF32_ST_TYPE (tmp.st_info); /* We only care if the value is zero, so avoid nonzeroes turning into zeroes. */ if (_libctf_unlikely_ (tmp.st_value != 0 && ((uint32_t) tmp.st_value == 0))) dst->st_value = 1; else dst->st_value = (uint32_t) tmp.st_value; return dst; } /* A string appender working on dynamic strings. Returns NULL on OOM. */ char * ctf_str_append (char *s, const char *append) { size_t s_len = 0; if (append == NULL) return s; if (s != NULL) s_len = strlen (s); size_t append_len = strlen (append); if ((s = realloc (s, s_len + append_len + 1)) == NULL) return NULL; memcpy (s + s_len, append, append_len); s[s_len + append_len] = '\0'; return s; } /* A version of ctf_str_append that returns the old string on OOM. */ char * ctf_str_append_noerr (char *s, const char *append) { char *new_s; new_s = ctf_str_append (s, append); if (!new_s) return s; return new_s; } /* A realloc() that fails noisily if called with any ctf_str_num_users. */ void * ctf_realloc (ctf_dict_t *fp, void *ptr, size_t size) { if (fp->ctf_str_num_refs > 0) { ctf_dprintf ("%p: attempt to realloc() string table with %lu active refs\n", (void *) fp, (unsigned long) fp->ctf_str_num_refs); return NULL; } return realloc (ptr, size); } /* Store the specified error code into errp if it is non-NULL, and then return NULL for the benefit of the caller. */ void * ctf_set_open_errno (int *errp, int error) { if (errp != NULL) *errp = error; return NULL; } /* Store the specified error code into the CTF dict, and then return CTF_ERR / -1 for the benefit of the caller. */ unsigned long ctf_set_errno (ctf_dict_t *fp, int err) { fp->ctf_errno = err; return CTF_ERR; } /* Create a ctf_next_t. */ ctf_next_t * ctf_next_create (void) { return calloc (1, sizeof (struct ctf_next)); } /* Destroy a ctf_next_t, for early exit from iterators. */ void ctf_next_destroy (ctf_next_t *i) { if (i == NULL) return; if (i->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted) free (i->u.ctn_sorted_hkv); if (i->ctn_next) ctf_next_destroy (i->ctn_next); free (i); } /* Copy a ctf_next_t. */ ctf_next_t * ctf_next_copy (ctf_next_t *i) { ctf_next_t *i2; if ((i2 = ctf_next_create()) == NULL) return NULL; memcpy (i2, i, sizeof (struct ctf_next)); if (i2->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted) { size_t els = ctf_dynhash_elements ((ctf_dynhash_t *) i->cu.ctn_h); if ((i2->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL) { free (i2); return NULL; } memcpy (i2->u.ctn_sorted_hkv, i->u.ctn_sorted_hkv, els * sizeof (ctf_next_hkv_t)); } return i2; }