// layout.cc -- lay out output file sections for gold #include "gold.h" #include #include #include #include #include #include "output.h" #include "layout.h" namespace gold { // Layout_task methods. Layout_task::~Layout_task() { } // This task can be run when it is unblocked. Task::Is_runnable_type Layout_task::is_runnable(Workqueue*) { if (this->this_blocker_->is_blocked()) return IS_BLOCKED; return IS_RUNNABLE; } // We don't need to hold any locks for the duration of this task. In // fact this task will be the only one running. Task_locker* Layout_task::locks(Workqueue*) { return NULL; } // Lay out the sections. This is called after all the input objects // have been read. void Layout_task::run(Workqueue* workqueue) { // Nothing ever frees this. Layout* layout = new Layout(this->options_); layout->init(); for (Input_objects::Object_list::const_iterator p = this->input_objects_->begin(); p != this->input_objects_->end(); ++p) (*p)->layout(layout); off_t file_size = layout->finalize(this->input_objects_, this->symtab_); // Now we know the final size of the output file and we know where // each piece of information goes. Output_file* of = new Output_file(this->options_); of->open(file_size); // Queue up the final set of tasks. gold::queue_final_tasks(this->options_, this->input_objects_, this->symtab_, layout, workqueue, of); } // Layout methods. Layout::Layout(const General_options& options) : options_(options), last_shndx_(0), namepool_(), sympool_(), signatures_(), section_name_map_(), segment_list_(), section_list_(), special_output_list_() { } // Prepare for doing layout. void Layout::init() { // Make space for more than enough segments for a typical file. // This is just for efficiency--it's OK if we wind up needing more. segment_list_.reserve(12); } // Hash a key we use to look up an output section mapping. size_t Layout::Hash_key::operator()(const Layout::Key& k) const { return reinterpret_cast(k.first) + k.second.first + k.second.second; } // Whether to include this section in the link. template bool Layout::include_section(Object*, const char*, const elfcpp::Shdr& shdr) { // Some section types are never linked. Some are only linked when // doing a relocateable link. switch (shdr.get_sh_type()) { case elfcpp::SHT_NULL: case elfcpp::SHT_SYMTAB: case elfcpp::SHT_DYNSYM: case elfcpp::SHT_STRTAB: case elfcpp::SHT_HASH: case elfcpp::SHT_DYNAMIC: case elfcpp::SHT_SYMTAB_SHNDX: return false; case elfcpp::SHT_RELA: case elfcpp::SHT_REL: case elfcpp::SHT_GROUP: return this->options_.is_relocatable(); default: // FIXME: Handle stripping debug sections here. return true; } } // Return the output section to use for input section NAME, with // header HEADER, from object OBJECT. Set *OFF to the offset of this // input section without the output section. template Output_section* Layout::layout(Object* object, const char* name, const elfcpp::Shdr& shdr, off_t* off) { // We discard empty input sections. if (shdr.get_sh_size() == 0) return NULL; if (!this->include_section(object, name, shdr)) return NULL; // Unless we are doing a relocateable link, .gnu.linkonce sections // are laid out as though they were named for the sections are // placed into. if (!this->options_.is_relocatable() && Layout::is_linkonce(name)) name = Layout::linkonce_output_name(name); // FIXME: Handle SHF_OS_NONCONFORMING here. // Canonicalize the section name. name = this->namepool_.add(name); // Find the output section. The output section is selected based on // the section name, type, and flags. // FIXME: If we want to do relaxation, we need to modify this // algorithm. We also build a list of input sections for each // output section. Then we relax all the input sections. Then we // walk down the list and adjust all the offsets. elfcpp::Elf_Word type = shdr.get_sh_type(); elfcpp::Elf_Xword flags = shdr.get_sh_flags(); const Key key(name, std::make_pair(type, flags)); const std::pair v(key, NULL); std::pair ins( this->section_name_map_.insert(v)); Output_section* os; if (!ins.second) os = ins.first->second; else { // This is the first time we've seen this name/type/flags // combination. os = this->make_output_section(name, type, flags); ins.first->second = os; } // FIXME: Handle SHF_LINK_ORDER somewhere. *off = os->add_input_section(object, name, shdr); return os; } // Map section flags to segment flags. elfcpp::Elf_Word Layout::section_flags_to_segment(elfcpp::Elf_Xword flags) { elfcpp::Elf_Word ret = elfcpp::PF_R; if ((flags & elfcpp::SHF_WRITE) != 0) ret |= elfcpp::PF_W; if ((flags & elfcpp::SHF_EXECINSTR) != 0) ret |= elfcpp::PF_X; return ret; } // Make a new Output_section, and attach it to segments as // appropriate. Output_section* Layout::make_output_section(const char* name, elfcpp::Elf_Word type, elfcpp::Elf_Xword flags) { ++this->last_shndx_; Output_section* os = new Output_section(name, type, flags, this->last_shndx_); if ((flags & elfcpp::SHF_ALLOC) == 0) this->section_list_.push_back(os); else { // This output section goes into a PT_LOAD segment. elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags); // The only thing we really care about for PT_LOAD segments is // whether or not they are writable, so that is how we search // for them. People who need segments sorted on some other // basis will have to wait until we implement a mechanism for // them to describe the segments they want. Segment_list::const_iterator p; for (p = this->segment_list_.begin(); p != this->segment_list_.end(); ++p) { if ((*p)->type() == elfcpp::PT_LOAD && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W)) { (*p)->add_output_section(os, seg_flags); break; } } if (p == this->segment_list_.end()) { Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD, seg_flags); this->segment_list_.push_back(oseg); oseg->add_output_section(os, seg_flags); } // If we see a loadable SHT_NOTE section, we create a PT_NOTE // segment. if (type == elfcpp::SHT_NOTE) { // See if we already have an equivalent PT_NOTE segment. for (p = this->segment_list_.begin(); p != segment_list_.end(); ++p) { if ((*p)->type() == elfcpp::PT_NOTE && (((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))) { (*p)->add_output_section(os, seg_flags); break; } } if (p == this->segment_list_.end()) { Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE, seg_flags); this->segment_list_.push_back(oseg); oseg->add_output_section(os, seg_flags); } } // If we see a loadable SHF_TLS section, we create a PT_TLS // segment. if ((flags & elfcpp::SHF_TLS) != 0) { // See if we already have an equivalent PT_TLS segment. for (p = this->segment_list_.begin(); p != segment_list_.end(); ++p) { if ((*p)->type() == elfcpp::PT_TLS && (((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))) { (*p)->add_output_section(os, seg_flags); break; } } if (p == this->segment_list_.end()) { Output_segment* oseg = new Output_segment(elfcpp::PT_TLS, seg_flags); this->segment_list_.push_back(oseg); oseg->add_output_section(os, seg_flags); } } } return os; } // Find the first read-only PT_LOAD segment, creating one if // necessary. Output_segment* Layout::find_first_load_seg() { for (Segment_list::const_iterator p = this->segment_list_.begin(); p != this->segment_list_.end(); ++p) { if ((*p)->type() == elfcpp::PT_LOAD && ((*p)->flags() & elfcpp::PF_R) != 0 && ((*p)->flags() & elfcpp::PF_W) == 0) return *p; } Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R); this->segment_list_.push_back(load_seg); return load_seg; } // Finalize the layout. When this is called, we have created all the // output sections and all the output segments which are based on // input sections. We have several things to do, and we have to do // them in the right order, so that we get the right results correctly // and efficiently. // 1) Finalize the list of output segments and create the segment // table header. // 2) Finalize the dynamic symbol table and associated sections. // 3) Determine the final file offset of all the output segments. // 4) Determine the final file offset of all the SHF_ALLOC output // sections. // 5) Create the symbol table sections and the section name table // section. // 6) Finalize the symbol table: set symbol values to their final // value and make a final determination of which symbols are going // into the output symbol table. // 7) Create the section table header. // 8) Determine the final file offset of all the output sections which // are not SHF_ALLOC, including the section table header. // 9) Finalize the ELF file header. // This function returns the size of the output file. off_t Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab) { if (input_objects->any_dynamic()) { // If there are any dynamic objects in the link, then we need // some additional segments: PT_PHDRS, PT_INTERP, and // PT_DYNAMIC. We also need to finalize the dynamic symbol // table and create the dynamic hash table. abort(); } // FIXME: Handle PT_GNU_STACK. Output_segment* load_seg = this->find_first_load_seg(); // Lay out the segment headers. int size = input_objects->target()->get_size(); bool big_endian = input_objects->target()->is_big_endian(); Output_segment_headers* segment_headers; segment_headers = new Output_segment_headers(size, big_endian, this->segment_list_); load_seg->add_initial_output_data(segment_headers); this->special_output_list_.push_back(segment_headers); // FIXME: Attach them to PT_PHDRS if necessary. // Lay out the file header. Output_file_header* file_header; file_header = new Output_file_header(size, big_endian, this->options_, input_objects->target(), symtab, segment_headers); load_seg->add_initial_output_data(file_header); this->special_output_list_.push_back(file_header); // Set the file offsets of all the segments. off_t off = this->set_segment_offsets(input_objects->target(), load_seg); // Create the symbol table sections. // FIXME: We don't need to do this if we are stripping symbols. Output_section* osymtab; Output_section* ostrtab; this->create_symtab_sections(size, input_objects, symtab, &off, &osymtab, &ostrtab); // Create the .shstrtab section. Output_section* shstrtab_section = this->create_shstrtab(); // Set the file offsets of all the sections not associated with // segments. off = this->set_section_offsets(off); // Create the section table header. Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off); file_header->set_section_info(oshdrs, shstrtab_section); // Now we know exactly where everything goes in the output file. return off; } // Return whether SEG1 should be before SEG2 in the output file. This // is based entirely on the segment type and flags. When this is // called the segment addresses has normally not yet been set. bool Layout::segment_precedes(const Output_segment* seg1, const Output_segment* seg2) { elfcpp::Elf_Word type1 = seg1->type(); elfcpp::Elf_Word type2 = seg2->type(); // The single PT_PHDR segment is required to precede any loadable // segment. We simply make it always first. if (type1 == elfcpp::PT_PHDR) { assert(type2 != elfcpp::PT_PHDR); return true; } if (type2 == elfcpp::PT_PHDR) return false; // The single PT_INTERP segment is required to precede any loadable // segment. We simply make it always second. if (type1 == elfcpp::PT_INTERP) { assert(type2 != elfcpp::PT_INTERP); return true; } if (type2 == elfcpp::PT_INTERP) return false; // We then put PT_LOAD segments before any other segments. if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD) return true; if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD) return false; const elfcpp::Elf_Word flags1 = seg1->flags(); const elfcpp::Elf_Word flags2 = seg2->flags(); // The order of non-PT_LOAD segments is unimportant. We simply sort // by the numeric segment type and flags values. There should not // be more than one segment with the same type and flags. if (type1 != elfcpp::PT_LOAD) { if (type1 != type2) return type1 < type2; assert(flags1 != flags2); return flags1 < flags2; } // We sort PT_LOAD segments based on the flags. Readonly segments // come before writable segments. Then executable segments come // before non-executable segments. Then the unlikely case of a // non-readable segment comes before the normal case of a readable // segment. If there are multiple segments with the same type and // flags, we require that the address be set, and we sort by // virtual address and then physical address. if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W)) return (flags1 & elfcpp::PF_W) == 0; if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X)) return (flags1 & elfcpp::PF_X) != 0; if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R)) return (flags1 & elfcpp::PF_R) == 0; uint64_t vaddr1 = seg1->vaddr(); uint64_t vaddr2 = seg2->vaddr(); if (vaddr1 != vaddr2) return vaddr1 < vaddr2; uint64_t paddr1 = seg1->paddr(); uint64_t paddr2 = seg2->paddr(); assert(paddr1 != paddr2); return paddr1 < paddr2; } // Set the file offsets of all the segments. They have all been // created. LOAD_SEG must be be laid out first. Return the offset of // the data to follow. off_t Layout::set_segment_offsets(const Target* target, Output_segment* load_seg) { // Sort them into the final order. std::sort(this->segment_list_.begin(), this->segment_list_.end(), Layout::Compare_segments()); // Find the PT_LOAD segments, and set their addresses and offsets // and their section's addresses and offsets. uint64_t addr = target->text_segment_address(); off_t off = 0; bool was_readonly = false; for (Segment_list::iterator p = this->segment_list_.begin(); p != this->segment_list_.end(); ++p) { if ((*p)->type() == elfcpp::PT_LOAD) { if (load_seg != NULL && load_seg != *p) abort(); load_seg = NULL; // If the last segment was readonly, and this one is not, // then skip the address forward one page, maintaining the // same position within the page. This lets us store both // segments overlapping on a single page in the file, but // the loader will put them on different pages in memory. uint64_t orig_addr = addr; uint64_t orig_off = off; uint64_t aligned_addr = addr; uint64_t abi_pagesize = target->abi_pagesize(); if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0) { uint64_t align = (*p)->max_data_align(); addr = (addr + align - 1) & ~ (align - 1); aligned_addr = addr; if ((addr & (abi_pagesize - 1)) != 0) addr = addr + abi_pagesize; } off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1)); uint64_t new_addr = (*p)->set_section_addresses(addr, &off); // Now that we know the size of this segment, we may be able // to save a page in memory, at the cost of wasting some // file space, by instead aligning to the start of a new // page. Here we use the real machine page size rather than // the ABI mandated page size. if (aligned_addr != addr) { uint64_t common_pagesize = target->common_pagesize(); uint64_t first_off = (common_pagesize - (aligned_addr & (common_pagesize - 1))); uint64_t last_off = new_addr & (common_pagesize - 1); if (first_off > 0 && last_off > 0 && ((aligned_addr & ~ (common_pagesize - 1)) != (new_addr & ~ (common_pagesize - 1))) && first_off + last_off <= common_pagesize) { addr = ((aligned_addr + common_pagesize - 1) & ~ (common_pagesize - 1)); off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1)); new_addr = (*p)->set_section_addresses(addr, &off); } } addr = new_addr; if (((*p)->flags() & elfcpp::PF_W) == 0) was_readonly = true; } } // Handle the non-PT_LOAD segments, setting their offsets from their // section's offsets. for (Segment_list::iterator p = this->segment_list_.begin(); p != this->segment_list_.end(); ++p) { if ((*p)->type() != elfcpp::PT_LOAD) (*p)->set_offset(); } return off; } // Set the file offset of all the sections not associated with a // segment. off_t Layout::set_section_offsets(off_t off) { for (Layout::Section_list::iterator p = this->section_list_.begin(); p != this->section_list_.end(); ++p) { if ((*p)->offset() != -1) continue; uint64_t addralign = (*p)->addralign(); if (addralign != 0) off = (off + addralign - 1) & ~ (addralign - 1); (*p)->set_address(0, off); off += (*p)->data_size(); } return off; } // Create the symbol table sections. void Layout::create_symtab_sections(int size, const Input_objects* input_objects, Symbol_table* symtab, off_t* poff, Output_section** posymtab, Output_section** postrtab) { int symsize; unsigned int align; if (size == 32) { symsize = elfcpp::Elf_sizes<32>::sym_size; align = 4; } else if (size == 64) { symsize = elfcpp::Elf_sizes<64>::sym_size; align = 8; } else abort(); off_t off = *poff; off = (off + align - 1) & ~ (align - 1); off_t startoff = off; // Save space for the dummy symbol at the start of the section. We // never bother to write this out--it will just be left as zero. off += symsize; for (Input_objects::Object_list::const_iterator p = input_objects->begin(); p != input_objects->end(); ++p) { Task_lock_obj tlo(**p); off = (*p)->finalize_local_symbols(off, &this->sympool_); } unsigned int local_symcount = (off - startoff) / symsize; assert(local_symcount * symsize == off - startoff); off = symtab->finalize(off, &this->sympool_); this->sympool_.set_string_offsets(); ++this->last_shndx_; const char* symtab_name = this->namepool_.add(".symtab"); Output_section* osymtab = new Output_section_symtab(symtab_name, off - startoff, this->last_shndx_); this->section_list_.push_back(osymtab); ++this->last_shndx_; const char* strtab_name = this->namepool_.add(".strtab"); Output_section *ostrtab = new Output_section_strtab(strtab_name, &this->sympool_, this->last_shndx_); this->section_list_.push_back(ostrtab); this->special_output_list_.push_back(ostrtab); osymtab->set_address(0, startoff); osymtab->set_link(ostrtab->shndx()); osymtab->set_info(local_symcount); osymtab->set_entsize(symsize); osymtab->set_addralign(align); *poff = off; *posymtab = osymtab; *postrtab = ostrtab; } // Create the .shstrtab section, which holds the names of the // sections. At the time this is called, we have created all the // output sections except .shstrtab itself. Output_section* Layout::create_shstrtab() { // FIXME: We don't need to create a .shstrtab section if we are // stripping everything. const char* name = this->namepool_.add(".shstrtab"); this->namepool_.set_string_offsets(); ++this->last_shndx_; Output_section* os = new Output_section_strtab(name, &this->namepool_, this->last_shndx_); this->section_list_.push_back(os); this->special_output_list_.push_back(os); return os; } // Create the section headers. SIZE is 32 or 64. OFF is the file // offset. Output_section_headers* Layout::create_shdrs(int size, bool big_endian, off_t* poff) { Output_section_headers* oshdrs; oshdrs = new Output_section_headers(size, big_endian, this->segment_list_, this->section_list_, &this->namepool_); uint64_t addralign = oshdrs->addralign(); off_t off = (*poff + addralign - 1) & ~ (addralign - 1); oshdrs->set_address(0, off); off += oshdrs->data_size(); *poff = off; this->special_output_list_.push_back(oshdrs); return oshdrs; } // The mapping of .gnu.linkonce section names to real section names. #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t } const Layout::Linkonce_mapping Layout::linkonce_mapping[] = { MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d". MAPPING_INIT("t", ".text"), MAPPING_INIT("r", ".rodata"), MAPPING_INIT("d", ".data"), MAPPING_INIT("b", ".bss"), MAPPING_INIT("s", ".sdata"), MAPPING_INIT("sb", ".sbss"), MAPPING_INIT("s2", ".sdata2"), MAPPING_INIT("sb2", ".sbss2"), MAPPING_INIT("wi", ".debug_info"), MAPPING_INIT("td", ".tdata"), MAPPING_INIT("tb", ".tbss"), MAPPING_INIT("lr", ".lrodata"), MAPPING_INIT("l", ".ldata"), MAPPING_INIT("lb", ".lbss"), }; #undef MAPPING_INIT const int Layout::linkonce_mapping_count = sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]); // Return the name of the output section to use for a .gnu.linkonce // section. This is based on the default ELF linker script of the old // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo" // to ".text". const char* Layout::linkonce_output_name(const char* name) { const char* s = name + sizeof(".gnu.linkonce") - 1; if (*s != '.') return name; ++s; const Linkonce_mapping* plm = linkonce_mapping; for (int i = 0; i < linkonce_mapping_count; ++i, ++plm) { if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.') return plm->to; } return name; } // Record the signature of a comdat section, and return whether to // include it in the link. If GROUP is true, this is a regular // section group. If GROUP is false, this is a group signature // derived from the name of a linkonce section. We want linkonce // signatures and group signatures to block each other, but we don't // want a linkonce signature to block another linkonce signature. bool Layout::add_comdat(const char* signature, bool group) { std::string sig(signature); std::pair ins( this->signatures_.insert(std::make_pair(signature, group))); if (ins.second) { // This is the first time we've seen this signature. return true; } if (ins.first->second) { // We've already seen a real section group with this signature. return false; } else if (group) { // This is a real section group, and we've already seen a // linkonce section with tihs signature. Record that we've seen // a section group, and don't include this section group. ins.first->second = true; return false; } else { // We've already seen a linkonce section and this is a linkonce // section. These don't block each other--this may be the same // symbol name with different section types. return true; } } // Write out data not associated with a section or the symbol table. void Layout::write_data(Output_file* of) const { for (Data_list::const_iterator p = this->special_output_list_.begin(); p != this->special_output_list_.end(); ++p) (*p)->write(of); } // Write_data_task methods. // We can always run this task. Task::Is_runnable_type Write_data_task::is_runnable(Workqueue*) { return IS_RUNNABLE; } // We need to unlock FINAL_BLOCKER when finished. Task_locker* Write_data_task::locks(Workqueue* workqueue) { return new Task_locker_block(*this->final_blocker_, workqueue); } // Run the task--write out the data. void Write_data_task::run(Workqueue*) { this->layout_->write_data(this->of_); } // Write_symbols_task methods. // We can always run this task. Task::Is_runnable_type Write_symbols_task::is_runnable(Workqueue*) { return IS_RUNNABLE; } // We need to unlock FINAL_BLOCKER when finished. Task_locker* Write_symbols_task::locks(Workqueue* workqueue) { return new Task_locker_block(*this->final_blocker_, workqueue); } // Run the task--write out the symbols. void Write_symbols_task::run(Workqueue*) { this->symtab_->write_globals(this->target_, this->sympool_, this->of_); } // Close_task methods. // We can't run until FINAL_BLOCKER is unblocked. Task::Is_runnable_type Close_task::is_runnable(Workqueue*) { if (this->final_blocker_->is_blocked()) return IS_BLOCKED; return IS_RUNNABLE; } // We don't lock anything. Task_locker* Close_task::locks(Workqueue*) { return NULL; } // Run the task--close the file. void Close_task::run(Workqueue*) { this->of_->close(); } // Instantiate the templates we need. We could use the configure // script to restrict this to only the ones for implemented targets. template Output_section* Layout::layout<32, false>(Object* object, const char* name, const elfcpp::Shdr<32, false>& shdr, off_t*); template Output_section* Layout::layout<32, true>(Object* object, const char* name, const elfcpp::Shdr<32, true>& shdr, off_t*); template Output_section* Layout::layout<64, false>(Object* object, const char* name, const elfcpp::Shdr<64, false>& shdr, off_t*); template Output_section* Layout::layout<64, true>(Object* object, const char* name, const elfcpp::Shdr<64, true>& shdr, off_t*); } // End namespace gold.