/* Target dependent code for the remote server for GNU/Linux ARC. Copyright 2020-2023 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "server.h" #include "regdef.h" #include "linux-low.h" #include "tdesc.h" #include "arch/arc.h" #include #include /* Linux starting with 4.12 supports NT_ARC_V2 note type, which adds R30, R58 and R59 registers. */ #ifdef NT_ARC_V2 #define ARC_HAS_V2_REGSET #endif /* The encoding of the instruction "TRAP_S 1" (endianness agnostic). */ #define TRAP_S_1_OPCODE 0x783e #define TRAP_S_1_SIZE 2 /* Using a mere "uint16_t arc_linux_traps_s = TRAP_S_1_OPCODE" would work as well, because the endianness will end up correctly when the code is compiled for the same endianness as the target (see the notes for "low_breakpoint_at" in this file). However, this illustrates how the __BIG_ENDIAN__ macro can be used to make easy-to-understand codes. */ #if defined(__BIG_ENDIAN__) /* 0x78, 0x3e. */ static gdb_byte arc_linux_trap_s[TRAP_S_1_SIZE] = {TRAP_S_1_OPCODE >> 8, TRAP_S_1_OPCODE & 0xFF}; #else /* 0x3e, 0x78. */ static gdb_byte arc_linux_trap_s[TRAP_S_1_SIZE] = {TRAP_S_1_OPCODE && 0xFF, TRAP_S_1_OPCODE >> 8}; #endif /* Linux target op definitions for the ARC architecture. Note for future: in case of adding the protected method low_get_next_pcs(), the public method supports_software_single_step() should be added to return "true". */ class arc_target : public linux_process_target { public: const regs_info *get_regs_info () override; const gdb_byte *sw_breakpoint_from_kind (int kind, int *size) override; protected: void low_arch_setup () override; bool low_cannot_fetch_register (int regno) override; bool low_cannot_store_register (int regno) override; bool low_supports_breakpoints () override; CORE_ADDR low_get_pc (regcache *regcache) override; void low_set_pc (regcache *regcache, CORE_ADDR newpc) override; bool low_breakpoint_at (CORE_ADDR where) override; }; /* The singleton target ops object. */ static arc_target the_arc_target; bool arc_target::low_supports_breakpoints () { return true; } CORE_ADDR arc_target::low_get_pc (regcache *regcache) { return linux_get_pc_32bit (regcache); } void arc_target::low_set_pc (regcache *regcache, CORE_ADDR pc) { linux_set_pc_32bit (regcache, pc); } static const struct target_desc * arc_linux_read_description (void) { #ifdef __ARC700__ arc_arch_features features (4, ARC_ISA_ARCV1); #else arc_arch_features features (4, ARC_ISA_ARCV2); #endif target_desc_up tdesc = arc_create_target_description (features); static const char *expedite_regs[] = { "sp", "status32", nullptr }; init_target_desc (tdesc.get (), expedite_regs); return tdesc.release (); } void arc_target::low_arch_setup () { current_process ()->tdesc = arc_linux_read_description (); } bool arc_target::low_cannot_fetch_register (int regno) { return (regno >= current_process ()->tdesc->reg_defs.size ()); } bool arc_target::low_cannot_store_register (int regno) { return (regno >= current_process ()->tdesc->reg_defs.size ()); } /* This works for both endianness. Below you see an illustration of how the "trap_s 1" instruction encoded for both endianness in the memory will end up as the TRAP_S_1_OPCODE constant: BE: 0x78 0x3e --> at INSN addr: 0x78 0x3e --> INSN = 0x783e LE: 0x3e 0x78 --> at INSN addr: 0x3e 0x78 --> INSN = 0x783e One can employ "memcmp()" for comparing the arrays too. */ bool arc_target::low_breakpoint_at (CORE_ADDR where) { uint16_t insn; /* "the_target" global variable is the current object at hand. */ this->read_memory (where, (gdb_byte *) &insn, TRAP_S_1_SIZE); return (insn == TRAP_S_1_OPCODE); } /* PTRACE_GETREGSET/NT_PRSTATUS and PTRACE_SETREGSET/NT_PRSTATUS work with regsets in a struct, "user_regs_struct", defined in the linux/arch/arc/include/uapi/asm/ptrace.h header. This code supports ARC Linux ABI v3 and v4. */ /* Populate a ptrace NT_PRSTATUS regset from a regcache. This appears to be a unique approach to populating the buffer, but being name, rather than offset based, it is robust to future API changes, as there is no need to create a regmap of registers in the user_regs_struct. */ static void arc_fill_gregset (struct regcache *regcache, void *buf) { struct user_regs_struct *regbuf = (struct user_regs_struct *) buf; /* Core registers. */ collect_register_by_name (regcache, "r0", &(regbuf->scratch.r0)); collect_register_by_name (regcache, "r1", &(regbuf->scratch.r1)); collect_register_by_name (regcache, "r2", &(regbuf->scratch.r2)); collect_register_by_name (regcache, "r3", &(regbuf->scratch.r3)); collect_register_by_name (regcache, "r4", &(regbuf->scratch.r4)); collect_register_by_name (regcache, "r5", &(regbuf->scratch.r5)); collect_register_by_name (regcache, "r6", &(regbuf->scratch.r6)); collect_register_by_name (regcache, "r7", &(regbuf->scratch.r7)); collect_register_by_name (regcache, "r8", &(regbuf->scratch.r8)); collect_register_by_name (regcache, "r9", &(regbuf->scratch.r9)); collect_register_by_name (regcache, "r10", &(regbuf->scratch.r10)); collect_register_by_name (regcache, "r11", &(regbuf->scratch.r11)); collect_register_by_name (regcache, "r12", &(regbuf->scratch.r12)); collect_register_by_name (regcache, "r13", &(regbuf->callee.r13)); collect_register_by_name (regcache, "r14", &(regbuf->callee.r14)); collect_register_by_name (regcache, "r15", &(regbuf->callee.r15)); collect_register_by_name (regcache, "r16", &(regbuf->callee.r16)); collect_register_by_name (regcache, "r17", &(regbuf->callee.r17)); collect_register_by_name (regcache, "r18", &(regbuf->callee.r18)); collect_register_by_name (regcache, "r19", &(regbuf->callee.r19)); collect_register_by_name (regcache, "r20", &(regbuf->callee.r20)); collect_register_by_name (regcache, "r21", &(regbuf->callee.r21)); collect_register_by_name (regcache, "r22", &(regbuf->callee.r22)); collect_register_by_name (regcache, "r23", &(regbuf->callee.r23)); collect_register_by_name (regcache, "r24", &(regbuf->callee.r24)); collect_register_by_name (regcache, "r25", &(regbuf->callee.r25)); collect_register_by_name (regcache, "gp", &(regbuf->scratch.gp)); collect_register_by_name (regcache, "fp", &(regbuf->scratch.fp)); collect_register_by_name (regcache, "sp", &(regbuf->scratch.sp)); collect_register_by_name (regcache, "blink", &(regbuf->scratch.blink)); /* Loop registers. */ collect_register_by_name (regcache, "lp_count", &(regbuf->scratch.lp_count)); collect_register_by_name (regcache, "lp_start", &(regbuf->scratch.lp_start)); collect_register_by_name (regcache, "lp_end", &(regbuf->scratch.lp_end)); /* The current "pc" value must be written to "eret" (exception return address) register, because that is the address that the kernel code will jump back to after a breakpoint exception has been raised. The "pc_stop" value is ignored by the genregs_set() in linux/arch/arc/kernel/ptrace.c. */ collect_register_by_name (regcache, "pc", &(regbuf->scratch.ret)); /* Currently ARC Linux ptrace doesn't allow writes to status32 because some of its bits are kernel mode-only and shoudn't be writable from user-space. Writing status32 from debugger could be useful, though, so ability to write non-priviliged bits will be added to kernel sooner or later. */ /* BTA. */ collect_register_by_name (regcache, "bta", &(regbuf->scratch.bta)); } /* Populate a regcache from a ptrace NT_PRSTATUS regset. */ static void arc_store_gregset (struct regcache *regcache, const void *buf) { const struct user_regs_struct *regbuf = (const struct user_regs_struct *) buf; /* Core registers. */ supply_register_by_name (regcache, "r0", &(regbuf->scratch.r0)); supply_register_by_name (regcache, "r1", &(regbuf->scratch.r1)); supply_register_by_name (regcache, "r2", &(regbuf->scratch.r2)); supply_register_by_name (regcache, "r3", &(regbuf->scratch.r3)); supply_register_by_name (regcache, "r4", &(regbuf->scratch.r4)); supply_register_by_name (regcache, "r5", &(regbuf->scratch.r5)); supply_register_by_name (regcache, "r6", &(regbuf->scratch.r6)); supply_register_by_name (regcache, "r7", &(regbuf->scratch.r7)); supply_register_by_name (regcache, "r8", &(regbuf->scratch.r8)); supply_register_by_name (regcache, "r9", &(regbuf->scratch.r9)); supply_register_by_name (regcache, "r10", &(regbuf->scratch.r10)); supply_register_by_name (regcache, "r11", &(regbuf->scratch.r11)); supply_register_by_name (regcache, "r12", &(regbuf->scratch.r12)); supply_register_by_name (regcache, "r13", &(regbuf->callee.r13)); supply_register_by_name (regcache, "r14", &(regbuf->callee.r14)); supply_register_by_name (regcache, "r15", &(regbuf->callee.r15)); supply_register_by_name (regcache, "r16", &(regbuf->callee.r16)); supply_register_by_name (regcache, "r17", &(regbuf->callee.r17)); supply_register_by_name (regcache, "r18", &(regbuf->callee.r18)); supply_register_by_name (regcache, "r19", &(regbuf->callee.r19)); supply_register_by_name (regcache, "r20", &(regbuf->callee.r20)); supply_register_by_name (regcache, "r21", &(regbuf->callee.r21)); supply_register_by_name (regcache, "r22", &(regbuf->callee.r22)); supply_register_by_name (regcache, "r23", &(regbuf->callee.r23)); supply_register_by_name (regcache, "r24", &(regbuf->callee.r24)); supply_register_by_name (regcache, "r25", &(regbuf->callee.r25)); supply_register_by_name (regcache, "gp", &(regbuf->scratch.gp)); supply_register_by_name (regcache, "fp", &(regbuf->scratch.fp)); supply_register_by_name (regcache, "sp", &(regbuf->scratch.sp)); supply_register_by_name (regcache, "blink", &(regbuf->scratch.blink)); /* Loop registers. */ supply_register_by_name (regcache, "lp_count", &(regbuf->scratch.lp_count)); supply_register_by_name (regcache, "lp_start", &(regbuf->scratch.lp_start)); supply_register_by_name (regcache, "lp_end", &(regbuf->scratch.lp_end)); /* The genregs_get() in linux/arch/arc/kernel/ptrace.c populates the pseudo register "stop_pc" with the "efa" (exception fault address) register. This was deemed necessary, because the breakpoint instruction, "trap_s 1", is a committing one; i.e. the "eret" (exception return address) register will be pointing to the next instruction, while "efa" points to the address that raised the breakpoint. */ supply_register_by_name (regcache, "pc", &(regbuf->stop_pc)); unsigned long pcl = regbuf->stop_pc & ~3L; supply_register_by_name (regcache, "pcl", &pcl); /* Other auxilliary registers. */ supply_register_by_name (regcache, "status32", &(regbuf->scratch.status32)); /* BTA. */ supply_register_by_name (regcache, "bta", &(regbuf->scratch.bta)); } #ifdef ARC_HAS_V2_REGSET /* Look through a regcache's TDESC for a register named NAME. If found, return true; false, otherwise. */ static bool is_reg_name_available_p (const struct target_desc *tdesc, const char *name) { for (const gdb::reg ® : tdesc->reg_defs) if (strcmp (name, reg.name) == 0) return true; return false; } /* Copy registers from regcache to user_regs_arcv2. */ static void arc_fill_v2_regset (struct regcache *regcache, void *buf) { struct user_regs_arcv2 *regbuf = (struct user_regs_arcv2 *) buf; if (is_reg_name_available_p (regcache->tdesc, "r30")) collect_register_by_name (regcache, "r30", &(regbuf->r30)); if (is_reg_name_available_p (regcache->tdesc, "r58")) collect_register_by_name (regcache, "r58", &(regbuf->r58)); if (is_reg_name_available_p (regcache->tdesc, "r59")) collect_register_by_name (regcache, "r59", &(regbuf->r59)); } /* Copy registers from user_regs_arcv2 to regcache. */ static void arc_store_v2_regset (struct regcache *regcache, const void *buf) { struct user_regs_arcv2 *regbuf = (struct user_regs_arcv2 *) buf; if (is_reg_name_available_p (regcache->tdesc, "r30")) supply_register_by_name (regcache, "r30", &(regbuf->r30)); if (is_reg_name_available_p (regcache->tdesc, "r58")) supply_register_by_name (regcache, "r58", &(regbuf->r58)); if (is_reg_name_available_p (regcache->tdesc, "r59")) supply_register_by_name (regcache, "r59", &(regbuf->r59)); } #endif /* Fetch the thread-local storage pointer for libthread_db. Note that this function is not called from GDB, but is called from libthread_db. This is the same function as for other architectures, for example in linux-arm-low.c. */ ps_err_e ps_get_thread_area (struct ps_prochandle *ph, lwpid_t lwpid, int idx, void **base) { if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, nullptr, base) != 0) return PS_ERR; /* IDX is the bias from the thread pointer to the beginning of the thread descriptor. It has to be subtracted due to implementation quirks in libthread_db. */ *base = (void *) ((char *) *base - idx); return PS_OK; } static struct regset_info arc_regsets[] = { { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PRSTATUS, sizeof (struct user_regs_struct), GENERAL_REGS, arc_fill_gregset, arc_store_gregset }, #ifdef ARC_HAS_V2_REGSET { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_ARC_V2, sizeof (struct user_regs_arcv2), GENERAL_REGS, arc_fill_v2_regset, arc_store_v2_regset }, #endif NULL_REGSET }; static struct regsets_info arc_regsets_info = { arc_regsets, /* regsets */ 0, /* num_regsets */ nullptr, /* disabled regsets */ }; static struct regs_info arc_regs_info = { nullptr, /* regset_bitmap */ nullptr, /* usrregs */ &arc_regsets_info }; const regs_info * arc_target::get_regs_info () { return &arc_regs_info; } /* One of the methods necessary for Z0 packet support. */ const gdb_byte * arc_target::sw_breakpoint_from_kind (int kind, int *size) { gdb_assert (kind == TRAP_S_1_SIZE); *size = kind; return arc_linux_trap_s; } /* The linux target ops object. */ linux_process_target *the_linux_target = &the_arc_target; void initialize_low_arch (void) { initialize_regsets_info (&arc_regsets_info); }