/* Select target systems and architectures at runtime for GDB. Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. Contributed by Cygnus Support. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include #include "gdb_string.h" #include "target.h" #include "gdbcmd.h" #include "symtab.h" #include "inferior.h" #include "bfd.h" #include "symfile.h" #include "objfiles.h" #include "gdb_wait.h" #include "dcache.h" #include #include "regcache.h" #include "gdb_assert.h" #include "gdbcore.h" #include "exceptions.h" #include "target-descriptions.h" #include "gdbthread.h" #include "solib.h" static void target_info (char *, int); static void kill_or_be_killed (int); static void default_terminal_info (char *, int); static int default_watchpoint_addr_within_range (struct target_ops *, CORE_ADDR, CORE_ADDR, int); static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int); static int nosymbol (char *, CORE_ADDR *); static void tcomplain (void) ATTR_NORETURN; static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *); static int return_zero (void); static int return_one (void); static int return_minus_one (void); void target_ignore (void); static void target_command (char *, int); static struct target_ops *find_default_run_target (char *); static void nosupport_runtime (void); static LONGEST default_xfer_partial (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len); static LONGEST current_xfer_partial (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len); static LONGEST target_xfer_partial (struct target_ops *ops, enum target_object object, const char *annex, void *readbuf, const void *writebuf, ULONGEST offset, LONGEST len); static void init_dummy_target (void); static struct target_ops debug_target; static void debug_to_open (char *, int); static void debug_to_close (int); static void debug_to_attach (char *, int); static void debug_to_detach (char *, int); static void debug_to_resume (ptid_t, int, enum target_signal); static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *); static void debug_to_fetch_registers (struct regcache *, int); static void debug_to_store_registers (struct regcache *, int); static void debug_to_prepare_to_store (struct regcache *); static void debug_to_files_info (struct target_ops *); static int debug_to_insert_breakpoint (struct bp_target_info *); static int debug_to_remove_breakpoint (struct bp_target_info *); static int debug_to_can_use_hw_breakpoint (int, int, int); static int debug_to_insert_hw_breakpoint (struct bp_target_info *); static int debug_to_remove_hw_breakpoint (struct bp_target_info *); static int debug_to_insert_watchpoint (CORE_ADDR, int, int); static int debug_to_remove_watchpoint (CORE_ADDR, int, int); static int debug_to_stopped_by_watchpoint (void); static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *); static int debug_to_watchpoint_addr_within_range (struct target_ops *, CORE_ADDR, CORE_ADDR, int); static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int); static void debug_to_terminal_init (void); static void debug_to_terminal_inferior (void); static void debug_to_terminal_ours_for_output (void); static void debug_to_terminal_save_ours (void); static void debug_to_terminal_ours (void); static void debug_to_terminal_info (char *, int); static void debug_to_kill (void); static void debug_to_load (char *, int); static int debug_to_lookup_symbol (char *, CORE_ADDR *); static void debug_to_mourn_inferior (void); static int debug_to_can_run (void); static void debug_to_notice_signals (ptid_t); static int debug_to_thread_alive (ptid_t); static void debug_to_stop (ptid_t); /* NOTE: cagney/2004-09-29: Many targets reference this variable in wierd and mysterious ways. Putting the variable here lets those wierd and mysterious ways keep building while they are being converted to the inferior inheritance structure. */ struct target_ops deprecated_child_ops; /* Pointer to array of target architecture structures; the size of the array; the current index into the array; the allocated size of the array. */ struct target_ops **target_structs; unsigned target_struct_size; unsigned target_struct_index; unsigned target_struct_allocsize; #define DEFAULT_ALLOCSIZE 10 /* The initial current target, so that there is always a semi-valid current target. */ static struct target_ops dummy_target; /* Top of target stack. */ static struct target_ops *target_stack; /* The target structure we are currently using to talk to a process or file or whatever "inferior" we have. */ struct target_ops current_target; /* Command list for target. */ static struct cmd_list_element *targetlist = NULL; /* Nonzero if we should trust readonly sections from the executable when reading memory. */ static int trust_readonly = 0; /* Nonzero if we should show true memory content including memory breakpoint inserted by gdb. */ static int show_memory_breakpoints = 0; /* Non-zero if we want to see trace of target level stuff. */ static int targetdebug = 0; static void show_targetdebug (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("Target debugging is %s.\n"), value); } static void setup_target_debug (void); DCACHE *target_dcache; /* The user just typed 'target' without the name of a target. */ static void target_command (char *arg, int from_tty) { fputs_filtered ("Argument required (target name). Try `help target'\n", gdb_stdout); } /* Add a possible target architecture to the list. */ void add_target (struct target_ops *t) { /* Provide default values for all "must have" methods. */ if (t->to_xfer_partial == NULL) t->to_xfer_partial = default_xfer_partial; if (!target_structs) { target_struct_allocsize = DEFAULT_ALLOCSIZE; target_structs = (struct target_ops **) xmalloc (target_struct_allocsize * sizeof (*target_structs)); } if (target_struct_size >= target_struct_allocsize) { target_struct_allocsize *= 2; target_structs = (struct target_ops **) xrealloc ((char *) target_structs, target_struct_allocsize * sizeof (*target_structs)); } target_structs[target_struct_size++] = t; if (targetlist == NULL) add_prefix_cmd ("target", class_run, target_command, _("\ Connect to a target machine or process.\n\ The first argument is the type or protocol of the target machine.\n\ Remaining arguments are interpreted by the target protocol. For more\n\ information on the arguments for a particular protocol, type\n\ `help target ' followed by the protocol name."), &targetlist, "target ", 0, &cmdlist); add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist); } /* Stub functions */ void target_ignore (void) { } void target_load (char *arg, int from_tty) { dcache_invalidate (target_dcache); (*current_target.to_load) (arg, from_tty); } static int nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write, struct target_ops *t) { errno = EIO; /* Can't read/write this location */ return 0; /* No bytes handled */ } static void tcomplain (void) { error (_("You can't do that when your target is `%s'"), current_target.to_shortname); } void noprocess (void) { error (_("You can't do that without a process to debug.")); } static int nosymbol (char *name, CORE_ADDR *addrp) { return 1; /* Symbol does not exist in target env */ } static void nosupport_runtime (void) { if (ptid_equal (inferior_ptid, null_ptid)) noprocess (); else error (_("No run-time support for this")); } static void default_terminal_info (char *args, int from_tty) { printf_unfiltered (_("No saved terminal information.\n")); } /* This is the default target_create_inferior and target_attach function. If the current target is executing, it asks whether to kill it off. If this function returns without calling error(), it has killed off the target, and the operation should be attempted. */ static void kill_or_be_killed (int from_tty) { if (target_has_execution) { printf_unfiltered (_("You are already running a program:\n")); target_files_info (); if (query ("Kill it? ")) { target_kill (); if (target_has_execution) error (_("Killing the program did not help.")); return; } else { error (_("Program not killed.")); } } tcomplain (); } /* Go through the target stack from top to bottom, copying over zero entries in current_target, then filling in still empty entries. In effect, we are doing class inheritance through the pushed target vectors. NOTE: cagney/2003-10-17: The problem with this inheritance, as it is currently implemented, is that it discards any knowledge of which target an inherited method originally belonged to. Consequently, new new target methods should instead explicitly and locally search the target stack for the target that can handle the request. */ static void update_current_target (void) { struct target_ops *t; /* First, reset current's contents. */ memset (¤t_target, 0, sizeof (current_target)); #define INHERIT(FIELD, TARGET) \ if (!current_target.FIELD) \ current_target.FIELD = (TARGET)->FIELD for (t = target_stack; t; t = t->beneath) { INHERIT (to_shortname, t); INHERIT (to_longname, t); INHERIT (to_doc, t); /* Do not inherit to_open. */ /* Do not inherit to_close. */ INHERIT (to_attach, t); INHERIT (to_post_attach, t); INHERIT (to_attach_no_wait, t); INHERIT (to_detach, t); /* Do not inherit to_disconnect. */ INHERIT (to_resume, t); INHERIT (to_wait, t); INHERIT (to_fetch_registers, t); INHERIT (to_store_registers, t); INHERIT (to_prepare_to_store, t); INHERIT (deprecated_xfer_memory, t); INHERIT (to_files_info, t); INHERIT (to_insert_breakpoint, t); INHERIT (to_remove_breakpoint, t); INHERIT (to_can_use_hw_breakpoint, t); INHERIT (to_insert_hw_breakpoint, t); INHERIT (to_remove_hw_breakpoint, t); INHERIT (to_insert_watchpoint, t); INHERIT (to_remove_watchpoint, t); INHERIT (to_stopped_data_address, t); INHERIT (to_have_steppable_watchpoint, t); INHERIT (to_have_continuable_watchpoint, t); INHERIT (to_stopped_by_watchpoint, t); INHERIT (to_watchpoint_addr_within_range, t); INHERIT (to_region_ok_for_hw_watchpoint, t); INHERIT (to_terminal_init, t); INHERIT (to_terminal_inferior, t); INHERIT (to_terminal_ours_for_output, t); INHERIT (to_terminal_ours, t); INHERIT (to_terminal_save_ours, t); INHERIT (to_terminal_info, t); INHERIT (to_kill, t); INHERIT (to_load, t); INHERIT (to_lookup_symbol, t); INHERIT (to_create_inferior, t); INHERIT (to_post_startup_inferior, t); INHERIT (to_acknowledge_created_inferior, t); INHERIT (to_insert_fork_catchpoint, t); INHERIT (to_remove_fork_catchpoint, t); INHERIT (to_insert_vfork_catchpoint, t); INHERIT (to_remove_vfork_catchpoint, t); /* Do not inherit to_follow_fork. */ INHERIT (to_insert_exec_catchpoint, t); INHERIT (to_remove_exec_catchpoint, t); INHERIT (to_has_exited, t); INHERIT (to_mourn_inferior, t); INHERIT (to_can_run, t); INHERIT (to_notice_signals, t); INHERIT (to_thread_alive, t); INHERIT (to_find_new_threads, t); INHERIT (to_pid_to_str, t); INHERIT (to_extra_thread_info, t); INHERIT (to_stop, t); /* Do not inherit to_xfer_partial. */ INHERIT (to_rcmd, t); INHERIT (to_pid_to_exec_file, t); INHERIT (to_log_command, t); INHERIT (to_stratum, t); INHERIT (to_has_all_memory, t); INHERIT (to_has_memory, t); INHERIT (to_has_stack, t); INHERIT (to_has_registers, t); INHERIT (to_has_execution, t); INHERIT (to_has_thread_control, t); INHERIT (to_sections, t); INHERIT (to_sections_end, t); INHERIT (to_can_async_p, t); INHERIT (to_is_async_p, t); INHERIT (to_async, t); INHERIT (to_async_mask, t); INHERIT (to_find_memory_regions, t); INHERIT (to_make_corefile_notes, t); INHERIT (to_get_thread_local_address, t); /* Do not inherit to_read_description. */ /* Do not inherit to_search_memory. */ INHERIT (to_magic, t); /* Do not inherit to_memory_map. */ /* Do not inherit to_flash_erase. */ /* Do not inherit to_flash_done. */ } #undef INHERIT /* Clean up a target struct so it no longer has any zero pointers in it. Some entries are defaulted to a method that print an error, others are hard-wired to a standard recursive default. */ #define de_fault(field, value) \ if (!current_target.field) \ current_target.field = value de_fault (to_open, (void (*) (char *, int)) tcomplain); de_fault (to_close, (void (*) (int)) target_ignore); de_fault (to_post_attach, (void (*) (int)) target_ignore); de_fault (to_detach, (void (*) (char *, int)) target_ignore); de_fault (to_resume, (void (*) (ptid_t, int, enum target_signal)) noprocess); de_fault (to_wait, (ptid_t (*) (ptid_t, struct target_waitstatus *)) noprocess); de_fault (to_fetch_registers, (void (*) (struct regcache *, int)) target_ignore); de_fault (to_store_registers, (void (*) (struct regcache *, int)) noprocess); de_fault (to_prepare_to_store, (void (*) (struct regcache *)) noprocess); de_fault (deprecated_xfer_memory, (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *)) nomemory); de_fault (to_files_info, (void (*) (struct target_ops *)) target_ignore); de_fault (to_insert_breakpoint, memory_insert_breakpoint); de_fault (to_remove_breakpoint, memory_remove_breakpoint); de_fault (to_can_use_hw_breakpoint, (int (*) (int, int, int)) return_zero); de_fault (to_insert_hw_breakpoint, (int (*) (struct bp_target_info *)) return_minus_one); de_fault (to_remove_hw_breakpoint, (int (*) (struct bp_target_info *)) return_minus_one); de_fault (to_insert_watchpoint, (int (*) (CORE_ADDR, int, int)) return_minus_one); de_fault (to_remove_watchpoint, (int (*) (CORE_ADDR, int, int)) return_minus_one); de_fault (to_stopped_by_watchpoint, (int (*) (void)) return_zero); de_fault (to_stopped_data_address, (int (*) (struct target_ops *, CORE_ADDR *)) return_zero); de_fault (to_watchpoint_addr_within_range, default_watchpoint_addr_within_range); de_fault (to_region_ok_for_hw_watchpoint, default_region_ok_for_hw_watchpoint); de_fault (to_terminal_init, (void (*) (void)) target_ignore); de_fault (to_terminal_inferior, (void (*) (void)) target_ignore); de_fault (to_terminal_ours_for_output, (void (*) (void)) target_ignore); de_fault (to_terminal_ours, (void (*) (void)) target_ignore); de_fault (to_terminal_save_ours, (void (*) (void)) target_ignore); de_fault (to_terminal_info, default_terminal_info); de_fault (to_kill, (void (*) (void)) noprocess); de_fault (to_load, (void (*) (char *, int)) tcomplain); de_fault (to_lookup_symbol, (int (*) (char *, CORE_ADDR *)) nosymbol); de_fault (to_post_startup_inferior, (void (*) (ptid_t)) target_ignore); de_fault (to_acknowledge_created_inferior, (void (*) (int)) target_ignore); de_fault (to_insert_fork_catchpoint, (void (*) (int)) tcomplain); de_fault (to_remove_fork_catchpoint, (int (*) (int)) tcomplain); de_fault (to_insert_vfork_catchpoint, (void (*) (int)) tcomplain); de_fault (to_remove_vfork_catchpoint, (int (*) (int)) tcomplain); de_fault (to_insert_exec_catchpoint, (void (*) (int)) tcomplain); de_fault (to_remove_exec_catchpoint, (int (*) (int)) tcomplain); de_fault (to_has_exited, (int (*) (int, int, int *)) return_zero); de_fault (to_mourn_inferior, (void (*) (void)) noprocess); de_fault (to_can_run, return_zero); de_fault (to_notice_signals, (void (*) (ptid_t)) target_ignore); de_fault (to_thread_alive, (int (*) (ptid_t)) return_zero); de_fault (to_find_new_threads, (void (*) (void)) target_ignore); de_fault (to_extra_thread_info, (char *(*) (struct thread_info *)) return_zero); de_fault (to_stop, (void (*) (ptid_t)) target_ignore); current_target.to_xfer_partial = current_xfer_partial; de_fault (to_rcmd, (void (*) (char *, struct ui_file *)) tcomplain); de_fault (to_pid_to_exec_file, (char *(*) (int)) return_zero); de_fault (to_async, (void (*) (void (*) (enum inferior_event_type, void*), void*)) tcomplain); de_fault (to_async_mask, (int (*) (int)) return_one); current_target.to_read_description = NULL; #undef de_fault /* Finally, position the target-stack beneath the squashed "current_target". That way code looking for a non-inherited target method can quickly and simply find it. */ current_target.beneath = target_stack; if (targetdebug) setup_target_debug (); } /* Mark OPS as a running target. This reverses the effect of target_mark_exited. */ void target_mark_running (struct target_ops *ops) { struct target_ops *t; for (t = target_stack; t != NULL; t = t->beneath) if (t == ops) break; if (t == NULL) internal_error (__FILE__, __LINE__, "Attempted to mark unpushed target \"%s\" as running", ops->to_shortname); ops->to_has_execution = 1; ops->to_has_all_memory = 1; ops->to_has_memory = 1; ops->to_has_stack = 1; ops->to_has_registers = 1; update_current_target (); } /* Mark OPS as a non-running target. This reverses the effect of target_mark_running. */ void target_mark_exited (struct target_ops *ops) { struct target_ops *t; for (t = target_stack; t != NULL; t = t->beneath) if (t == ops) break; if (t == NULL) internal_error (__FILE__, __LINE__, "Attempted to mark unpushed target \"%s\" as running", ops->to_shortname); ops->to_has_execution = 0; ops->to_has_all_memory = 0; ops->to_has_memory = 0; ops->to_has_stack = 0; ops->to_has_registers = 0; update_current_target (); } /* Push a new target type into the stack of the existing target accessors, possibly superseding some of the existing accessors. Result is zero if the pushed target ended up on top of the stack, nonzero if at least one target is on top of it. Rather than allow an empty stack, we always have the dummy target at the bottom stratum, so we can call the function vectors without checking them. */ int push_target (struct target_ops *t) { struct target_ops **cur; /* Check magic number. If wrong, it probably means someone changed the struct definition, but not all the places that initialize one. */ if (t->to_magic != OPS_MAGIC) { fprintf_unfiltered (gdb_stderr, "Magic number of %s target struct wrong\n", t->to_shortname); internal_error (__FILE__, __LINE__, _("failed internal consistency check")); } /* Find the proper stratum to install this target in. */ for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath) { if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum) break; } /* If there's already targets at this stratum, remove them. */ /* FIXME: cagney/2003-10-15: I think this should be popping all targets to CUR, and not just those at this stratum level. */ while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum) { /* There's already something at this stratum level. Close it, and un-hook it from the stack. */ struct target_ops *tmp = (*cur); (*cur) = (*cur)->beneath; tmp->beneath = NULL; target_close (tmp, 0); } /* We have removed all targets in our stratum, now add the new one. */ t->beneath = (*cur); (*cur) = t; update_current_target (); /* Not on top? */ return (t != target_stack); } /* Remove a target_ops vector from the stack, wherever it may be. Return how many times it was removed (0 or 1). */ int unpush_target (struct target_ops *t) { struct target_ops **cur; struct target_ops *tmp; /* Look for the specified target. Note that we assume that a target can only occur once in the target stack. */ for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath) { if ((*cur) == t) break; } if ((*cur) == NULL) return 0; /* Didn't find target_ops, quit now */ /* NOTE: cagney/2003-12-06: In '94 the close call was made unconditional by moving it to before the above check that the target was in the target stack (something about "Change the way pushing and popping of targets work to support target overlays and inheritance"). This doesn't make much sense - only open targets should be closed. */ target_close (t, 0); /* Unchain the target */ tmp = (*cur); (*cur) = (*cur)->beneath; tmp->beneath = NULL; update_current_target (); return 1; } void pop_target (void) { target_close (target_stack, 0); /* Let it clean up */ if (unpush_target (target_stack) == 1) return; fprintf_unfiltered (gdb_stderr, "pop_target couldn't find target %s\n", current_target.to_shortname); internal_error (__FILE__, __LINE__, _("failed internal consistency check")); } void pop_all_targets_above (enum strata above_stratum, int quitting) { while ((int) (current_target.to_stratum) > (int) above_stratum) { target_close (target_stack, quitting); if (!unpush_target (target_stack)) { fprintf_unfiltered (gdb_stderr, "pop_all_targets couldn't find target %s\n", target_stack->to_shortname); internal_error (__FILE__, __LINE__, _("failed internal consistency check")); break; } } } void pop_all_targets (int quitting) { pop_all_targets_above (dummy_stratum, quitting); } /* Using the objfile specified in OBJFILE, find the address for the current thread's thread-local storage with offset OFFSET. */ CORE_ADDR target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset) { volatile CORE_ADDR addr = 0; if (target_get_thread_local_address_p () && gdbarch_fetch_tls_load_module_address_p (target_gdbarch)) { ptid_t ptid = inferior_ptid; volatile struct gdb_exception ex; TRY_CATCH (ex, RETURN_MASK_ALL) { CORE_ADDR lm_addr; /* Fetch the load module address for this objfile. */ lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch, objfile); /* If it's 0, throw the appropriate exception. */ if (lm_addr == 0) throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR, _("TLS load module not found")); addr = target_get_thread_local_address (ptid, lm_addr, offset); } /* If an error occurred, print TLS related messages here. Otherwise, throw the error to some higher catcher. */ if (ex.reason < 0) { int objfile_is_library = (objfile->flags & OBJF_SHARED); switch (ex.error) { case TLS_NO_LIBRARY_SUPPORT_ERROR: error (_("Cannot find thread-local variables in this thread library.")); break; case TLS_LOAD_MODULE_NOT_FOUND_ERROR: if (objfile_is_library) error (_("Cannot find shared library `%s' in dynamic" " linker's load module list"), objfile->name); else error (_("Cannot find executable file `%s' in dynamic" " linker's load module list"), objfile->name); break; case TLS_NOT_ALLOCATED_YET_ERROR: if (objfile_is_library) error (_("The inferior has not yet allocated storage for" " thread-local variables in\n" "the shared library `%s'\n" "for %s"), objfile->name, target_pid_to_str (ptid)); else error (_("The inferior has not yet allocated storage for" " thread-local variables in\n" "the executable `%s'\n" "for %s"), objfile->name, target_pid_to_str (ptid)); break; case TLS_GENERIC_ERROR: if (objfile_is_library) error (_("Cannot find thread-local storage for %s, " "shared library %s:\n%s"), target_pid_to_str (ptid), objfile->name, ex.message); else error (_("Cannot find thread-local storage for %s, " "executable file %s:\n%s"), target_pid_to_str (ptid), objfile->name, ex.message); break; default: throw_exception (ex); break; } } } /* It wouldn't be wrong here to try a gdbarch method, too; finding TLS is an ABI-specific thing. But we don't do that yet. */ else error (_("Cannot find thread-local variables on this target")); return addr; } #undef MIN #define MIN(A, B) (((A) <= (B)) ? (A) : (B)) /* target_read_string -- read a null terminated string, up to LEN bytes, from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful. Set *STRING to a pointer to malloc'd memory containing the data; the caller is responsible for freeing it. Return the number of bytes successfully read. */ int target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop) { int tlen, origlen, offset, i; gdb_byte buf[4]; int errcode = 0; char *buffer; int buffer_allocated; char *bufptr; unsigned int nbytes_read = 0; gdb_assert (string); /* Small for testing. */ buffer_allocated = 4; buffer = xmalloc (buffer_allocated); bufptr = buffer; origlen = len; while (len > 0) { tlen = MIN (len, 4 - (memaddr & 3)); offset = memaddr & 3; errcode = target_read_memory (memaddr & ~3, buf, sizeof buf); if (errcode != 0) { /* The transfer request might have crossed the boundary to an unallocated region of memory. Retry the transfer, requesting a single byte. */ tlen = 1; offset = 0; errcode = target_read_memory (memaddr, buf, 1); if (errcode != 0) goto done; } if (bufptr - buffer + tlen > buffer_allocated) { unsigned int bytes; bytes = bufptr - buffer; buffer_allocated *= 2; buffer = xrealloc (buffer, buffer_allocated); bufptr = buffer + bytes; } for (i = 0; i < tlen; i++) { *bufptr++ = buf[i + offset]; if (buf[i + offset] == '\000') { nbytes_read += i + 1; goto done; } } memaddr += tlen; len -= tlen; nbytes_read += tlen; } done: *string = buffer; if (errnop != NULL) *errnop = errcode; return nbytes_read; } /* Find a section containing ADDR. */ struct section_table * target_section_by_addr (struct target_ops *target, CORE_ADDR addr) { struct section_table *secp; for (secp = target->to_sections; secp < target->to_sections_end; secp++) { if (addr >= secp->addr && addr < secp->endaddr) return secp; } return NULL; } /* Perform a partial memory transfer. The arguments and return value are just as for target_xfer_partial. */ static LONGEST memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf, ULONGEST memaddr, LONGEST len) { LONGEST res; int reg_len; struct mem_region *region; /* Zero length requests are ok and require no work. */ if (len == 0) return 0; /* Try the executable file, if "trust-readonly-sections" is set. */ if (readbuf != NULL && trust_readonly) { struct section_table *secp; secp = target_section_by_addr (ops, memaddr); if (secp != NULL && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section) & SEC_READONLY)) return xfer_memory (memaddr, readbuf, len, 0, NULL, ops); } /* Likewise for accesses to unmapped overlay sections. */ if (readbuf != NULL && overlay_debugging) { struct obj_section *section = find_pc_overlay (memaddr); if (pc_in_unmapped_range (memaddr, section)) return xfer_memory (memaddr, readbuf, len, 0, NULL, ops); } /* Try GDB's internal data cache. */ region = lookup_mem_region (memaddr); /* region->hi == 0 means there's no upper bound. */ if (memaddr + len < region->hi || region->hi == 0) reg_len = len; else reg_len = region->hi - memaddr; switch (region->attrib.mode) { case MEM_RO: if (writebuf != NULL) return -1; break; case MEM_WO: if (readbuf != NULL) return -1; break; case MEM_FLASH: /* We only support writing to flash during "load" for now. */ if (writebuf != NULL) error (_("Writing to flash memory forbidden in this context")); break; case MEM_NONE: return -1; } if (region->attrib.cache) { /* FIXME drow/2006-08-09: This call discards OPS, so the raw memory request will start back at current_target. */ if (readbuf != NULL) res = dcache_xfer_memory (target_dcache, memaddr, readbuf, reg_len, 0); else /* FIXME drow/2006-08-09: If we're going to preserve const correctness dcache_xfer_memory should take readbuf and writebuf. */ res = dcache_xfer_memory (target_dcache, memaddr, (void *) writebuf, reg_len, 1); if (res <= 0) return -1; else { if (readbuf && !show_memory_breakpoints) breakpoint_restore_shadows (readbuf, memaddr, reg_len); return res; } } /* If none of those methods found the memory we wanted, fall back to a target partial transfer. Normally a single call to to_xfer_partial is enough; if it doesn't recognize an object it will call the to_xfer_partial of the next target down. But for memory this won't do. Memory is the only target object which can be read from more than one valid target. A core file, for instance, could have some of memory but delegate other bits to the target below it. So, we must manually try all targets. */ do { res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL, readbuf, writebuf, memaddr, reg_len); if (res > 0) break; /* We want to continue past core files to executables, but not past a running target's memory. */ if (ops->to_has_all_memory) break; ops = ops->beneath; } while (ops != NULL); if (readbuf && !show_memory_breakpoints) breakpoint_restore_shadows (readbuf, memaddr, reg_len); /* If we still haven't got anything, return the last error. We give up. */ return res; } static void restore_show_memory_breakpoints (void *arg) { show_memory_breakpoints = (uintptr_t) arg; } struct cleanup * make_show_memory_breakpoints_cleanup (int show) { int current = show_memory_breakpoints; show_memory_breakpoints = show; return make_cleanup (restore_show_memory_breakpoints, (void *) (uintptr_t) current); } static LONGEST target_xfer_partial (struct target_ops *ops, enum target_object object, const char *annex, void *readbuf, const void *writebuf, ULONGEST offset, LONGEST len) { LONGEST retval; gdb_assert (ops->to_xfer_partial != NULL); /* If this is a memory transfer, let the memory-specific code have a look at it instead. Memory transfers are more complicated. */ if (object == TARGET_OBJECT_MEMORY) retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len); else { enum target_object raw_object = object; /* If this is a raw memory transfer, request the normal memory object from other layers. */ if (raw_object == TARGET_OBJECT_RAW_MEMORY) raw_object = TARGET_OBJECT_MEMORY; retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf, writebuf, offset, len); } if (targetdebug) { const unsigned char *myaddr = NULL; fprintf_unfiltered (gdb_stdlog, "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, %s, %s) = %s", ops->to_shortname, (int) object, (annex ? annex : "(null)"), (long) readbuf, (long) writebuf, core_addr_to_string_nz (offset), plongest (len), plongest (retval)); if (readbuf) myaddr = readbuf; if (writebuf) myaddr = writebuf; if (retval > 0 && myaddr != NULL) { int i; fputs_unfiltered (", bytes =", gdb_stdlog); for (i = 0; i < retval; i++) { if ((((long) &(myaddr[i])) & 0xf) == 0) { if (targetdebug < 2 && i > 0) { fprintf_unfiltered (gdb_stdlog, " ..."); break; } fprintf_unfiltered (gdb_stdlog, "\n"); } fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff); } } fputc_unfiltered ('\n', gdb_stdlog); } return retval; } /* Read LEN bytes of target memory at address MEMADDR, placing the results in GDB's memory at MYADDR. Returns either 0 for success or an errno value if any error occurs. If an error occurs, no guarantee is made about the contents of the data at MYADDR. In particular, the caller should not depend upon partial reads filling the buffer with good data. There is no way for the caller to know how much good data might have been transfered anyway. Callers that can deal with partial reads should call target_read (which will retry until it makes no progress, and then return how much was transferred). */ int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len) { if (target_read (¤t_target, TARGET_OBJECT_MEMORY, NULL, myaddr, memaddr, len) == len) return 0; else return EIO; } int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len) { if (target_write (¤t_target, TARGET_OBJECT_MEMORY, NULL, myaddr, memaddr, len) == len) return 0; else return EIO; } /* Fetch the target's memory map. */ VEC(mem_region_s) * target_memory_map (void) { VEC(mem_region_s) *result; struct mem_region *last_one, *this_one; int ix; struct target_ops *t; if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n"); for (t = current_target.beneath; t != NULL; t = t->beneath) if (t->to_memory_map != NULL) break; if (t == NULL) return NULL; result = t->to_memory_map (t); if (result == NULL) return NULL; qsort (VEC_address (mem_region_s, result), VEC_length (mem_region_s, result), sizeof (struct mem_region), mem_region_cmp); /* Check that regions do not overlap. Simultaneously assign a numbering for the "mem" commands to use to refer to each region. */ last_one = NULL; for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++) { this_one->number = ix; if (last_one && last_one->hi > this_one->lo) { warning (_("Overlapping regions in memory map: ignoring")); VEC_free (mem_region_s, result); return NULL; } last_one = this_one; } return result; } void target_flash_erase (ULONGEST address, LONGEST length) { struct target_ops *t; for (t = current_target.beneath; t != NULL; t = t->beneath) if (t->to_flash_erase != NULL) { if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n", paddr (address), phex (length, 0)); t->to_flash_erase (t, address, length); return; } tcomplain (); } void target_flash_done (void) { struct target_ops *t; for (t = current_target.beneath; t != NULL; t = t->beneath) if (t->to_flash_done != NULL) { if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_flash_done\n"); t->to_flash_done (t); return; } tcomplain (); } #ifndef target_stopped_data_address_p int target_stopped_data_address_p (struct target_ops *target) { if (target->to_stopped_data_address == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero) return 0; if (target->to_stopped_data_address == debug_to_stopped_data_address && (debug_target.to_stopped_data_address == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)) return 0; return 1; } #endif static void show_trust_readonly (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("\ Mode for reading from readonly sections is %s.\n"), value); } /* More generic transfers. */ static LONGEST default_xfer_partial (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { if (object == TARGET_OBJECT_MEMORY && ops->deprecated_xfer_memory != NULL) /* If available, fall back to the target's "deprecated_xfer_memory" method. */ { int xfered = -1; errno = 0; if (writebuf != NULL) { void *buffer = xmalloc (len); struct cleanup *cleanup = make_cleanup (xfree, buffer); memcpy (buffer, writebuf, len); xfered = ops->deprecated_xfer_memory (offset, buffer, len, 1/*write*/, NULL, ops); do_cleanups (cleanup); } if (readbuf != NULL) xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/, NULL, ops); if (xfered > 0) return xfered; else if (xfered == 0 && errno == 0) /* "deprecated_xfer_memory" uses 0, cross checked against ERRNO as one indication of an error. */ return 0; else return -1; } else if (ops->beneath != NULL) return ops->beneath->to_xfer_partial (ops->beneath, object, annex, readbuf, writebuf, offset, len); else return -1; } /* The xfer_partial handler for the topmost target. Unlike the default, it does not need to handle memory specially; it just passes all requests down the stack. */ static LONGEST current_xfer_partial (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { if (ops->beneath != NULL) return ops->beneath->to_xfer_partial (ops->beneath, object, annex, readbuf, writebuf, offset, len); else return -1; } /* Target vector read/write partial wrapper functions. NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial (inbuf, outbuf)", instead of separate read/write methods, make life easier. */ static LONGEST target_read_partial (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *buf, ULONGEST offset, LONGEST len) { return target_xfer_partial (ops, object, annex, buf, NULL, offset, len); } static LONGEST target_write_partial (struct target_ops *ops, enum target_object object, const char *annex, const gdb_byte *buf, ULONGEST offset, LONGEST len) { return target_xfer_partial (ops, object, annex, NULL, buf, offset, len); } /* Wrappers to perform the full transfer. */ LONGEST target_read (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *buf, ULONGEST offset, LONGEST len) { LONGEST xfered = 0; while (xfered < len) { LONGEST xfer = target_read_partial (ops, object, annex, (gdb_byte *) buf + xfered, offset + xfered, len - xfered); /* Call an observer, notifying them of the xfer progress? */ if (xfer == 0) return xfered; if (xfer < 0) return -1; xfered += xfer; QUIT; } return len; } LONGEST target_read_until_error (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *buf, ULONGEST offset, LONGEST len) { LONGEST xfered = 0; while (xfered < len) { LONGEST xfer = target_read_partial (ops, object, annex, (gdb_byte *) buf + xfered, offset + xfered, len - xfered); /* Call an observer, notifying them of the xfer progress? */ if (xfer == 0) return xfered; if (xfer < 0) { /* We've got an error. Try to read in smaller blocks. */ ULONGEST start = offset + xfered; ULONGEST remaining = len - xfered; ULONGEST half; /* If an attempt was made to read a random memory address, it's likely that the very first byte is not accessible. Try reading the first byte, to avoid doing log N tries below. */ xfer = target_read_partial (ops, object, annex, (gdb_byte *) buf + xfered, start, 1); if (xfer <= 0) return xfered; start += 1; remaining -= 1; half = remaining/2; while (half > 0) { xfer = target_read_partial (ops, object, annex, (gdb_byte *) buf + xfered, start, half); if (xfer == 0) return xfered; if (xfer < 0) { remaining = half; } else { /* We have successfully read the first half. So, the error must be in the second half. Adjust start and remaining to point at the second half. */ xfered += xfer; start += xfer; remaining -= xfer; } half = remaining/2; } return xfered; } xfered += xfer; QUIT; } return len; } /* An alternative to target_write with progress callbacks. */ LONGEST target_write_with_progress (struct target_ops *ops, enum target_object object, const char *annex, const gdb_byte *buf, ULONGEST offset, LONGEST len, void (*progress) (ULONGEST, void *), void *baton) { LONGEST xfered = 0; /* Give the progress callback a chance to set up. */ if (progress) (*progress) (0, baton); while (xfered < len) { LONGEST xfer = target_write_partial (ops, object, annex, (gdb_byte *) buf + xfered, offset + xfered, len - xfered); if (xfer == 0) return xfered; if (xfer < 0) return -1; if (progress) (*progress) (xfer, baton); xfered += xfer; QUIT; } return len; } LONGEST target_write (struct target_ops *ops, enum target_object object, const char *annex, const gdb_byte *buf, ULONGEST offset, LONGEST len) { return target_write_with_progress (ops, object, annex, buf, offset, len, NULL, NULL); } /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return the size of the transferred data. PADDING additional bytes are available in *BUF_P. This is a helper function for target_read_alloc; see the declaration of that function for more information. */ static LONGEST target_read_alloc_1 (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte **buf_p, int padding) { size_t buf_alloc, buf_pos; gdb_byte *buf; LONGEST n; /* This function does not have a length parameter; it reads the entire OBJECT). Also, it doesn't support objects fetched partly from one target and partly from another (in a different stratum, e.g. a core file and an executable). Both reasons make it unsuitable for reading memory. */ gdb_assert (object != TARGET_OBJECT_MEMORY); /* Start by reading up to 4K at a time. The target will throttle this number down if necessary. */ buf_alloc = 4096; buf = xmalloc (buf_alloc); buf_pos = 0; while (1) { n = target_read_partial (ops, object, annex, &buf[buf_pos], buf_pos, buf_alloc - buf_pos - padding); if (n < 0) { /* An error occurred. */ xfree (buf); return -1; } else if (n == 0) { /* Read all there was. */ if (buf_pos == 0) xfree (buf); else *buf_p = buf; return buf_pos; } buf_pos += n; /* If the buffer is filling up, expand it. */ if (buf_alloc < buf_pos * 2) { buf_alloc *= 2; buf = xrealloc (buf, buf_alloc); } QUIT; } } /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return the size of the transferred data. See the declaration in "target.h" function for more information about the return value. */ LONGEST target_read_alloc (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte **buf_p) { return target_read_alloc_1 (ops, object, annex, buf_p, 0); } /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and returned as a string, allocated using xmalloc. If an error occurs or the transfer is unsupported, NULL is returned. Empty objects are returned as allocated but empty strings. A warning is issued if the result contains any embedded NUL bytes. */ char * target_read_stralloc (struct target_ops *ops, enum target_object object, const char *annex) { gdb_byte *buffer; LONGEST transferred; transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1); if (transferred < 0) return NULL; if (transferred == 0) return xstrdup (""); buffer[transferred] = 0; if (strlen (buffer) < transferred) warning (_("target object %d, annex %s, " "contained unexpected null characters"), (int) object, annex ? annex : "(none)"); return (char *) buffer; } /* Memory transfer methods. */ void get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf, LONGEST len) { if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len) != len) memory_error (EIO, addr); } ULONGEST get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr, int len) { gdb_byte buf[sizeof (ULONGEST)]; gdb_assert (len <= sizeof (buf)); get_target_memory (ops, addr, buf, len); return extract_unsigned_integer (buf, len); } static void target_info (char *args, int from_tty) { struct target_ops *t; int has_all_mem = 0; if (symfile_objfile != NULL) printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name); for (t = target_stack; t != NULL; t = t->beneath) { if (!t->to_has_memory) continue; if ((int) (t->to_stratum) <= (int) dummy_stratum) continue; if (has_all_mem) printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n")); printf_unfiltered ("%s:\n", t->to_longname); (t->to_files_info) (t); has_all_mem = t->to_has_all_memory; } } /* This function is called before any new inferior is created, e.g. by running a program, attaching, or connecting to a target. It cleans up any state from previous invocations which might change between runs. This is a subset of what target_preopen resets (things which might change between targets). */ void target_pre_inferior (int from_tty) { /* Clear out solib state. Otherwise the solib state of the previous inferior might have survived and is entirely wrong for the new target. This has been observed on GNU/Linux using glibc 2.3. How to reproduce: bash$ ./foo& [1] 4711 bash$ ./foo& [1] 4712 bash$ gdb ./foo [...] (gdb) attach 4711 (gdb) detach (gdb) attach 4712 Cannot access memory at address 0xdeadbeef */ no_shared_libraries (NULL, from_tty); invalidate_target_mem_regions (); target_clear_description (); } /* This is to be called by the open routine before it does anything. */ void target_preopen (int from_tty) { dont_repeat (); if (target_has_execution) { if (!from_tty || query (_("A program is being debugged already. Kill it? "))) target_kill (); else error (_("Program not killed.")); } /* Calling target_kill may remove the target from the stack. But if it doesn't (which seems like a win for UDI), remove it now. */ /* Leave the exec target, though. The user may be switching from a live process to a core of the same program. */ pop_all_targets_above (file_stratum, 0); target_pre_inferior (from_tty); } /* Detach a target after doing deferred register stores. */ void target_detach (char *args, int from_tty) { /* If we're in breakpoints-always-inserted mode, have to remove them before detaching. */ remove_breakpoints (); (current_target.to_detach) (args, from_tty); } void target_disconnect (char *args, int from_tty) { struct target_ops *t; /* If we're in breakpoints-always-inserted mode, have to remove them before disconnecting. */ remove_breakpoints (); for (t = current_target.beneath; t != NULL; t = t->beneath) if (t->to_disconnect != NULL) { if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n", args, from_tty); t->to_disconnect (t, args, from_tty); return; } tcomplain (); } void target_resume (ptid_t ptid, int step, enum target_signal signal) { dcache_invalidate (target_dcache); (*current_target.to_resume) (ptid, step, signal); set_executing (ptid, 1); set_running (ptid, 1); } /* Look through the list of possible targets for a target that can follow forks. */ int target_follow_fork (int follow_child) { struct target_ops *t; for (t = current_target.beneath; t != NULL; t = t->beneath) { if (t->to_follow_fork != NULL) { int retval = t->to_follow_fork (t, follow_child); if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n", follow_child, retval); return retval; } } /* Some target returned a fork event, but did not know how to follow it. */ internal_error (__FILE__, __LINE__, "could not find a target to follow fork"); } /* Look for a target which can describe architectural features, starting from TARGET. If we find one, return its description. */ const struct target_desc * target_read_description (struct target_ops *target) { struct target_ops *t; for (t = target; t != NULL; t = t->beneath) if (t->to_read_description != NULL) { const struct target_desc *tdesc; tdesc = t->to_read_description (t); if (tdesc) return tdesc; } return NULL; } /* The default implementation of to_search_memory. This implements a basic search of memory, reading target memory and performing the search here (as opposed to performing the search in on the target side with, for example, gdbserver). */ int simple_search_memory (struct target_ops *ops, CORE_ADDR start_addr, ULONGEST search_space_len, const gdb_byte *pattern, ULONGEST pattern_len, CORE_ADDR *found_addrp) { /* NOTE: also defined in find.c testcase. */ #define SEARCH_CHUNK_SIZE 16000 const unsigned chunk_size = SEARCH_CHUNK_SIZE; /* Buffer to hold memory contents for searching. */ gdb_byte *search_buf; unsigned search_buf_size; struct cleanup *old_cleanups; search_buf_size = chunk_size + pattern_len - 1; /* No point in trying to allocate a buffer larger than the search space. */ if (search_space_len < search_buf_size) search_buf_size = search_space_len; search_buf = malloc (search_buf_size); if (search_buf == NULL) error (_("Unable to allocate memory to perform the search.")); old_cleanups = make_cleanup (free_current_contents, &search_buf); /* Prime the search buffer. */ if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, search_buf, start_addr, search_buf_size) != search_buf_size) { warning (_("Unable to access target memory at %s, halting search."), hex_string (start_addr)); do_cleanups (old_cleanups); return -1; } /* Perform the search. The loop is kept simple by allocating [N + pattern-length - 1] bytes. When we've scanned N bytes we copy the trailing bytes to the start and read in another N bytes. */ while (search_space_len >= pattern_len) { gdb_byte *found_ptr; unsigned nr_search_bytes = min (search_space_len, search_buf_size); found_ptr = memmem (search_buf, nr_search_bytes, pattern, pattern_len); if (found_ptr != NULL) { CORE_ADDR found_addr = start_addr + (found_ptr - search_buf); *found_addrp = found_addr; do_cleanups (old_cleanups); return 1; } /* Not found in this chunk, skip to next chunk. */ /* Don't let search_space_len wrap here, it's unsigned. */ if (search_space_len >= chunk_size) search_space_len -= chunk_size; else search_space_len = 0; if (search_space_len >= pattern_len) { unsigned keep_len = search_buf_size - chunk_size; CORE_ADDR read_addr = start_addr + keep_len; int nr_to_read; /* Copy the trailing part of the previous iteration to the front of the buffer for the next iteration. */ gdb_assert (keep_len == pattern_len - 1); memcpy (search_buf, search_buf + chunk_size, keep_len); nr_to_read = min (search_space_len - keep_len, chunk_size); if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, search_buf + keep_len, read_addr, nr_to_read) != nr_to_read) { warning (_("Unable to access target memory at %s, halting search."), hex_string (read_addr)); do_cleanups (old_cleanups); return -1; } start_addr += chunk_size; } } /* Not found. */ do_cleanups (old_cleanups); return 0; } /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the sequence of bytes in PATTERN with length PATTERN_LEN. The result is 1 if found, 0 if not found, and -1 if there was an error requiring halting of the search (e.g. memory read error). If the pattern is found the address is recorded in FOUND_ADDRP. */ int target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len, const gdb_byte *pattern, ULONGEST pattern_len, CORE_ADDR *found_addrp) { struct target_ops *t; int found; /* We don't use INHERIT to set current_target.to_search_memory, so we have to scan the target stack and handle targetdebug ourselves. */ if (targetdebug) fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n", hex_string (start_addr)); for (t = current_target.beneath; t != NULL; t = t->beneath) if (t->to_search_memory != NULL) break; if (t != NULL) { found = t->to_search_memory (t, start_addr, search_space_len, pattern, pattern_len, found_addrp); } else { /* If a special version of to_search_memory isn't available, use the simple version. */ found = simple_search_memory (¤t_target, start_addr, search_space_len, pattern, pattern_len, found_addrp); } if (targetdebug) fprintf_unfiltered (gdb_stdlog, " = %d\n", found); return found; } /* Look through the currently pushed targets. If none of them will be able to restart the currently running process, issue an error message. */ void target_require_runnable (void) { struct target_ops *t; for (t = target_stack; t != NULL; t = t->beneath) { /* If this target knows how to create a new program, then assume we will still be able to after killing the current one. Either killing and mourning will not pop T, or else find_default_run_target will find it again. */ if (t->to_create_inferior != NULL) return; /* Do not worry about thread_stratum targets that can not create inferiors. Assume they will be pushed again if necessary, and continue to the process_stratum. */ if (t->to_stratum == thread_stratum) continue; error (_("\ The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."), t->to_shortname); } /* This function is only called if the target is running. In that case there should have been a process_stratum target and it should either know how to create inferiors, or not... */ internal_error (__FILE__, __LINE__, "No targets found"); } /* Look through the list of possible targets for a target that can execute a run or attach command without any other data. This is used to locate the default process stratum. If DO_MESG is not NULL, the result is always valid (error() is called for errors); else, return NULL on error. */ static struct target_ops * find_default_run_target (char *do_mesg) { struct target_ops **t; struct target_ops *runable = NULL; int count; count = 0; for (t = target_structs; t < target_structs + target_struct_size; ++t) { if ((*t)->to_can_run && target_can_run (*t)) { runable = *t; ++count; } } if (count != 1) { if (do_mesg) error (_("Don't know how to %s. Try \"help target\"."), do_mesg); else return NULL; } return runable; } void find_default_attach (char *args, int from_tty) { struct target_ops *t; t = find_default_run_target ("attach"); (t->to_attach) (args, from_tty); return; } void find_default_create_inferior (char *exec_file, char *allargs, char **env, int from_tty) { struct target_ops *t; t = find_default_run_target ("run"); (t->to_create_inferior) (exec_file, allargs, env, from_tty); return; } int find_default_can_async_p (void) { struct target_ops *t; /* This may be called before the target is pushed on the stack; look for the default process stratum. If there's none, gdb isn't configured with a native debugger, and target remote isn't connected yet. */ t = find_default_run_target (NULL); if (t && t->to_can_async_p) return (t->to_can_async_p) (); return 0; } int find_default_is_async_p (void) { struct target_ops *t; /* This may be called before the target is pushed on the stack; look for the default process stratum. If there's none, gdb isn't configured with a native debugger, and target remote isn't connected yet. */ t = find_default_run_target (NULL); if (t && t->to_is_async_p) return (t->to_is_async_p) (); return 0; } int find_default_supports_non_stop (void) { struct target_ops *t; t = find_default_run_target (NULL); if (t && t->to_supports_non_stop) return (t->to_supports_non_stop) (); return 0; } int target_supports_non_stop () { struct target_ops *t; for (t = ¤t_target; t != NULL; t = t->beneath) if (t->to_supports_non_stop) return t->to_supports_non_stop (); return 0; } static int default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) { return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT); } static int default_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr, CORE_ADDR start, int length) { return addr >= start && addr < start + length; } static int return_zero (void) { return 0; } static int return_one (void) { return 1; } static int return_minus_one (void) { return -1; } /* * Resize the to_sections pointer. Also make sure that anyone that * was holding on to an old value of it gets updated. * Returns the old size. */ int target_resize_to_sections (struct target_ops *target, int num_added) { struct target_ops **t; struct section_table *old_value; int old_count; old_value = target->to_sections; if (target->to_sections) { old_count = target->to_sections_end - target->to_sections; target->to_sections = (struct section_table *) xrealloc ((char *) target->to_sections, (sizeof (struct section_table)) * (num_added + old_count)); } else { old_count = 0; target->to_sections = (struct section_table *) xmalloc ((sizeof (struct section_table)) * num_added); } target->to_sections_end = target->to_sections + (num_added + old_count); /* Check to see if anyone else was pointing to this structure. If old_value was null, then no one was. */ if (old_value) { for (t = target_structs; t < target_structs + target_struct_size; ++t) { if ((*t)->to_sections == old_value) { (*t)->to_sections = target->to_sections; (*t)->to_sections_end = target->to_sections_end; } } /* There is a flattened view of the target stack in current_target, so its to_sections pointer might also need updating. */ if (current_target.to_sections == old_value) { current_target.to_sections = target->to_sections; current_target.to_sections_end = target->to_sections_end; } } return old_count; } /* Remove all target sections taken from ABFD. Scan the current target stack for targets whose section tables refer to sections from BFD, and remove those sections. We use this when we notice that the inferior has unloaded a shared object, for example. */ void remove_target_sections (bfd *abfd) { struct target_ops **t; for (t = target_structs; t < target_structs + target_struct_size; t++) { struct section_table *src, *dest; dest = (*t)->to_sections; for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++) if (src->bfd != abfd) { /* Keep this section. */ if (dest < src) *dest = *src; dest++; } /* If we've dropped any sections, resize the section table. */ if (dest < src) target_resize_to_sections (*t, dest - src); } } /* Find a single runnable target in the stack and return it. If for some reason there is more than one, return NULL. */ struct target_ops * find_run_target (void) { struct target_ops **t; struct target_ops *runable = NULL; int count; count = 0; for (t = target_structs; t < target_structs + target_struct_size; ++t) { if ((*t)->to_can_run && target_can_run (*t)) { runable = *t; ++count; } } return (count == 1 ? runable : NULL); } /* Find a single core_stratum target in the list of targets and return it. If for some reason there is more than one, return NULL. */ struct target_ops * find_core_target (void) { struct target_ops **t; struct target_ops *runable = NULL; int count; count = 0; for (t = target_structs; t < target_structs + target_struct_size; ++t) { if ((*t)->to_stratum == core_stratum) { runable = *t; ++count; } } return (count == 1 ? runable : NULL); } /* * Find the next target down the stack from the specified target. */ struct target_ops * find_target_beneath (struct target_ops *t) { return t->beneath; } /* The inferior process has died. Long live the inferior! */ void generic_mourn_inferior (void) { extern int show_breakpoint_hit_counts; ptid_t ptid; ptid = inferior_ptid; inferior_ptid = null_ptid; if (!ptid_equal (ptid, null_ptid)) { int pid = ptid_get_pid (ptid); delete_inferior (pid); } breakpoint_init_inferior (inf_exited); registers_changed (); reopen_exec_file (); reinit_frame_cache (); /* It is confusing to the user for ignore counts to stick around from previous runs of the inferior. So clear them. */ /* However, it is more confusing for the ignore counts to disappear when using hit counts. So don't clear them if we're counting hits. */ if (!show_breakpoint_hit_counts) breakpoint_clear_ignore_counts (); if (deprecated_detach_hook) deprecated_detach_hook (); } /* Helper function for child_wait and the derivatives of child_wait. HOSTSTATUS is the waitstatus from wait() or the equivalent; store our translation of that in OURSTATUS. */ void store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus) { if (WIFEXITED (hoststatus)) { ourstatus->kind = TARGET_WAITKIND_EXITED; ourstatus->value.integer = WEXITSTATUS (hoststatus); } else if (!WIFSTOPPED (hoststatus)) { ourstatus->kind = TARGET_WAITKIND_SIGNALLED; ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus)); } else { ourstatus->kind = TARGET_WAITKIND_STOPPED; ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus)); } } /* Returns zero to leave the inferior alone, one to interrupt it. */ int (*target_activity_function) (void); int target_activity_fd; /* Convert a normal process ID to a string. Returns the string in a static buffer. */ char * normal_pid_to_str (ptid_t ptid) { static char buf[32]; xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid)); return buf; } /* Error-catcher for target_find_memory_regions */ static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2) { error (_("No target.")); return 0; } /* Error-catcher for target_make_corefile_notes */ static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2) { error (_("No target.")); return NULL; } /* Set up the handful of non-empty slots needed by the dummy target vector. */ static void init_dummy_target (void) { dummy_target.to_shortname = "None"; dummy_target.to_longname = "None"; dummy_target.to_doc = ""; dummy_target.to_attach = find_default_attach; dummy_target.to_create_inferior = find_default_create_inferior; dummy_target.to_can_async_p = find_default_can_async_p; dummy_target.to_is_async_p = find_default_is_async_p; dummy_target.to_supports_non_stop = find_default_supports_non_stop; dummy_target.to_pid_to_str = normal_pid_to_str; dummy_target.to_stratum = dummy_stratum; dummy_target.to_find_memory_regions = dummy_find_memory_regions; dummy_target.to_make_corefile_notes = dummy_make_corefile_notes; dummy_target.to_xfer_partial = default_xfer_partial; dummy_target.to_magic = OPS_MAGIC; } static void debug_to_open (char *args, int from_tty) { debug_target.to_open (args, from_tty); fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty); } static void debug_to_close (int quitting) { target_close (&debug_target, quitting); fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting); } void target_close (struct target_ops *targ, int quitting) { if (targ->to_xclose != NULL) targ->to_xclose (targ, quitting); else if (targ->to_close != NULL) targ->to_close (quitting); } static void debug_to_attach (char *args, int from_tty) { debug_target.to_attach (args, from_tty); fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty); } static void debug_to_post_attach (int pid) { debug_target.to_post_attach (pid); fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid); } static void debug_to_detach (char *args, int from_tty) { debug_target.to_detach (args, from_tty); fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty); } static void debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal) { debug_target.to_resume (ptid, step, siggnal); fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid), step ? "step" : "continue", target_signal_to_name (siggnal)); } static ptid_t debug_to_wait (ptid_t ptid, struct target_waitstatus *status) { ptid_t retval; retval = debug_target.to_wait (ptid, status); fprintf_unfiltered (gdb_stdlog, "target_wait (%d, status) = %d, ", PIDGET (ptid), PIDGET (retval)); fprintf_unfiltered (gdb_stdlog, "status->kind = "); switch (status->kind) { case TARGET_WAITKIND_EXITED: fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n", status->value.integer); break; case TARGET_WAITKIND_STOPPED: fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n", target_signal_to_name (status->value.sig)); break; case TARGET_WAITKIND_SIGNALLED: fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n", target_signal_to_name (status->value.sig)); break; case TARGET_WAITKIND_LOADED: fprintf_unfiltered (gdb_stdlog, "loaded\n"); break; case TARGET_WAITKIND_FORKED: fprintf_unfiltered (gdb_stdlog, "forked\n"); break; case TARGET_WAITKIND_VFORKED: fprintf_unfiltered (gdb_stdlog, "vforked\n"); break; case TARGET_WAITKIND_EXECD: fprintf_unfiltered (gdb_stdlog, "execd\n"); break; case TARGET_WAITKIND_SPURIOUS: fprintf_unfiltered (gdb_stdlog, "spurious\n"); break; default: fprintf_unfiltered (gdb_stdlog, "unknown???\n"); break; } return retval; } static void debug_print_register (const char * func, struct regcache *regcache, int regno) { struct gdbarch *gdbarch = get_regcache_arch (regcache); fprintf_unfiltered (gdb_stdlog, "%s ", func); if (regno >= 0 && regno < gdbarch_num_regs (gdbarch) && gdbarch_register_name (gdbarch, regno) != NULL && gdbarch_register_name (gdbarch, regno)[0] != '\0') fprintf_unfiltered (gdb_stdlog, "(%s)", gdbarch_register_name (gdbarch, regno)); else fprintf_unfiltered (gdb_stdlog, "(%d)", regno); if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)) { int i, size = register_size (gdbarch, regno); unsigned char buf[MAX_REGISTER_SIZE]; regcache_raw_collect (regcache, regno, buf); fprintf_unfiltered (gdb_stdlog, " = "); for (i = 0; i < size; i++) { fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); } if (size <= sizeof (LONGEST)) { ULONGEST val = extract_unsigned_integer (buf, size); fprintf_unfiltered (gdb_stdlog, " %s %s", core_addr_to_string_nz (val), plongest (val)); } } fprintf_unfiltered (gdb_stdlog, "\n"); } static void debug_to_fetch_registers (struct regcache *regcache, int regno) { debug_target.to_fetch_registers (regcache, regno); debug_print_register ("target_fetch_registers", regcache, regno); } static void debug_to_store_registers (struct regcache *regcache, int regno) { debug_target.to_store_registers (regcache, regno); debug_print_register ("target_store_registers", regcache, regno); fprintf_unfiltered (gdb_stdlog, "\n"); } static void debug_to_prepare_to_store (struct regcache *regcache) { debug_target.to_prepare_to_store (regcache); fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n"); } static int deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len, int write, struct mem_attrib *attrib, struct target_ops *target) { int retval; retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write, attrib, target); fprintf_unfiltered (gdb_stdlog, "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d", (unsigned int) memaddr, /* possable truncate long long */ len, write ? "write" : "read", retval); if (retval > 0) { int i; fputs_unfiltered (", bytes =", gdb_stdlog); for (i = 0; i < retval; i++) { if ((((long) &(myaddr[i])) & 0xf) == 0) { if (targetdebug < 2 && i > 0) { fprintf_unfiltered (gdb_stdlog, " ..."); break; } fprintf_unfiltered (gdb_stdlog, "\n"); } fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff); } } fputc_unfiltered ('\n', gdb_stdlog); return retval; } static void debug_to_files_info (struct target_ops *target) { debug_target.to_files_info (target); fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n"); } static int debug_to_insert_breakpoint (struct bp_target_info *bp_tgt) { int retval; retval = debug_target.to_insert_breakpoint (bp_tgt); fprintf_unfiltered (gdb_stdlog, "target_insert_breakpoint (0x%lx, xxx) = %ld\n", (unsigned long) bp_tgt->placed_address, (unsigned long) retval); return retval; } static int debug_to_remove_breakpoint (struct bp_target_info *bp_tgt) { int retval; retval = debug_target.to_remove_breakpoint (bp_tgt); fprintf_unfiltered (gdb_stdlog, "target_remove_breakpoint (0x%lx, xxx) = %ld\n", (unsigned long) bp_tgt->placed_address, (unsigned long) retval); return retval; } static int debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty) { int retval; retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty); fprintf_unfiltered (gdb_stdlog, "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n", (unsigned long) type, (unsigned long) cnt, (unsigned long) from_tty, (unsigned long) retval); return retval; } static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) { CORE_ADDR retval; retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len); fprintf_unfiltered (gdb_stdlog, "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n", (unsigned long) addr, (unsigned long) len, (unsigned long) retval); return retval; } static int debug_to_stopped_by_watchpoint (void) { int retval; retval = debug_target.to_stopped_by_watchpoint (); fprintf_unfiltered (gdb_stdlog, "STOPPED_BY_WATCHPOINT () = %ld\n", (unsigned long) retval); return retval; } static int debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr) { int retval; retval = debug_target.to_stopped_data_address (target, addr); fprintf_unfiltered (gdb_stdlog, "target_stopped_data_address ([0x%lx]) = %ld\n", (unsigned long)*addr, (unsigned long)retval); return retval; } static int debug_to_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr, CORE_ADDR start, int length) { int retval; retval = debug_target.to_watchpoint_addr_within_range (target, addr, start, length); fprintf_filtered (gdb_stdlog, "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n", (unsigned long) addr, (unsigned long) start, length, retval); return retval; } static int debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt) { int retval; retval = debug_target.to_insert_hw_breakpoint (bp_tgt); fprintf_unfiltered (gdb_stdlog, "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n", (unsigned long) bp_tgt->placed_address, (unsigned long) retval); return retval; } static int debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt) { int retval; retval = debug_target.to_remove_hw_breakpoint (bp_tgt); fprintf_unfiltered (gdb_stdlog, "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n", (unsigned long) bp_tgt->placed_address, (unsigned long) retval); return retval; } static int debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type) { int retval; retval = debug_target.to_insert_watchpoint (addr, len, type); fprintf_unfiltered (gdb_stdlog, "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n", (unsigned long) addr, len, type, (unsigned long) retval); return retval; } static int debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type) { int retval; retval = debug_target.to_remove_watchpoint (addr, len, type); fprintf_unfiltered (gdb_stdlog, "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n", (unsigned long) addr, len, type, (unsigned long) retval); return retval; } static void debug_to_terminal_init (void) { debug_target.to_terminal_init (); fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n"); } static void debug_to_terminal_inferior (void) { debug_target.to_terminal_inferior (); fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n"); } static void debug_to_terminal_ours_for_output (void) { debug_target.to_terminal_ours_for_output (); fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n"); } static void debug_to_terminal_ours (void) { debug_target.to_terminal_ours (); fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n"); } static void debug_to_terminal_save_ours (void) { debug_target.to_terminal_save_ours (); fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n"); } static void debug_to_terminal_info (char *arg, int from_tty) { debug_target.to_terminal_info (arg, from_tty); fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg, from_tty); } static void debug_to_kill (void) { debug_target.to_kill (); fprintf_unfiltered (gdb_stdlog, "target_kill ()\n"); } static void debug_to_load (char *args, int from_tty) { debug_target.to_load (args, from_tty); fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty); } static int debug_to_lookup_symbol (char *name, CORE_ADDR *addrp) { int retval; retval = debug_target.to_lookup_symbol (name, addrp); fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name); return retval; } static void debug_to_create_inferior (char *exec_file, char *args, char **env, int from_tty) { debug_target.to_create_inferior (exec_file, args, env, from_tty); fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n", exec_file, args, from_tty); } static void debug_to_post_startup_inferior (ptid_t ptid) { debug_target.to_post_startup_inferior (ptid); fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n", PIDGET (ptid)); } static void debug_to_acknowledge_created_inferior (int pid) { debug_target.to_acknowledge_created_inferior (pid); fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n", pid); } static void debug_to_insert_fork_catchpoint (int pid) { debug_target.to_insert_fork_catchpoint (pid); fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n", pid); } static int debug_to_remove_fork_catchpoint (int pid) { int retval; retval = debug_target.to_remove_fork_catchpoint (pid); fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n", pid, retval); return retval; } static void debug_to_insert_vfork_catchpoint (int pid) { debug_target.to_insert_vfork_catchpoint (pid); fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n", pid); } static int debug_to_remove_vfork_catchpoint (int pid) { int retval; retval = debug_target.to_remove_vfork_catchpoint (pid); fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n", pid, retval); return retval; } static void debug_to_insert_exec_catchpoint (int pid) { debug_target.to_insert_exec_catchpoint (pid); fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n", pid); } static int debug_to_remove_exec_catchpoint (int pid) { int retval; retval = debug_target.to_remove_exec_catchpoint (pid); fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n", pid, retval); return retval; } static int debug_to_has_exited (int pid, int wait_status, int *exit_status) { int has_exited; has_exited = debug_target.to_has_exited (pid, wait_status, exit_status); fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n", pid, wait_status, *exit_status, has_exited); return has_exited; } static void debug_to_mourn_inferior (void) { debug_target.to_mourn_inferior (); fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n"); } static int debug_to_can_run (void) { int retval; retval = debug_target.to_can_run (); fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval); return retval; } static void debug_to_notice_signals (ptid_t ptid) { debug_target.to_notice_signals (ptid); fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n", PIDGET (ptid)); } static int debug_to_thread_alive (ptid_t ptid) { int retval; retval = debug_target.to_thread_alive (ptid); fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n", PIDGET (ptid), retval); return retval; } static void debug_to_find_new_threads (void) { debug_target.to_find_new_threads (); fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog); } static void debug_to_stop (ptid_t ptid) { debug_target.to_stop (ptid); fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n", target_pid_to_str (ptid)); } static void debug_to_rcmd (char *command, struct ui_file *outbuf) { debug_target.to_rcmd (command, outbuf); fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command); } static char * debug_to_pid_to_exec_file (int pid) { char *exec_file; exec_file = debug_target.to_pid_to_exec_file (pid); fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n", pid, exec_file); return exec_file; } static void setup_target_debug (void) { memcpy (&debug_target, ¤t_target, sizeof debug_target); current_target.to_open = debug_to_open; current_target.to_close = debug_to_close; current_target.to_attach = debug_to_attach; current_target.to_post_attach = debug_to_post_attach; current_target.to_detach = debug_to_detach; current_target.to_resume = debug_to_resume; current_target.to_wait = debug_to_wait; current_target.to_fetch_registers = debug_to_fetch_registers; current_target.to_store_registers = debug_to_store_registers; current_target.to_prepare_to_store = debug_to_prepare_to_store; current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory; current_target.to_files_info = debug_to_files_info; current_target.to_insert_breakpoint = debug_to_insert_breakpoint; current_target.to_remove_breakpoint = debug_to_remove_breakpoint; current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint; current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint; current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint; current_target.to_insert_watchpoint = debug_to_insert_watchpoint; current_target.to_remove_watchpoint = debug_to_remove_watchpoint; current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint; current_target.to_stopped_data_address = debug_to_stopped_data_address; current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range; current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint; current_target.to_terminal_init = debug_to_terminal_init; current_target.to_terminal_inferior = debug_to_terminal_inferior; current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output; current_target.to_terminal_ours = debug_to_terminal_ours; current_target.to_terminal_save_ours = debug_to_terminal_save_ours; current_target.to_terminal_info = debug_to_terminal_info; current_target.to_kill = debug_to_kill; current_target.to_load = debug_to_load; current_target.to_lookup_symbol = debug_to_lookup_symbol; current_target.to_create_inferior = debug_to_create_inferior; current_target.to_post_startup_inferior = debug_to_post_startup_inferior; current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior; current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint; current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint; current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint; current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint; current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint; current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint; current_target.to_has_exited = debug_to_has_exited; current_target.to_mourn_inferior = debug_to_mourn_inferior; current_target.to_can_run = debug_to_can_run; current_target.to_notice_signals = debug_to_notice_signals; current_target.to_thread_alive = debug_to_thread_alive; current_target.to_find_new_threads = debug_to_find_new_threads; current_target.to_stop = debug_to_stop; current_target.to_rcmd = debug_to_rcmd; current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file; } static char targ_desc[] = "Names of targets and files being debugged.\n\ Shows the entire stack of targets currently in use (including the exec-file,\n\ core-file, and process, if any), as well as the symbol file name."; static void do_monitor_command (char *cmd, int from_tty) { if ((current_target.to_rcmd == (void (*) (char *, struct ui_file *)) tcomplain) || (current_target.to_rcmd == debug_to_rcmd && (debug_target.to_rcmd == (void (*) (char *, struct ui_file *)) tcomplain))) error (_("\"monitor\" command not supported by this target.")); target_rcmd (cmd, gdb_stdtarg); } /* Print the name of each layers of our target stack. */ static void maintenance_print_target_stack (char *cmd, int from_tty) { struct target_ops *t; printf_filtered (_("The current target stack is:\n")); for (t = target_stack; t != NULL; t = t->beneath) { printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname); } } /* Controls if async mode is permitted. */ int target_async_permitted = 0; /* The set command writes to this variable. If the inferior is executing, linux_nat_async_permitted is *not* updated. */ static int target_async_permitted_1 = 0; static void set_maintenance_target_async_permitted (char *args, int from_tty, struct cmd_list_element *c) { if (target_has_execution) { target_async_permitted_1 = target_async_permitted; error (_("Cannot change this setting while the inferior is running.")); } target_async_permitted = target_async_permitted_1; } static void show_maintenance_target_async_permitted (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("\ Controlling the inferior in asynchronous mode is %s.\n"), value); } void initialize_targets (void) { init_dummy_target (); push_target (&dummy_target); add_info ("target", target_info, targ_desc); add_info ("files", target_info, targ_desc); add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\ Set target debugging."), _("\ Show target debugging."), _("\ When non-zero, target debugging is enabled. Higher numbers are more\n\ verbose. Changes do not take effect until the next \"run\" or \"target\"\n\ command."), NULL, show_targetdebug, &setdebuglist, &showdebuglist); add_setshow_boolean_cmd ("trust-readonly-sections", class_support, &trust_readonly, _("\ Set mode for reading from readonly sections."), _("\ Show mode for reading from readonly sections."), _("\ When this mode is on, memory reads from readonly sections (such as .text)\n\ will be read from the object file instead of from the target. This will\n\ result in significant performance improvement for remote targets."), NULL, show_trust_readonly, &setlist, &showlist); add_com ("monitor", class_obscure, do_monitor_command, _("Send a command to the remote monitor (remote targets only).")); add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack, _("Print the name of each layer of the internal target stack."), &maintenanceprintlist); add_setshow_boolean_cmd ("target-async", no_class, &target_async_permitted_1, _("\ Set whether gdb controls the inferior in asynchronous mode."), _("\ Show whether gdb controls the inferior in asynchronous mode."), _("\ Tells gdb whether to control the inferior in asynchronous mode."), set_maintenance_target_async_permitted, show_maintenance_target_async_permitted, &setlist, &showlist); target_dcache = dcache_init (); }