/* Target-dependent code for NetBSD/sparc64. Copyright (C) 2002-2023 Free Software Foundation, Inc. Based on code contributed by Wasabi Systems, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "frame.h" #include "frame-unwind.h" #include "gdbcore.h" #include "osabi.h" #include "regcache.h" #include "regset.h" #include "symtab.h" #include "objfiles.h" #include "solib-svr4.h" #include "trad-frame.h" #include "sparc64-tdep.h" #include "netbsd-tdep.h" /* From . */ const struct sparc_gregmap sparc64nbsd_gregmap = { 0 * 8, /* "tstate" */ 1 * 8, /* %pc */ 2 * 8, /* %npc */ 3 * 8, /* %y */ -1, /* %fprs */ -1, 5 * 8, /* %g1 */ -1, /* %l0 */ 4 /* sizeof (%y) */ }; static void sparc64nbsd_supply_gregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *gregs, size_t len) { sparc64_supply_gregset (&sparc64nbsd_gregmap, regcache, regnum, gregs); } static void sparc64nbsd_supply_fpregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *fpregs, size_t len) { sparc64_supply_fpregset (&sparc64_bsd_fpregmap, regcache, regnum, fpregs); } /* Signal trampolines. */ /* The following variables describe the location of an on-stack signal trampoline. The current values correspond to the memory layout for NetBSD 1.3 and up. These shouldn't be necessary for NetBSD 2.0 and up, since NetBSD uses signal trampolines provided by libc now. */ static const CORE_ADDR sparc64nbsd_sigtramp_start = 0xffffffffffffdee4ULL; static const CORE_ADDR sparc64nbsd_sigtramp_end = 0xffffffffffffe000ULL; static int sparc64nbsd_pc_in_sigtramp (CORE_ADDR pc, const char *name) { if (pc >= sparc64nbsd_sigtramp_start && pc < sparc64nbsd_sigtramp_end) return 1; return nbsd_pc_in_sigtramp (pc, name); } trad_frame_saved_reg * sparc64nbsd_sigcontext_saved_regs (CORE_ADDR sigcontext_addr, frame_info_ptr this_frame) { struct gdbarch *gdbarch = get_frame_arch (this_frame); trad_frame_saved_reg *saved_regs; CORE_ADDR addr, sp; int regnum, delta; saved_regs = trad_frame_alloc_saved_regs (this_frame); /* The registers are saved in bits and pieces scattered all over the place. The code below records their location on the assumption that the part of the signal trampoline that saves the state has been executed. */ saved_regs[SPARC_SP_REGNUM].set_addr (sigcontext_addr + 8); saved_regs[SPARC64_PC_REGNUM].set_addr (sigcontext_addr + 16); saved_regs[SPARC64_NPC_REGNUM].set_addr (sigcontext_addr + 24); saved_regs[SPARC64_STATE_REGNUM].set_addr (sigcontext_addr + 32); saved_regs[SPARC_G1_REGNUM].set_addr (sigcontext_addr + 40); saved_regs[SPARC_O0_REGNUM].set_addr (sigcontext_addr + 48); /* The remaining `global' registers and %y are saved in the `local' registers. */ delta = SPARC_L0_REGNUM - SPARC_G0_REGNUM; for (regnum = SPARC_G2_REGNUM; regnum <= SPARC_G7_REGNUM; regnum++) saved_regs[regnum].set_realreg (regnum + delta); saved_regs[SPARC64_Y_REGNUM].set_realreg (SPARC_L1_REGNUM); /* The remaining `out' registers can be found in the current frame's `in' registers. */ delta = SPARC_I0_REGNUM - SPARC_O0_REGNUM; for (regnum = SPARC_O1_REGNUM; regnum <= SPARC_O5_REGNUM; regnum++) saved_regs[regnum].set_realreg (regnum + delta); saved_regs[SPARC_O7_REGNUM].set_realreg (SPARC_I7_REGNUM); /* The `local' and `in' registers have been saved in the register save area. */ addr = saved_regs[SPARC_SP_REGNUM].addr (); sp = get_frame_memory_unsigned (this_frame, addr, 8); for (regnum = SPARC_L0_REGNUM, addr = sp + BIAS; regnum <= SPARC_I7_REGNUM; regnum++, addr += 8) saved_regs[regnum].set_addr (addr); /* Handle StackGhost. */ { ULONGEST wcookie = sparc_fetch_wcookie (gdbarch); if (wcookie != 0) { ULONGEST i7; addr = saved_regs[SPARC_I7_REGNUM].addr (); i7 = get_frame_memory_unsigned (this_frame, addr, 8); saved_regs[SPARC_I7_REGNUM].set_value (i7 ^ wcookie); } } /* TODO: Handle the floating-point registers. */ return saved_regs; } static struct sparc_frame_cache * sparc64nbsd_sigcontext_frame_cache (frame_info_ptr this_frame, void **this_cache) { struct sparc_frame_cache *cache; CORE_ADDR addr; if (*this_cache) return (struct sparc_frame_cache *) *this_cache; cache = sparc_frame_cache (this_frame, this_cache); gdb_assert (cache == *this_cache); /* If we couldn't find the frame's function, we're probably dealing with an on-stack signal trampoline. */ if (cache->pc == 0) { cache->pc = sparc64nbsd_sigtramp_start; /* Since we couldn't find the frame's function, the cache was initialized under the assumption that we're frameless. */ sparc_record_save_insn (cache); addr = get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM); if (addr & 1) addr += BIAS; cache->base = addr; } /* We find the appropriate instance of `struct sigcontext' at a fixed offset in the signal frame. */ addr = cache->base + 128 + 8; cache->saved_regs = sparc64nbsd_sigcontext_saved_regs (addr, this_frame); return cache; } static void sparc64nbsd_sigcontext_frame_this_id (frame_info_ptr this_frame, void **this_cache, struct frame_id *this_id) { struct sparc_frame_cache *cache = sparc64nbsd_sigcontext_frame_cache (this_frame, this_cache); (*this_id) = frame_id_build (cache->base, cache->pc); } static struct value * sparc64nbsd_sigcontext_frame_prev_register (frame_info_ptr this_frame, void **this_cache, int regnum) { struct sparc_frame_cache *cache = sparc64nbsd_sigcontext_frame_cache (this_frame, this_cache); return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum); } static int sparc64nbsd_sigtramp_frame_sniffer (const struct frame_unwind *self, frame_info_ptr this_frame, void **this_cache) { CORE_ADDR pc = get_frame_pc (this_frame); const char *name; find_pc_partial_function (pc, &name, NULL, NULL); if (sparc64nbsd_pc_in_sigtramp (pc, name)) { if (name == NULL || !startswith (name, "__sigtramp_sigcontext")) return 1; } return 0; } static const struct frame_unwind sparc64nbsd_sigcontext_frame_unwind = { "sparc64 netbsd sigcontext", SIGTRAMP_FRAME, default_frame_unwind_stop_reason, sparc64nbsd_sigcontext_frame_this_id, sparc64nbsd_sigcontext_frame_prev_register, NULL, sparc64nbsd_sigtramp_frame_sniffer }; static const struct regset sparc64nbsd_gregset = { NULL, sparc64nbsd_supply_gregset, NULL }; static const struct regset sparc64nbsd_fpregset = { NULL, sparc64nbsd_supply_fpregset, NULL }; static void sparc64nbsd_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { sparc_gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); nbsd_init_abi (info, gdbarch); tdep->gregset = &sparc64nbsd_gregset; tdep->sizeof_gregset = 160; tdep->fpregset = &sparc64nbsd_fpregset; tdep->sizeof_fpregset = 272; /* Make sure we can single-step "new" syscalls. */ tdep->step_trap = sparcnbsd_step_trap; frame_unwind_append_unwinder (gdbarch, &sparc64nbsd_sigcontext_frame_unwind); sparc64_init_abi (info, gdbarch); /* NetBSD/sparc64 has SVR4-style shared libraries. */ set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); set_solib_svr4_fetch_link_map_offsets (gdbarch, svr4_lp64_fetch_link_map_offsets); } void _initialize_sparc64nbsd_tdep (); void _initialize_sparc64nbsd_tdep () { gdbarch_register_osabi (bfd_arch_sparc, bfd_mach_sparc_v9, GDB_OSABI_NETBSD, sparc64nbsd_init_abi); }