/* Target-dependent code for NetBSD/mips. Copyright (C) 2002-2023 Free Software Foundation, Inc. Contributed by Wasabi Systems, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "gdbcore.h" #include "regcache.h" #include "regset.h" #include "target.h" #include "value.h" #include "osabi.h" #include "netbsd-tdep.h" #include "mips-netbsd-tdep.h" #include "mips-tdep.h" #include "solib-svr4.h" /* Shorthand for some register numbers used below. */ #define MIPS_PC_REGNUM MIPS_EMBED_PC_REGNUM #define MIPS_FP0_REGNUM MIPS_EMBED_FP0_REGNUM #define MIPS_FSR_REGNUM MIPS_EMBED_FP0_REGNUM + 32 /* Core file support. */ /* Number of registers in `struct reg' from . */ #define MIPSNBSD_NUM_GREGS 38 /* Number of registers in `struct fpreg' from . */ #define MIPSNBSD_NUM_FPREGS 33 /* Supply register REGNUM from the buffer specified by FPREGS and LEN in the floating-point register set REGSET to register cache REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ static void mipsnbsd_supply_fpregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *fpregs, size_t len) { size_t regsize = mips_isa_regsize (regcache->arch ()); const char *regs = (const char *) fpregs; int i; gdb_assert (len >= MIPSNBSD_NUM_FPREGS * regsize); for (i = MIPS_FP0_REGNUM; i <= MIPS_FSR_REGNUM; i++) { if (regnum == i || regnum == -1) regcache->raw_supply (i, regs + (i - MIPS_FP0_REGNUM) * regsize); } } /* Supply register REGNUM from the buffer specified by GREGS and LEN in the general-purpose register set REGSET to register cache REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ static void mipsnbsd_supply_gregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *gregs, size_t len) { size_t regsize = mips_isa_regsize (regcache->arch ()); const char *regs = (const char *) gregs; int i; gdb_assert (len >= MIPSNBSD_NUM_GREGS * regsize); for (i = 0; i <= MIPS_PC_REGNUM; i++) { if (regnum == i || regnum == -1) regcache->raw_supply (i, regs + i * regsize); } if (len >= (MIPSNBSD_NUM_GREGS + MIPSNBSD_NUM_FPREGS) * regsize) { regs += MIPSNBSD_NUM_GREGS * regsize; len -= MIPSNBSD_NUM_GREGS * regsize; mipsnbsd_supply_fpregset (regset, regcache, regnum, regs, len); } } /* NetBSD/mips register sets. */ static const struct regset mipsnbsd_gregset = { NULL, mipsnbsd_supply_gregset, NULL, REGSET_VARIABLE_SIZE }; static const struct regset mipsnbsd_fpregset = { NULL, mipsnbsd_supply_fpregset }; /* Iterate over core file register note sections. */ static void mipsnbsd_iterate_over_regset_sections (struct gdbarch *gdbarch, iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache) { size_t regsize = mips_isa_regsize (gdbarch); cb (".reg", MIPSNBSD_NUM_GREGS * regsize, MIPSNBSD_NUM_GREGS * regsize, &mipsnbsd_gregset, NULL, cb_data); cb (".reg2", MIPSNBSD_NUM_FPREGS * regsize, MIPSNBSD_NUM_FPREGS * regsize, &mipsnbsd_fpregset, NULL, cb_data); } /* Conveniently, GDB uses the same register numbering as the ptrace register structure used by NetBSD/mips. */ void mipsnbsd_supply_reg (struct regcache *regcache, const char *regs, int regno) { struct gdbarch *gdbarch = regcache->arch (); int i; for (i = 0; i <= gdbarch_pc_regnum (gdbarch); i++) { if (regno == i || regno == -1) { if (gdbarch_cannot_fetch_register (gdbarch, i)) regcache->raw_supply (i, NULL); else regcache->raw_supply (i, regs + (i * mips_isa_regsize (gdbarch))); } } } void mipsnbsd_fill_reg (const struct regcache *regcache, char *regs, int regno) { struct gdbarch *gdbarch = regcache->arch (); int i; for (i = 0; i <= gdbarch_pc_regnum (gdbarch); i++) if ((regno == i || regno == -1) && ! gdbarch_cannot_store_register (gdbarch, i)) regcache->raw_collect (i, regs + (i * mips_isa_regsize (gdbarch))); } void mipsnbsd_supply_fpreg (struct regcache *regcache, const char *fpregs, int regno) { struct gdbarch *gdbarch = regcache->arch (); int i; for (i = gdbarch_fp0_regnum (gdbarch); i <= mips_regnum (gdbarch)->fp_implementation_revision; i++) { if (regno == i || regno == -1) { if (gdbarch_cannot_fetch_register (gdbarch, i)) regcache->raw_supply (i, NULL); else regcache->raw_supply (i, fpregs + ((i - gdbarch_fp0_regnum (gdbarch)) * mips_isa_regsize (gdbarch))); } } } void mipsnbsd_fill_fpreg (const struct regcache *regcache, char *fpregs, int regno) { struct gdbarch *gdbarch = regcache->arch (); int i; for (i = gdbarch_fp0_regnum (gdbarch); i <= mips_regnum (gdbarch)->fp_control_status; i++) if ((regno == i || regno == -1) && ! gdbarch_cannot_store_register (gdbarch, i)) regcache->raw_collect (i, (fpregs + ((i - gdbarch_fp0_regnum (gdbarch)) * mips_isa_regsize (gdbarch)))); } #if 0 /* Under NetBSD/mips, signal handler invocations can be identified by the designated code sequence that is used to return from a signal handler. In particular, the return address of a signal handler points to the following code sequence: addu a0, sp, 16 li v0, 295 # __sigreturn14 syscall Each instruction has a unique encoding, so we simply attempt to match the instruction the PC is pointing to with any of the above instructions. If there is a hit, we know the offset to the start of the designated sequence and can then check whether we really are executing in the signal trampoline. If not, -1 is returned, otherwise the offset from the start of the return sequence is returned. */ #define RETCODE_NWORDS 3 #define RETCODE_SIZE (RETCODE_NWORDS * 4) static const unsigned char sigtramp_retcode_mipsel[RETCODE_SIZE] = { 0x10, 0x00, 0xa4, 0x27, /* addu a0, sp, 16 */ 0x27, 0x01, 0x02, 0x24, /* li v0, 295 */ 0x0c, 0x00, 0x00, 0x00, /* syscall */ }; static const unsigned char sigtramp_retcode_mipseb[RETCODE_SIZE] = { 0x27, 0xa4, 0x00, 0x10, /* addu a0, sp, 16 */ 0x24, 0x02, 0x01, 0x27, /* li v0, 295 */ 0x00, 0x00, 0x00, 0x0c, /* syscall */ }; #endif /* Figure out where the longjmp will land. We expect that we have just entered longjmp and haven't yet setup the stack frame, so the args are still in the argument regs. MIPS_A0_REGNUM points at the jmp_buf structure from which we extract the PC that we will land at. The PC is copied into *pc. This routine returns true on success. */ #define NBSD_MIPS_JB_PC (2 * 4) #define NBSD_MIPS_JB_ELEMENT_SIZE(gdbarch) mips_isa_regsize (gdbarch) #define NBSD_MIPS_JB_OFFSET(gdbarch) (NBSD_MIPS_JB_PC * \ NBSD_MIPS_JB_ELEMENT_SIZE (gdbarch)) static int mipsnbsd_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc) { struct gdbarch *gdbarch = get_frame_arch (frame); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); CORE_ADDR jb_addr; gdb_byte *buf; buf = (gdb_byte *) alloca (NBSD_MIPS_JB_ELEMENT_SIZE (gdbarch)); jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM); if (target_read_memory (jb_addr + NBSD_MIPS_JB_OFFSET (gdbarch), buf, NBSD_MIPS_JB_ELEMENT_SIZE (gdbarch))) return 0; *pc = extract_unsigned_integer (buf, NBSD_MIPS_JB_ELEMENT_SIZE (gdbarch), byte_order); return 1; } static int mipsnbsd_cannot_fetch_register (struct gdbarch *gdbarch, int regno) { return (regno == MIPS_ZERO_REGNUM || regno == mips_regnum (gdbarch)->fp_implementation_revision); } static int mipsnbsd_cannot_store_register (struct gdbarch *gdbarch, int regno) { return (regno == MIPS_ZERO_REGNUM || regno == mips_regnum (gdbarch)->fp_implementation_revision); } /* Shared library support. */ /* NetBSD/mips uses a slightly different `struct link_map' than the other NetBSD platforms. */ static struct link_map_offsets * mipsnbsd_ilp32_fetch_link_map_offsets (void) { static struct link_map_offsets lmo; static struct link_map_offsets *lmp = NULL; if (lmp == NULL) { lmp = &lmo; lmo.r_version_offset = 0; lmo.r_version_size = 4; lmo.r_map_offset = 4; lmo.r_brk_offset = 8; lmo.r_ldsomap_offset = -1; lmo.r_next_offset = -1; /* Everything we need is in the first 24 bytes. */ lmo.link_map_size = 24; lmo.l_addr_offset = 4; lmo.l_name_offset = 8; lmo.l_ld_offset = 12; lmo.l_next_offset = 16; lmo.l_prev_offset = 20; } return lmp; } static struct link_map_offsets * mipsnbsd_lp64_fetch_link_map_offsets (void) { static struct link_map_offsets lmo; static struct link_map_offsets *lmp = NULL; if (lmp == NULL) { lmp = &lmo; lmo.r_version_offset = 0; lmo.r_version_size = 4; lmo.r_map_offset = 8; lmo.r_brk_offset = 16; lmo.r_ldsomap_offset = -1; lmo.r_next_offset = -1; /* Everything we need is in the first 40 bytes. */ lmo.link_map_size = 48; lmo.l_addr_offset = 0; lmo.l_name_offset = 16; lmo.l_ld_offset = 24; lmo.l_next_offset = 32; lmo.l_prev_offset = 40; } return lmp; } static void mipsnbsd_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { nbsd_init_abi (info, gdbarch); set_gdbarch_iterate_over_regset_sections (gdbarch, mipsnbsd_iterate_over_regset_sections); set_gdbarch_get_longjmp_target (gdbarch, mipsnbsd_get_longjmp_target); set_gdbarch_cannot_fetch_register (gdbarch, mipsnbsd_cannot_fetch_register); set_gdbarch_cannot_store_register (gdbarch, mipsnbsd_cannot_store_register); set_gdbarch_software_single_step (gdbarch, mips_software_single_step); /* NetBSD/mips has SVR4-style shared libraries. */ set_solib_svr4_fetch_link_map_offsets (gdbarch, (gdbarch_ptr_bit (gdbarch) == 32 ? mipsnbsd_ilp32_fetch_link_map_offsets : mipsnbsd_lp64_fetch_link_map_offsets)); } void _initialize_mipsnbsd_tdep (); void _initialize_mipsnbsd_tdep () { gdbarch_register_osabi (bfd_arch_mips, 0, GDB_OSABI_NETBSD, mipsnbsd_init_abi); }