/* GNU/Linux native-dependent code for debugging multiple forks. Copyright (C) 2005-2023 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "arch-utils.h" #include "inferior.h" #include "infrun.h" #include "regcache.h" #include "gdbcmd.h" #include "infcall.h" #include "objfiles.h" #include "linux-fork.h" #include "linux-nat.h" #include "gdbthread.h" #include "source.h" #include "nat/gdb_ptrace.h" #include "gdbsupport/gdb_wait.h" #include #include #include /* Fork list data structure: */ struct fork_info { explicit fork_info (pid_t pid) : ptid (pid, pid) { } ~fork_info () { /* Notes on step-resume breakpoints: since this is a concern for threads, let's convince ourselves that it's not a concern for forks. There are two ways for a fork_info to be created. First, by the checkpoint command, in which case we're at a gdb prompt and there can't be any step-resume breakpoint. Second, by a fork in the user program, in which case we *may* have stepped into the fork call, but regardless of whether we follow the parent or the child, we will return to the same place and the step-resume breakpoint, if any, will take care of itself as usual. And unlike threads, we do not save a private copy of the step-resume breakpoint -- so we're OK. */ if (savedregs) delete savedregs; xfree (filepos); } ptid_t ptid = null_ptid; ptid_t parent_ptid = null_ptid; /* Convenient handle (GDB fork id). */ int num = 0; /* Convenient for info fork, saves having to actually switch contexts. */ readonly_detached_regcache *savedregs = nullptr; CORE_ADDR pc = 0; /* Set of open file descriptors' offsets. */ off_t *filepos = nullptr; int maxfd = 0; }; static std::list fork_list; static int highest_fork_num; /* Fork list methods: */ int forks_exist_p (void) { return !fork_list.empty (); } /* Return the last fork in the list. */ static struct fork_info * find_last_fork (void) { if (fork_list.empty ()) return NULL; return &fork_list.back (); } /* Return true iff there's one fork in the list. */ static bool one_fork_p () { return fork_list.size () == 1; } /* Add a new fork to the internal fork list. */ void add_fork (pid_t pid) { fork_list.emplace_back (pid); if (one_fork_p ()) highest_fork_num = 0; fork_info *fp = &fork_list.back (); fp->num = ++highest_fork_num; } static void delete_fork (ptid_t ptid) { linux_target->low_forget_process (ptid.pid ()); for (auto it = fork_list.begin (); it != fork_list.end (); ++it) if (it->ptid == ptid) { fork_list.erase (it); /* Special case: if there is now only one process in the list, and if it is (hopefully!) the current inferior_ptid, then remove it, leaving the list empty -- we're now down to the default case of debugging a single process. */ if (one_fork_p () && fork_list.front ().ptid == inferior_ptid) { /* Last fork -- delete from list and handle as solo process (should be a safe recursion). */ delete_fork (inferior_ptid); } return; } } /* Find a fork_info by matching PTID. */ static struct fork_info * find_fork_ptid (ptid_t ptid) { for (fork_info &fi : fork_list) if (fi.ptid == ptid) return &fi; return NULL; } /* Find a fork_info by matching ID. */ static struct fork_info * find_fork_id (int num) { for (fork_info &fi : fork_list) if (fi.num == num) return &fi; return NULL; } /* Find a fork_info by matching pid. */ extern struct fork_info * find_fork_pid (pid_t pid) { for (fork_info &fi : fork_list) if (pid == fi.ptid.pid ()) return &fi; return NULL; } static ptid_t fork_id_to_ptid (int num) { struct fork_info *fork = find_fork_id (num); if (fork) return fork->ptid; else return ptid_t (-1); } /* Fork list <-> gdb interface. */ /* Utility function for fork_load/fork_save. Calls lseek in the (current) inferior process. */ static off_t call_lseek (int fd, off_t offset, int whence) { char exp[80]; snprintf (&exp[0], sizeof (exp), "(long) lseek (%d, %ld, %d)", fd, (long) offset, whence); return (off_t) parse_and_eval_long (&exp[0]); } /* Load infrun state for the fork PTID. */ static void fork_load_infrun_state (struct fork_info *fp) { int i; linux_nat_switch_fork (fp->ptid); if (fp->savedregs) get_current_regcache ()->restore (fp->savedregs); registers_changed (); reinit_frame_cache (); inferior_thread ()->set_stop_pc (regcache_read_pc (get_current_regcache ())); nullify_last_target_wait_ptid (); /* Now restore the file positions of open file descriptors. */ if (fp->filepos) { for (i = 0; i <= fp->maxfd; i++) if (fp->filepos[i] != (off_t) -1) call_lseek (i, fp->filepos[i], SEEK_SET); /* NOTE: I can get away with using SEEK_SET and SEEK_CUR because this is native-only. If it ever has to be cross, we'll have to rethink this. */ } } /* Save infrun state for the fork FP. */ static void fork_save_infrun_state (struct fork_info *fp) { char path[PATH_MAX]; struct dirent *de; DIR *d; if (fp->savedregs) delete fp->savedregs; fp->savedregs = new readonly_detached_regcache (*get_current_regcache ()); fp->pc = regcache_read_pc (get_current_regcache ()); /* Now save the 'state' (file position) of all open file descriptors. Unfortunately fork does not take care of that for us... */ snprintf (path, PATH_MAX, "/proc/%ld/fd", (long) fp->ptid.pid ()); if ((d = opendir (path)) != NULL) { long tmp; fp->maxfd = 0; while ((de = readdir (d)) != NULL) { /* Count open file descriptors (actually find highest numbered). */ tmp = strtol (&de->d_name[0], NULL, 10); if (fp->maxfd < tmp) fp->maxfd = tmp; } /* Allocate array of file positions. */ fp->filepos = XRESIZEVEC (off_t, fp->filepos, fp->maxfd + 1); /* Initialize to -1 (invalid). */ for (tmp = 0; tmp <= fp->maxfd; tmp++) fp->filepos[tmp] = -1; /* Now find actual file positions. */ rewinddir (d); while ((de = readdir (d)) != NULL) if (isdigit (de->d_name[0])) { tmp = strtol (&de->d_name[0], NULL, 10); fp->filepos[tmp] = call_lseek (tmp, 0, SEEK_CUR); } closedir (d); } } /* Kill 'em all, let God sort 'em out... */ void linux_fork_killall (void) { /* Walk list and kill every pid. No need to treat the current inferior_ptid as special (we do not return a status for it) -- however any process may be a child or a parent, so may get a SIGCHLD from a previously killed child. Wait them all out. */ for (fork_info &fi : fork_list) { pid_t pid = fi.ptid.pid (); int status; pid_t ret; do { /* Use SIGKILL instead of PTRACE_KILL because the former works even if the thread is running, while the later doesn't. */ kill (pid, SIGKILL); ret = waitpid (pid, &status, 0); /* We might get a SIGCHLD instead of an exit status. This is aggravated by the first kill above - a child has just died. MVS comment cut-and-pasted from linux-nat. */ } while (ret == pid && WIFSTOPPED (status)); } /* Clear list, prepare to start fresh. */ fork_list.clear (); } /* The current inferior_ptid has exited, but there are other viable forks to debug. Delete the exiting one and context-switch to the first available. */ void linux_fork_mourn_inferior (void) { struct fork_info *last; int status; /* Wait just one more time to collect the inferior's exit status. Do not check whether this succeeds though, since we may be dealing with a process that we attached to. Such a process will only report its exit status to its original parent. */ waitpid (inferior_ptid.pid (), &status, 0); /* OK, presumably inferior_ptid is the one who has exited. We need to delete that one from the fork_list, and switch to the next available fork. */ delete_fork (inferior_ptid); /* There should still be a fork - if there's only one left, delete_fork won't remove it, because we haven't updated inferior_ptid yet. */ gdb_assert (!fork_list.empty ()); last = find_last_fork (); fork_load_infrun_state (last); gdb_printf (_("[Switching to %s]\n"), target_pid_to_str (inferior_ptid).c_str ()); /* If there's only one fork, switch back to non-fork mode. */ if (one_fork_p ()) delete_fork (inferior_ptid); } /* The current inferior_ptid is being detached, but there are other viable forks to debug. Detach and delete it and context-switch to the first available. */ void linux_fork_detach (int from_tty) { /* OK, inferior_ptid is the one we are detaching from. We need to delete it from the fork_list, and switch to the next available fork. */ if (ptrace (PTRACE_DETACH, inferior_ptid.pid (), 0, 0)) error (_("Unable to detach %s"), target_pid_to_str (inferior_ptid).c_str ()); delete_fork (inferior_ptid); /* There should still be a fork - if there's only one left, delete_fork won't remove it, because we haven't updated inferior_ptid yet. */ gdb_assert (!fork_list.empty ()); fork_load_infrun_state (&fork_list.front ()); if (from_tty) gdb_printf (_("[Switching to %s]\n"), target_pid_to_str (inferior_ptid).c_str ()); /* If there's only one fork, switch back to non-fork mode. */ if (one_fork_p ()) delete_fork (inferior_ptid); } /* Temporarily switch to the infrun state stored on the fork_info identified by a given ptid_t. When this object goes out of scope, restore the currently selected infrun state. */ class scoped_switch_fork_info { public: /* Switch to the infrun state held on the fork_info identified by PPTID. If PPTID is the current inferior then no switch is done. */ explicit scoped_switch_fork_info (ptid_t pptid) : m_oldfp (nullptr) { if (pptid != inferior_ptid) { struct fork_info *newfp = nullptr; /* Switch to pptid. */ m_oldfp = find_fork_ptid (inferior_ptid); gdb_assert (m_oldfp != nullptr); newfp = find_fork_ptid (pptid); gdb_assert (newfp != nullptr); fork_save_infrun_state (m_oldfp); remove_breakpoints (); fork_load_infrun_state (newfp); insert_breakpoints (); } } /* Restore the previously selected infrun state. If the constructor didn't need to switch states, then nothing is done here either. */ ~scoped_switch_fork_info () { if (m_oldfp != nullptr) { /* Switch back to inferior_ptid. */ try { remove_breakpoints (); fork_load_infrun_state (m_oldfp); insert_breakpoints (); } catch (const gdb_exception_quit &ex) { /* We can't throw from a destructor, so re-set the quit flag for later QUIT checking. */ set_quit_flag (); } catch (const gdb_exception_forced_quit &ex) { /* Like above, but (eventually) cause GDB to terminate by setting sync_quit_force_run. */ set_force_quit_flag (); } catch (const gdb_exception &ex) { warning (_("Couldn't restore checkpoint state in %s: %s"), target_pid_to_str (m_oldfp->ptid).c_str (), ex.what ()); } } } DISABLE_COPY_AND_ASSIGN (scoped_switch_fork_info); private: /* The fork_info for the previously selected infrun state, or nullptr if we were already in the desired state, and nothing needs to be restored. */ struct fork_info *m_oldfp; }; static int inferior_call_waitpid (ptid_t pptid, int pid) { struct objfile *waitpid_objf; struct value *waitpid_fn = NULL; int ret = -1; scoped_switch_fork_info switch_fork_info (pptid); /* Get the waitpid_fn. */ if (lookup_minimal_symbol ("waitpid", NULL, NULL).minsym != NULL) waitpid_fn = find_function_in_inferior ("waitpid", &waitpid_objf); if (!waitpid_fn && lookup_minimal_symbol ("_waitpid", NULL, NULL).minsym != NULL) waitpid_fn = find_function_in_inferior ("_waitpid", &waitpid_objf); if (waitpid_fn != nullptr) { struct gdbarch *gdbarch = get_current_arch (); struct value *argv[3], *retv; /* Get the argv. */ argv[0] = value_from_longest (builtin_type (gdbarch)->builtin_int, pid); argv[1] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr, 0); argv[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); retv = call_function_by_hand (waitpid_fn, NULL, argv); if (value_as_long (retv) >= 0) ret = 0; } return ret; } /* Fork list <-> user interface. */ static void delete_checkpoint_command (const char *args, int from_tty) { ptid_t ptid, pptid; struct fork_info *fi; if (!args || !*args) error (_("Requires argument (checkpoint id to delete)")); ptid = fork_id_to_ptid (parse_and_eval_long (args)); if (ptid == minus_one_ptid) error (_("No such checkpoint id, %s"), args); if (ptid == inferior_ptid) error (_("\ Please switch to another checkpoint before deleting the current one")); if (ptrace (PTRACE_KILL, ptid.pid (), 0, 0)) error (_("Unable to kill pid %s"), target_pid_to_str (ptid).c_str ()); fi = find_fork_ptid (ptid); gdb_assert (fi); pptid = fi->parent_ptid; if (from_tty) gdb_printf (_("Killed %s\n"), target_pid_to_str (ptid).c_str ()); delete_fork (ptid); /* If fi->parent_ptid is not a part of lwp but it's a part of checkpoint list, waitpid the ptid. If fi->parent_ptid is a part of lwp and it is stopped, waitpid the ptid. */ thread_info *parent = linux_target->find_thread (pptid); if ((parent == NULL && find_fork_ptid (pptid)) || (parent != NULL && parent->state == THREAD_STOPPED)) { if (inferior_call_waitpid (pptid, ptid.pid ())) warning (_("Unable to wait pid %s"), target_pid_to_str (ptid).c_str ()); } } static void detach_checkpoint_command (const char *args, int from_tty) { ptid_t ptid; if (!args || !*args) error (_("Requires argument (checkpoint id to detach)")); ptid = fork_id_to_ptid (parse_and_eval_long (args)); if (ptid == minus_one_ptid) error (_("No such checkpoint id, %s"), args); if (ptid == inferior_ptid) error (_("\ Please switch to another checkpoint before detaching the current one")); if (ptrace (PTRACE_DETACH, ptid.pid (), 0, 0)) error (_("Unable to detach %s"), target_pid_to_str (ptid).c_str ()); if (from_tty) gdb_printf (_("Detached %s\n"), target_pid_to_str (ptid).c_str ()); delete_fork (ptid); } /* Print information about currently known checkpoints. */ static void info_checkpoints_command (const char *arg, int from_tty) { struct gdbarch *gdbarch = get_current_arch (); int requested = -1; const fork_info *printed = NULL; if (arg && *arg) requested = (int) parse_and_eval_long (arg); for (const fork_info &fi : fork_list) { if (requested > 0 && fi.num != requested) continue; printed = &fi; if (fi.ptid == inferior_ptid) gdb_printf ("* "); else gdb_printf (" "); ULONGEST pc = fi.pc; gdb_printf ("%d %s", fi.num, target_pid_to_str (fi.ptid).c_str ()); if (fi.num == 0) gdb_printf (_(" (main process)")); gdb_printf (_(" at ")); gdb_puts (paddress (gdbarch, pc)); symtab_and_line sal = find_pc_line (pc, 0); if (sal.symtab) gdb_printf (_(", file %s"), symtab_to_filename_for_display (sal.symtab)); if (sal.line) gdb_printf (_(", line %d"), sal.line); if (!sal.symtab && !sal.line) { struct bound_minimal_symbol msym; msym = lookup_minimal_symbol_by_pc (pc); if (msym.minsym) gdb_printf (", <%s>", msym.minsym->linkage_name ()); } gdb_putc ('\n'); } if (printed == NULL) { if (requested > 0) gdb_printf (_("No checkpoint number %d.\n"), requested); else gdb_printf (_("No checkpoints.\n")); } } /* The PID of the process we're checkpointing. */ static int checkpointing_pid = 0; int linux_fork_checkpointing_p (int pid) { return (checkpointing_pid == pid); } /* Return true if the current inferior is multi-threaded. */ static bool inf_has_multiple_threads () { int count = 0; /* Return true as soon as we see the second thread of the current inferior. */ for (thread_info *tp ATTRIBUTE_UNUSED : current_inferior ()->threads ()) if (++count > 1) return true; return false; } static void checkpoint_command (const char *args, int from_tty) { struct objfile *fork_objf; struct gdbarch *gdbarch; struct target_waitstatus last_target_waitstatus; ptid_t last_target_ptid; struct value *fork_fn = NULL, *ret; struct fork_info *fp; pid_t retpid; if (!target_has_execution ()) error (_("The program is not being run.")); /* Ensure that the inferior is not multithreaded. */ update_thread_list (); if (inf_has_multiple_threads ()) error (_("checkpoint: can't checkpoint multiple threads.")); /* Make the inferior fork, record its (and gdb's) state. */ if (lookup_minimal_symbol ("fork", NULL, NULL).minsym != NULL) fork_fn = find_function_in_inferior ("fork", &fork_objf); if (!fork_fn) if (lookup_minimal_symbol ("_fork", NULL, NULL).minsym != NULL) fork_fn = find_function_in_inferior ("fork", &fork_objf); if (!fork_fn) error (_("checkpoint: can't find fork function in inferior.")); gdbarch = fork_objf->arch (); ret = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); /* Tell linux-nat.c that we're checkpointing this inferior. */ { scoped_restore save_pid = make_scoped_restore (&checkpointing_pid, inferior_ptid.pid ()); ret = call_function_by_hand (fork_fn, NULL, {}); } if (!ret) /* Probably can't happen. */ error (_("checkpoint: call_function_by_hand returned null.")); retpid = value_as_long (ret); get_last_target_status (nullptr, &last_target_ptid, &last_target_waitstatus); fp = find_fork_pid (retpid); if (from_tty) { int parent_pid; gdb_printf (_("checkpoint %d: fork returned pid %ld.\n"), fp != NULL ? fp->num : -1, (long) retpid); if (info_verbose) { parent_pid = last_target_ptid.lwp (); if (parent_pid == 0) parent_pid = last_target_ptid.pid (); gdb_printf (_(" gdb says parent = %ld.\n"), (long) parent_pid); } } if (!fp) error (_("Failed to find new fork")); if (one_fork_p ()) { /* Special case -- if this is the first fork in the list (the list was hitherto empty), then add inferior_ptid first, as a special zeroeth fork id. */ fork_list.emplace_front (inferior_ptid.pid ()); } fork_save_infrun_state (fp); fp->parent_ptid = last_target_ptid; } static void linux_fork_context (struct fork_info *newfp, int from_tty) { /* Now we attempt to switch processes. */ struct fork_info *oldfp; gdb_assert (newfp != NULL); oldfp = find_fork_ptid (inferior_ptid); gdb_assert (oldfp != NULL); fork_save_infrun_state (oldfp); remove_breakpoints (); fork_load_infrun_state (newfp); insert_breakpoints (); gdb_printf (_("Switching to %s\n"), target_pid_to_str (inferior_ptid).c_str ()); print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1); } /* Switch inferior process (checkpoint) context, by checkpoint id. */ static void restart_command (const char *args, int from_tty) { struct fork_info *fp; if (!args || !*args) error (_("Requires argument (checkpoint id to restart)")); if ((fp = find_fork_id (parse_and_eval_long (args))) == NULL) error (_("Not found: checkpoint id %s"), args); linux_fork_context (fp, from_tty); } void _initialize_linux_fork (); void _initialize_linux_fork () { /* Checkpoint command: create a fork of the inferior process and set it aside for later debugging. */ add_com ("checkpoint", class_obscure, checkpoint_command, _("\ Fork a duplicate process (experimental).")); /* Restart command: restore the context of a specified checkpoint process. */ add_com ("restart", class_obscure, restart_command, _("\ Restore program context from a checkpoint.\n\ Usage: restart N\n\ Argument N is checkpoint ID, as displayed by 'info checkpoints'.")); /* Delete checkpoint command: kill the process and remove it from the fork list. */ add_cmd ("checkpoint", class_obscure, delete_checkpoint_command, _("\ Delete a checkpoint (experimental)."), &deletelist); /* Detach checkpoint command: release the process to run independently, and remove it from the fork list. */ add_cmd ("checkpoint", class_obscure, detach_checkpoint_command, _("\ Detach from a checkpoint (experimental)."), &detachlist); /* Info checkpoints command: list all forks/checkpoints currently under gdb's control. */ add_info ("checkpoints", info_checkpoints_command, _("IDs of currently known checkpoints.")); }