/* Abstraction of GNU v3 abi. Contributed by Jim Blandy Copyright (C) 2001, 2002, 2003, 2005, 2006 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "defs.h" #include "value.h" #include "cp-abi.h" #include "cp-support.h" #include "demangle.h" #include "valprint.h" #include "gdb_assert.h" #include "gdb_string.h" static struct cp_abi_ops gnu_v3_abi_ops; static int gnuv3_is_vtable_name (const char *name) { return strncmp (name, "_ZTV", 4) == 0; } static int gnuv3_is_operator_name (const char *name) { return strncmp (name, "operator", 8) == 0; } /* To help us find the components of a vtable, we build ourselves a GDB type object representing the vtable structure. Following the V3 ABI, it goes something like this: struct gdb_gnu_v3_abi_vtable { / * An array of virtual call and virtual base offsets. The real length of this array depends on the class hierarchy; we use negative subscripts to access the elements. Yucky, but better than the alternatives. * / ptrdiff_t vcall_and_vbase_offsets[0]; / * The offset from a virtual pointer referring to this table to the top of the complete object. * / ptrdiff_t offset_to_top; / * The type_info pointer for this class. This is really a std::type_info *, but GDB doesn't really look at the type_info object itself, so we don't bother to get the type exactly right. * / void *type_info; / * Virtual table pointers in objects point here. * / / * Virtual function pointers. Like the vcall/vbase array, the real length of this table depends on the class hierarchy. * / void (*virtual_functions[0]) (); }; The catch, of course, is that the exact layout of this table depends on the ABI --- word size, endianness, alignment, etc. So the GDB type object is actually a per-architecture kind of thing. vtable_type_gdbarch_data is a gdbarch per-architecture data pointer which refers to the struct type * for this structure, laid out appropriately for the architecture. */ static struct gdbarch_data *vtable_type_gdbarch_data; /* Human-readable names for the numbers of the fields above. */ enum { vtable_field_vcall_and_vbase_offsets, vtable_field_offset_to_top, vtable_field_type_info, vtable_field_virtual_functions }; /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable', described above, laid out appropriately for ARCH. We use this function as the gdbarch per-architecture data initialization function. We assume that the gdbarch framework calls the per-architecture data initialization functions after it sets current_gdbarch to the new architecture. */ static void * build_gdb_vtable_type (struct gdbarch *arch) { struct type *t; struct field *field_list, *field; int offset; struct type *void_ptr_type = lookup_pointer_type (builtin_type_void); struct type *ptr_to_void_fn_type = lookup_pointer_type (lookup_function_type (builtin_type_void)); /* ARCH can't give us the true ptrdiff_t type, so we guess. */ struct type *ptrdiff_type = init_type (TYPE_CODE_INT, TARGET_PTR_BIT / TARGET_CHAR_BIT, 0, "ptrdiff_t", 0); /* We assume no padding is necessary, since GDB doesn't know anything about alignment at the moment. If this assumption bites us, we should add a gdbarch method which, given a type, returns the alignment that type requires, and then use that here. */ /* Build the field list. */ field_list = xmalloc (sizeof (struct field [4])); memset (field_list, 0, sizeof (struct field [4])); field = &field_list[0]; offset = 0; /* ptrdiff_t vcall_and_vbase_offsets[0]; */ FIELD_NAME (*field) = "vcall_and_vbase_offsets"; FIELD_TYPE (*field) = create_array_type (0, ptrdiff_type, create_range_type (0, builtin_type_int, 0, -1)); FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT; offset += TYPE_LENGTH (FIELD_TYPE (*field)); field++; /* ptrdiff_t offset_to_top; */ FIELD_NAME (*field) = "offset_to_top"; FIELD_TYPE (*field) = ptrdiff_type; FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT; offset += TYPE_LENGTH (FIELD_TYPE (*field)); field++; /* void *type_info; */ FIELD_NAME (*field) = "type_info"; FIELD_TYPE (*field) = void_ptr_type; FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT; offset += TYPE_LENGTH (FIELD_TYPE (*field)); field++; /* void (*virtual_functions[0]) (); */ FIELD_NAME (*field) = "virtual_functions"; FIELD_TYPE (*field) = create_array_type (0, ptr_to_void_fn_type, create_range_type (0, builtin_type_int, 0, -1)); FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT; offset += TYPE_LENGTH (FIELD_TYPE (*field)); field++; /* We assumed in the allocation above that there were four fields. */ gdb_assert (field == (field_list + 4)); t = init_type (TYPE_CODE_STRUCT, offset, 0, 0, 0); TYPE_NFIELDS (t) = field - field_list; TYPE_FIELDS (t) = field_list; TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable"; return t; } /* Return the offset from the start of the imaginary `struct gdb_gnu_v3_abi_vtable' object to the vtable's "address point" (i.e., where objects' virtual table pointers point). */ static int vtable_address_point_offset (void) { struct type *vtable_type = gdbarch_data (current_gdbarch, vtable_type_gdbarch_data); return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions) / TARGET_CHAR_BIT); } static struct type * gnuv3_rtti_type (struct value *value, int *full_p, int *top_p, int *using_enc_p) { struct type *vtable_type = gdbarch_data (current_gdbarch, vtable_type_gdbarch_data); struct type *values_type = check_typedef (value_type (value)); CORE_ADDR vtable_address; struct value *vtable; struct minimal_symbol *vtable_symbol; const char *vtable_symbol_name; const char *class_name; struct type *run_time_type; struct type *base_type; LONGEST offset_to_top; /* We only have RTTI for class objects. */ if (TYPE_CODE (values_type) != TYPE_CODE_CLASS) return NULL; /* If we can't find the virtual table pointer for values_type, we can't find the RTTI. */ fill_in_vptr_fieldno (values_type); if (TYPE_VPTR_FIELDNO (values_type) == -1) return NULL; if (using_enc_p) *using_enc_p = 0; /* Fetch VALUE's virtual table pointer, and tweak it to point at an instance of our imaginary gdb_gnu_v3_abi_vtable structure. */ base_type = check_typedef (TYPE_VPTR_BASETYPE (values_type)); if (values_type != base_type) { value = value_cast (base_type, value); if (using_enc_p) *using_enc_p = 1; } vtable_address = value_as_address (value_field (value, TYPE_VPTR_FIELDNO (values_type))); vtable = value_at_lazy (vtable_type, vtable_address - vtable_address_point_offset ()); /* Find the linker symbol for this vtable. */ vtable_symbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtable) + value_offset (vtable) + value_embedded_offset (vtable)); if (! vtable_symbol) return NULL; /* The symbol's demangled name should be something like "vtable for CLASS", where CLASS is the name of the run-time type of VALUE. If we didn't like this approach, we could instead look in the type_info object itself to get the class name. But this way should work just as well, and doesn't read target memory. */ vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol); if (vtable_symbol_name == NULL || strncmp (vtable_symbol_name, "vtable for ", 11)) { warning (_("can't find linker symbol for virtual table for `%s' value"), TYPE_NAME (values_type)); if (vtable_symbol_name) warning (_(" found `%s' instead"), vtable_symbol_name); return NULL; } class_name = vtable_symbol_name + 11; /* Try to look up the class name as a type name. */ /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */ run_time_type = cp_lookup_rtti_type (class_name, NULL); if (run_time_type == NULL) return NULL; /* Get the offset from VALUE to the top of the complete object. NOTE: this is the reverse of the meaning of *TOP_P. */ offset_to_top = value_as_long (value_field (vtable, vtable_field_offset_to_top)); if (full_p) *full_p = (- offset_to_top == value_embedded_offset (value) && (TYPE_LENGTH (value_enclosing_type (value)) >= TYPE_LENGTH (run_time_type))); if (top_p) *top_p = - offset_to_top; return run_time_type; } /* Find the vtable for CONTAINER and return a value of the correct vtable type for this architecture. */ static struct value * gnuv3_get_vtable (struct value *container) { struct type *vtable_type = gdbarch_data (current_gdbarch, vtable_type_gdbarch_data); struct type *vtable_pointer_type; struct value *vtable_pointer; CORE_ADDR vtable_pointer_address, vtable_address; /* We do not consult the debug information to find the virtual table. The ABI specifies that it is always at offset zero in any class, and debug information may not represent it. We won't issue an error if there's a class with virtual functions but no virtual table pointer, but something's already gone seriously wrong if that happens. We avoid using value_contents on principle, because the object might be large. */ /* Find the type "pointer to virtual table". */ vtable_pointer_type = lookup_pointer_type (vtable_type); /* Load it from the start of the class. */ vtable_pointer_address = value_as_address (value_addr (container)); vtable_pointer = value_at (vtable_pointer_type, vtable_pointer_address); vtable_address = value_as_address (vtable_pointer); /* Correct it to point at the start of the virtual table, rather than the address point. */ return value_at_lazy (vtable_type, vtable_address - vtable_address_point_offset ()); } /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual function, of type FNTYPE. */ static struct value * gnuv3_get_virtual_fn (struct value *container, struct type *fntype, int vtable_index) { struct value *vtable = gnuv3_get_vtable (container); struct value *vfn; /* Fetch the appropriate function pointer from the vtable. */ vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions), value_from_longest (builtin_type_int, vtable_index)); /* If this architecture uses function descriptors directly in the vtable, then the address of the vtable entry is actually a "function pointer" (i.e. points to the descriptor). We don't need to scale the index by the size of a function descriptor; GCC does that before outputing debug information. */ if (gdbarch_vtable_function_descriptors (current_gdbarch)) vfn = value_addr (vfn); /* Cast the function pointer to the appropriate type. */ vfn = value_cast (lookup_pointer_type (fntype), vfn); return vfn; } /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h for a description of the arguments. */ static struct value * gnuv3_virtual_fn_field (struct value **value_p, struct fn_field *f, int j, struct type *vfn_base, int offset) { struct type *values_type = check_typedef (value_type (*value_p)); /* Some simple sanity checks. */ if (TYPE_CODE (values_type) != TYPE_CODE_CLASS) error (_("Only classes can have virtual functions.")); /* Cast our value to the base class which defines this virtual function. This takes care of any necessary `this' adjustments. */ if (vfn_base != values_type) *value_p = value_cast (vfn_base, *value_p); return gnuv3_get_virtual_fn (*value_p, TYPE_FN_FIELD_TYPE (f, j), TYPE_FN_FIELD_VOFFSET (f, j)); } /* Compute the offset of the baseclass which is the INDEXth baseclass of class TYPE, for value at VALADDR (in host) at ADDRESS (in target). The result is the offset of the baseclass value relative to (the address of)(ARG) + OFFSET. -1 is returned on error. */ static int gnuv3_baseclass_offset (struct type *type, int index, const bfd_byte *valaddr, CORE_ADDR address) { struct type *vtable_type = gdbarch_data (current_gdbarch, vtable_type_gdbarch_data); struct value *vtable; struct type *vbasetype; struct value *offset_val, *vbase_array; CORE_ADDR vtable_address; long int cur_base_offset, base_offset; /* If it isn't a virtual base, this is easy. The offset is in the type definition. */ if (!BASETYPE_VIA_VIRTUAL (type, index)) return TYPE_BASECLASS_BITPOS (type, index) / 8; /* To access a virtual base, we need to use the vbase offset stored in our vtable. Recent GCC versions provide this information. If it isn't available, we could get what we needed from RTTI, or from drawing the complete inheritance graph based on the debug info. Neither is worthwhile. */ cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8; if (cur_base_offset >= - vtable_address_point_offset ()) error (_("Expected a negative vbase offset (old compiler?)")); cur_base_offset = cur_base_offset + vtable_address_point_offset (); if ((- cur_base_offset) % TYPE_LENGTH (builtin_type_void_data_ptr) != 0) error (_("Misaligned vbase offset.")); cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (builtin_type_void_data_ptr)); /* We're now looking for the cur_base_offset'th entry (negative index) in the vcall_and_vbase_offsets array. We used to cast the object to its TYPE_VPTR_BASETYPE, and reference the vtable as TYPE_VPTR_FIELDNO; however, that cast can not be done without calling baseclass_offset again if the TYPE_VPTR_BASETYPE is a virtual base class, as described in the v3 C++ ABI Section 2.4.I.2.b. Fortunately the ABI guarantees that the vtable pointer will be located at the beginning of the object, so we can bypass the casting. Verify that the TYPE_VPTR_FIELDNO is in fact at the start of whichever baseclass it resides in, as a sanity measure - iff we have debugging information for that baseclass. */ vbasetype = TYPE_VPTR_BASETYPE (type); if (TYPE_VPTR_FIELDNO (vbasetype) < 0) fill_in_vptr_fieldno (vbasetype); if (TYPE_VPTR_FIELDNO (vbasetype) >= 0 && TYPE_FIELD_BITPOS (vbasetype, TYPE_VPTR_FIELDNO (vbasetype)) != 0) error (_("Illegal vptr offset in class %s"), TYPE_NAME (vbasetype) ? TYPE_NAME (vbasetype) : ""); vtable_address = value_as_address (value_at_lazy (builtin_type_void_data_ptr, address)); vtable = value_at_lazy (vtable_type, vtable_address - vtable_address_point_offset ()); offset_val = value_from_longest(builtin_type_int, cur_base_offset); vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets); base_offset = value_as_long (value_subscript (vbase_array, offset_val)); return base_offset; } /* Locate a virtual method in DOMAIN or its non-virtual base classes which has virtual table index VOFFSET. The method has an associated "this" adjustment of ADJUSTMENT bytes. */ const char * gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset, LONGEST adjustment) { int i; const char *physname; /* Search this class first. */ physname = NULL; if (adjustment == 0) { int len; len = TYPE_NFN_FIELDS (domain); for (i = 0; i < len; i++) { int len2, j; struct fn_field *f; f = TYPE_FN_FIELDLIST1 (domain, i); len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i); check_stub_method_group (domain, i); for (j = 0; j < len2; j++) if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset) return TYPE_FN_FIELD_PHYSNAME (f, j); } } /* Next search non-virtual bases. If it's in a virtual base, we're out of luck. */ for (i = 0; i < TYPE_N_BASECLASSES (domain); i++) { int pos; struct type *basetype; if (BASETYPE_VIA_VIRTUAL (domain, i)) continue; pos = TYPE_BASECLASS_BITPOS (domain, i) / 8; basetype = TYPE_FIELD_TYPE (domain, i); /* Recurse with a modified adjustment. We don't need to adjust voffset. */ if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype)) return gnuv3_find_method_in (basetype, voffset, adjustment - pos); } return NULL; } /* GNU v3 implementation of cplus_print_method_ptr. */ static void gnuv3_print_method_ptr (const gdb_byte *contents, struct type *type, struct ui_file *stream) { CORE_ADDR ptr_value; LONGEST adjustment; struct type *domain; int vbit; domain = TYPE_DOMAIN_TYPE (type); /* Extract the pointer to member. */ ptr_value = extract_typed_address (contents, builtin_type_void_func_ptr); contents += TYPE_LENGTH (builtin_type_void_func_ptr); adjustment = extract_signed_integer (contents, TYPE_LENGTH (builtin_type_long)); if (!gdbarch_vbit_in_delta (current_gdbarch)) { vbit = ptr_value & 1; ptr_value = ptr_value ^ vbit; } else { vbit = adjustment & 1; adjustment = adjustment >> 1; } /* Check for NULL. */ if (ptr_value == 0 && vbit == 0) { fprintf_filtered (stream, "NULL"); return; } /* Search for a virtual method. */ if (vbit) { CORE_ADDR voffset; const char *physname; /* It's a virtual table offset, maybe in this class. Search for a field with the correct vtable offset. First convert it to an index, as used in TYPE_FN_FIELD_VOFFSET. */ voffset = ptr_value / TYPE_LENGTH (builtin_type_long); physname = gnuv3_find_method_in (domain, voffset, adjustment); /* If we found a method, print that. We don't bother to disambiguate possible paths to the method based on the adjustment. */ if (physname) { char *demangled_name = cplus_demangle (physname, DMGL_ANSI | DMGL_PARAMS); if (demangled_name != NULL) { fprintf_filtered (stream, "&virtual "); fputs_filtered (demangled_name, stream); xfree (demangled_name); return; } } } /* We didn't find it; print the raw data. */ if (vbit) { fprintf_filtered (stream, "&virtual table offset "); print_longest (stream, 'd', 1, ptr_value); } else print_address_demangle (ptr_value, stream, demangle); if (adjustment) { fprintf_filtered (stream, ", this adjustment "); print_longest (stream, 'd', 1, adjustment); } } /* GNU v3 implementation of cplus_method_ptr_size. */ static int gnuv3_method_ptr_size (void) { return 2 * TYPE_LENGTH (builtin_type_void_data_ptr); } /* GNU v3 implementation of cplus_make_method_ptr. */ static void gnuv3_make_method_ptr (gdb_byte *contents, CORE_ADDR value, int is_virtual) { int size = TYPE_LENGTH (builtin_type_void_data_ptr); /* FIXME drow/2006-12-24: The adjustment of "this" is currently always zero, since the method pointer is of the correct type. But if the method pointer came from a base class, this is incorrect - it should be the offset to the base. The best fix might be to create the pointer to member pointing at the base class and cast it to the derived class, but that requires support for adjusting pointers to members when casting them - not currently supported by GDB. */ if (!gdbarch_vbit_in_delta (current_gdbarch)) { store_unsigned_integer (contents, size, value | is_virtual); store_unsigned_integer (contents + size, size, 0); } else { store_unsigned_integer (contents, size, value); store_unsigned_integer (contents + size, size, is_virtual); } } /* GNU v3 implementation of cplus_method_ptr_to_value. */ static struct value * gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr) { const gdb_byte *contents = value_contents (method_ptr); CORE_ADDR ptr_value; struct type *final_type, *method_type; LONGEST adjustment; struct value *adjval; int vbit; final_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr))); final_type = lookup_pointer_type (final_type); method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr))); ptr_value = extract_typed_address (contents, builtin_type_void_func_ptr); contents += TYPE_LENGTH (builtin_type_void_func_ptr); adjustment = extract_signed_integer (contents, TYPE_LENGTH (builtin_type_long)); if (!gdbarch_vbit_in_delta (current_gdbarch)) { vbit = ptr_value & 1; ptr_value = ptr_value ^ vbit; } else { vbit = adjustment & 1; adjustment = adjustment >> 1; } /* First convert THIS to match the containing type of the pointer to member. This cast may adjust the value of THIS. */ *this_p = value_cast (final_type, *this_p); /* Then apply whatever adjustment is necessary. This creates a somewhat strange pointer: it claims to have type FINAL_TYPE, but in fact it might not be a valid FINAL_TYPE. For instance, it might be a base class of FINAL_TYPE. And if it's not the primary base class, then printing it out as a FINAL_TYPE object would produce some pretty garbage. But we don't really know the type of the first argument in METHOD_TYPE either, which is why this happens. We can't dereference this later as a FINAL_TYPE, but once we arrive in the called method we'll have debugging information for the type of "this" - and that'll match the value we produce here. You can provoke this case by casting a Base::* to a Derived::*, for instance. */ *this_p = value_cast (builtin_type_void_data_ptr, *this_p); adjval = value_from_longest (builtin_type_long, adjustment); *this_p = value_add (*this_p, adjval); *this_p = value_cast (final_type, *this_p); if (vbit) { LONGEST voffset = ptr_value / TYPE_LENGTH (builtin_type_long); return gnuv3_get_virtual_fn (value_ind (*this_p), method_type, voffset); } else return value_from_pointer (lookup_pointer_type (method_type), ptr_value); } static void init_gnuv3_ops (void) { vtable_type_gdbarch_data = gdbarch_data_register_post_init (build_gdb_vtable_type); gnu_v3_abi_ops.shortname = "gnu-v3"; gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI"; gnu_v3_abi_ops.doc = "G++ Version 3 ABI"; gnu_v3_abi_ops.is_destructor_name = (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor; gnu_v3_abi_ops.is_constructor_name = (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor; gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name; gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name; gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type; gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field; gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset; gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr; gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size; gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr; gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value; } extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */ void _initialize_gnu_v3_abi (void) { init_gnuv3_ops (); register_cp_abi (&gnu_v3_abi_ops); }