/* Main code for remote server for GDB. Copyright (C) 1989-2014 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "server.h" #include "gdbthread.h" #include "agent.h" #include "notif.h" #include "tdesc.h" #include "rsp-low.h" #include #include #if HAVE_SIGNAL_H #include #endif #include "gdb_vecs.h" #include "gdb_wait.h" #include "btrace-common.h" #include "filestuff.h" #include "tracepoint.h" #include "dll.h" #include "hostio.h" /* The thread set with an `Hc' packet. `Hc' is deprecated in favor of `vCont'. Note the multi-process extensions made `vCont' a requirement, so `Hc pPID.TID' is pretty much undefined. So CONT_THREAD can be null_ptid for no `Hc' thread, minus_one_ptid for resuming all threads of the process (again, `Hc' isn't used for multi-process), or a specific thread ptid_t. */ ptid_t cont_thread; /* The thread set with an `Hg' packet. */ ptid_t general_thread; int server_waiting; static int extended_protocol; static int response_needed; static int exit_requested; /* --once: Exit after the first connection has closed. */ int run_once; int multi_process; int non_stop; /* Whether we should attempt to disable the operating system's address space randomization feature before starting an inferior. */ int disable_randomization = 1; static char **program_argv, **wrapper_argv; int pass_signals[GDB_SIGNAL_LAST]; int program_signals[GDB_SIGNAL_LAST]; int program_signals_p; /* The PID of the originally created or attached inferior. Used to send signals to the process when GDB sends us an asynchronous interrupt (user hitting Control-C in the client), and to wait for the child to exit when no longer debugging it. */ unsigned long signal_pid; #ifdef SIGTTOU /* A file descriptor for the controlling terminal. */ int terminal_fd; /* TERMINAL_FD's original foreground group. */ pid_t old_foreground_pgrp; /* Hand back terminal ownership to the original foreground group. */ static void restore_old_foreground_pgrp (void) { tcsetpgrp (terminal_fd, old_foreground_pgrp); } #endif /* Set if you want to disable optional thread related packets support in gdbserver, for the sake of testing GDB against stubs that don't support them. */ int disable_packet_vCont; int disable_packet_Tthread; int disable_packet_qC; int disable_packet_qfThreadInfo; /* Last status reported to GDB. */ static struct target_waitstatus last_status; static ptid_t last_ptid; static char *own_buf; static unsigned char *mem_buf; /* A sub-class of 'struct notif_event' for stop, holding information relative to a single stop reply. We keep a queue of these to push to GDB in non-stop mode. */ struct vstop_notif { struct notif_event base; /* Thread or process that got the event. */ ptid_t ptid; /* Event info. */ struct target_waitstatus status; }; DEFINE_QUEUE_P (notif_event_p); /* Put a stop reply to the stop reply queue. */ static void queue_stop_reply (ptid_t ptid, struct target_waitstatus *status) { struct vstop_notif *new_notif = xmalloc (sizeof (*new_notif)); new_notif->ptid = ptid; new_notif->status = *status; notif_event_enque (¬if_stop, (struct notif_event *) new_notif); } static int remove_all_on_match_pid (QUEUE (notif_event_p) *q, QUEUE_ITER (notif_event_p) *iter, struct notif_event *event, void *data) { int *pid = data; if (*pid == -1 || ptid_get_pid (((struct vstop_notif *) event)->ptid) == *pid) { if (q->free_func != NULL) q->free_func (event); QUEUE_remove_elem (notif_event_p, q, iter); } return 1; } /* Get rid of the currently pending stop replies for PID. If PID is -1, then apply to all processes. */ static void discard_queued_stop_replies (int pid) { QUEUE_iterate (notif_event_p, notif_stop.queue, remove_all_on_match_pid, &pid); } static void vstop_notif_reply (struct notif_event *event, char *own_buf) { struct vstop_notif *vstop = (struct vstop_notif *) event; prepare_resume_reply (own_buf, vstop->ptid, &vstop->status); } struct notif_server notif_stop = { "vStopped", "Stop", NULL, vstop_notif_reply, }; static int target_running (void) { return get_first_thread () != NULL; } static int start_inferior (char **argv) { char **new_argv = argv; if (wrapper_argv != NULL) { int i, count = 1; for (i = 0; wrapper_argv[i] != NULL; i++) count++; for (i = 0; argv[i] != NULL; i++) count++; new_argv = alloca (sizeof (char *) * count); count = 0; for (i = 0; wrapper_argv[i] != NULL; i++) new_argv[count++] = wrapper_argv[i]; for (i = 0; argv[i] != NULL; i++) new_argv[count++] = argv[i]; new_argv[count] = NULL; } if (debug_threads) { int i; for (i = 0; new_argv[i]; ++i) debug_printf ("new_argv[%d] = \"%s\"\n", i, new_argv[i]); debug_flush (); } #ifdef SIGTTOU signal (SIGTTOU, SIG_DFL); signal (SIGTTIN, SIG_DFL); #endif signal_pid = create_inferior (new_argv[0], new_argv); /* FIXME: we don't actually know at this point that the create actually succeeded. We won't know that until we wait. */ fprintf (stderr, "Process %s created; pid = %ld\n", argv[0], signal_pid); fflush (stderr); #ifdef SIGTTOU signal (SIGTTOU, SIG_IGN); signal (SIGTTIN, SIG_IGN); terminal_fd = fileno (stderr); old_foreground_pgrp = tcgetpgrp (terminal_fd); tcsetpgrp (terminal_fd, signal_pid); atexit (restore_old_foreground_pgrp); #endif if (wrapper_argv != NULL) { struct thread_resume resume_info; memset (&resume_info, 0, sizeof (resume_info)); resume_info.thread = pid_to_ptid (signal_pid); resume_info.kind = resume_continue; resume_info.sig = 0; last_ptid = mywait (pid_to_ptid (signal_pid), &last_status, 0, 0); if (last_status.kind != TARGET_WAITKIND_STOPPED) return signal_pid; do { (*the_target->resume) (&resume_info, 1); last_ptid = mywait (pid_to_ptid (signal_pid), &last_status, 0, 0); if (last_status.kind != TARGET_WAITKIND_STOPPED) return signal_pid; current_thread->last_resume_kind = resume_stop; current_thread->last_status = last_status; } while (last_status.value.sig != GDB_SIGNAL_TRAP); return signal_pid; } /* Wait till we are at 1st instruction in program, return new pid (assuming success). */ last_ptid = mywait (pid_to_ptid (signal_pid), &last_status, 0, 0); if (last_status.kind != TARGET_WAITKIND_EXITED && last_status.kind != TARGET_WAITKIND_SIGNALLED) { current_thread->last_resume_kind = resume_stop; current_thread->last_status = last_status; } return signal_pid; } static int attach_inferior (int pid) { /* myattach should return -1 if attaching is unsupported, 0 if it succeeded, and call error() otherwise. */ if (myattach (pid) != 0) return -1; fprintf (stderr, "Attached; pid = %d\n", pid); fflush (stderr); /* FIXME - It may be that we should get the SIGNAL_PID from the attach function, so that it can be the main thread instead of whichever we were told to attach to. */ signal_pid = pid; if (!non_stop) { last_ptid = mywait (pid_to_ptid (pid), &last_status, 0, 0); /* GDB knows to ignore the first SIGSTOP after attaching to a running process using the "attach" command, but this is different; it's just using "target remote". Pretend it's just starting up. */ if (last_status.kind == TARGET_WAITKIND_STOPPED && last_status.value.sig == GDB_SIGNAL_STOP) last_status.value.sig = GDB_SIGNAL_TRAP; current_thread->last_resume_kind = resume_stop; current_thread->last_status = last_status; } return 0; } extern int remote_debug; /* Decode a qXfer read request. Return 0 if everything looks OK, or -1 otherwise. */ static int decode_xfer_read (char *buf, CORE_ADDR *ofs, unsigned int *len) { /* After the read marker and annex, qXfer looks like a traditional 'm' packet. */ decode_m_packet (buf, ofs, len); return 0; } static int decode_xfer (char *buf, char **object, char **rw, char **annex, char **offset) { /* Extract and NUL-terminate the object. */ *object = buf; while (*buf && *buf != ':') buf++; if (*buf == '\0') return -1; *buf++ = 0; /* Extract and NUL-terminate the read/write action. */ *rw = buf; while (*buf && *buf != ':') buf++; if (*buf == '\0') return -1; *buf++ = 0; /* Extract and NUL-terminate the annex. */ *annex = buf; while (*buf && *buf != ':') buf++; if (*buf == '\0') return -1; *buf++ = 0; *offset = buf; return 0; } /* Write the response to a successful qXfer read. Returns the length of the (binary) data stored in BUF, corresponding to as much of DATA/LEN as we could fit. IS_MORE controls the first character of the response. */ static int write_qxfer_response (char *buf, const void *data, int len, int is_more) { int out_len; if (is_more) buf[0] = 'm'; else buf[0] = 'l'; return remote_escape_output (data, len, (unsigned char *) buf + 1, &out_len, PBUFSIZ - 2) + 1; } /* Handle btrace enabling. */ static const char * handle_btrace_enable (struct thread_info *thread) { if (thread->btrace != NULL) return "E.Btrace already enabled."; thread->btrace = target_enable_btrace (thread->entry.id); if (thread->btrace == NULL) return "E.Could not enable btrace."; return NULL; } /* Handle btrace disabling. */ static const char * handle_btrace_disable (struct thread_info *thread) { if (thread->btrace == NULL) return "E.Branch tracing not enabled."; if (target_disable_btrace (thread->btrace) != 0) return "E.Could not disable branch tracing."; thread->btrace = NULL; return NULL; } /* Handle the "Qbtrace" packet. */ static int handle_btrace_general_set (char *own_buf) { struct thread_info *thread; const char *err; char *op; if (strncmp ("Qbtrace:", own_buf, strlen ("Qbtrace:")) != 0) return 0; op = own_buf + strlen ("Qbtrace:"); if (!target_supports_btrace ()) { strcpy (own_buf, "E.Target does not support branch tracing."); return -1; } if (ptid_equal (general_thread, null_ptid) || ptid_equal (general_thread, minus_one_ptid)) { strcpy (own_buf, "E.Must select a single thread."); return -1; } thread = find_thread_ptid (general_thread); if (thread == NULL) { strcpy (own_buf, "E.No such thread."); return -1; } err = NULL; if (strcmp (op, "bts") == 0) err = handle_btrace_enable (thread); else if (strcmp (op, "off") == 0) err = handle_btrace_disable (thread); else err = "E.Bad Qbtrace operation. Use bts or off."; if (err != 0) strcpy (own_buf, err); else write_ok (own_buf); return 1; } /* Handle all of the extended 'Q' packets. */ static void handle_general_set (char *own_buf) { if (strncmp ("QPassSignals:", own_buf, strlen ("QPassSignals:")) == 0) { int numsigs = (int) GDB_SIGNAL_LAST, i; const char *p = own_buf + strlen ("QPassSignals:"); CORE_ADDR cursig; p = decode_address_to_semicolon (&cursig, p); for (i = 0; i < numsigs; i++) { if (i == cursig) { pass_signals[i] = 1; if (*p == '\0') /* Keep looping, to clear the remaining signals. */ cursig = -1; else p = decode_address_to_semicolon (&cursig, p); } else pass_signals[i] = 0; } strcpy (own_buf, "OK"); return; } if (strncmp ("QProgramSignals:", own_buf, strlen ("QProgramSignals:")) == 0) { int numsigs = (int) GDB_SIGNAL_LAST, i; const char *p = own_buf + strlen ("QProgramSignals:"); CORE_ADDR cursig; program_signals_p = 1; p = decode_address_to_semicolon (&cursig, p); for (i = 0; i < numsigs; i++) { if (i == cursig) { program_signals[i] = 1; if (*p == '\0') /* Keep looping, to clear the remaining signals. */ cursig = -1; else p = decode_address_to_semicolon (&cursig, p); } else program_signals[i] = 0; } strcpy (own_buf, "OK"); return; } if (strcmp (own_buf, "QStartNoAckMode") == 0) { if (remote_debug) { fprintf (stderr, "[noack mode enabled]\n"); fflush (stderr); } noack_mode = 1; write_ok (own_buf); return; } if (strncmp (own_buf, "QNonStop:", 9) == 0) { char *mode = own_buf + 9; int req = -1; char *req_str; if (strcmp (mode, "0") == 0) req = 0; else if (strcmp (mode, "1") == 0) req = 1; else { /* We don't know what this mode is, so complain to GDB. */ fprintf (stderr, "Unknown non-stop mode requested: %s\n", own_buf); write_enn (own_buf); return; } req_str = req ? "non-stop" : "all-stop"; if (start_non_stop (req) != 0) { fprintf (stderr, "Setting %s mode failed\n", req_str); write_enn (own_buf); return; } non_stop = req; if (remote_debug) fprintf (stderr, "[%s mode enabled]\n", req_str); write_ok (own_buf); return; } if (strncmp ("QDisableRandomization:", own_buf, strlen ("QDisableRandomization:")) == 0) { char *packet = own_buf + strlen ("QDisableRandomization:"); ULONGEST setting; unpack_varlen_hex (packet, &setting); disable_randomization = setting; if (remote_debug) { if (disable_randomization) fprintf (stderr, "[address space randomization disabled]\n"); else fprintf (stderr, "[address space randomization enabled]\n"); } write_ok (own_buf); return; } if (target_supports_tracepoints () && handle_tracepoint_general_set (own_buf)) return; if (strncmp ("QAgent:", own_buf, strlen ("QAgent:")) == 0) { char *mode = own_buf + strlen ("QAgent:"); int req = 0; if (strcmp (mode, "0") == 0) req = 0; else if (strcmp (mode, "1") == 0) req = 1; else { /* We don't know what this value is, so complain to GDB. */ sprintf (own_buf, "E.Unknown QAgent value"); return; } /* Update the flag. */ use_agent = req; if (remote_debug) fprintf (stderr, "[%s agent]\n", req ? "Enable" : "Disable"); write_ok (own_buf); return; } if (handle_btrace_general_set (own_buf)) return; /* Otherwise we didn't know what packet it was. Say we didn't understand it. */ own_buf[0] = 0; } static const char * get_features_xml (const char *annex) { const struct target_desc *desc = current_target_desc (); /* `desc->xmltarget' defines what to return when looking for the "target.xml" file. Its contents can either be verbatim XML code (prefixed with a '@') or else the name of the actual XML file to be used in place of "target.xml". This variable is set up from the auto-generated init_registers_... routine for the current target. */ if (desc->xmltarget != NULL && strcmp (annex, "target.xml") == 0) { if (*desc->xmltarget == '@') return desc->xmltarget + 1; else annex = desc->xmltarget; } #ifdef USE_XML { extern const char *const xml_builtin[][2]; int i; /* Look for the annex. */ for (i = 0; xml_builtin[i][0] != NULL; i++) if (strcmp (annex, xml_builtin[i][0]) == 0) break; if (xml_builtin[i][0] != NULL) return xml_builtin[i][1]; } #endif return NULL; } void monitor_show_help (void) { monitor_output ("The following monitor commands are supported:\n"); monitor_output (" set debug <0|1>\n"); monitor_output (" Enable general debugging messages\n"); monitor_output (" set debug-hw-points <0|1>\n"); monitor_output (" Enable h/w breakpoint/watchpoint debugging messages\n"); monitor_output (" set remote-debug <0|1>\n"); monitor_output (" Enable remote protocol debugging messages\n"); monitor_output (" set debug-format option1[,option2,...]\n"); monitor_output (" Add additional information to debugging messages\n"); monitor_output (" Options: all, none"); monitor_output (", timestamp"); monitor_output ("\n"); monitor_output (" exit\n"); monitor_output (" Quit GDBserver\n"); } /* Read trace frame or inferior memory. Returns the number of bytes actually read, zero when no further transfer is possible, and -1 on error. Return of a positive value smaller than LEN does not indicate there's no more to be read, only the end of the transfer. E.g., when GDB reads memory from a traceframe, a first request may be served from a memory block that does not cover the whole request length. A following request gets the rest served from either another block (of the same traceframe) or from the read-only regions. */ static int gdb_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len) { int res; if (current_traceframe >= 0) { ULONGEST nbytes; ULONGEST length = len; if (traceframe_read_mem (current_traceframe, memaddr, myaddr, len, &nbytes)) return -1; /* Data read from trace buffer, we're done. */ if (nbytes > 0) return nbytes; if (!in_readonly_region (memaddr, length)) return -1; /* Otherwise we have a valid readonly case, fall through. */ /* (assume no half-trace half-real blocks for now) */ } res = prepare_to_access_memory (); if (res == 0) { res = read_inferior_memory (memaddr, myaddr, len); done_accessing_memory (); return res == 0 ? len : -1; } else return -1; } /* Write trace frame or inferior memory. Actually, writing to trace frames is forbidden. */ static int gdb_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len) { if (current_traceframe >= 0) return EIO; else { int ret; ret = prepare_to_access_memory (); if (ret == 0) { ret = write_inferior_memory (memaddr, myaddr, len); done_accessing_memory (); } return ret; } } /* Subroutine of handle_search_memory to simplify it. */ static int handle_search_memory_1 (CORE_ADDR start_addr, CORE_ADDR search_space_len, gdb_byte *pattern, unsigned pattern_len, gdb_byte *search_buf, unsigned chunk_size, unsigned search_buf_size, CORE_ADDR *found_addrp) { /* Prime the search buffer. */ if (gdb_read_memory (start_addr, search_buf, search_buf_size) != search_buf_size) { warning ("Unable to access %ld bytes of target " "memory at 0x%lx, halting search.", (long) search_buf_size, (long) start_addr); return -1; } /* Perform the search. The loop is kept simple by allocating [N + pattern-length - 1] bytes. When we've scanned N bytes we copy the trailing bytes to the start and read in another N bytes. */ while (search_space_len >= pattern_len) { gdb_byte *found_ptr; unsigned nr_search_bytes = (search_space_len < search_buf_size ? search_space_len : search_buf_size); found_ptr = memmem (search_buf, nr_search_bytes, pattern, pattern_len); if (found_ptr != NULL) { CORE_ADDR found_addr = start_addr + (found_ptr - search_buf); *found_addrp = found_addr; return 1; } /* Not found in this chunk, skip to next chunk. */ /* Don't let search_space_len wrap here, it's unsigned. */ if (search_space_len >= chunk_size) search_space_len -= chunk_size; else search_space_len = 0; if (search_space_len >= pattern_len) { unsigned keep_len = search_buf_size - chunk_size; CORE_ADDR read_addr = start_addr + chunk_size + keep_len; int nr_to_read; /* Copy the trailing part of the previous iteration to the front of the buffer for the next iteration. */ memcpy (search_buf, search_buf + chunk_size, keep_len); nr_to_read = (search_space_len - keep_len < chunk_size ? search_space_len - keep_len : chunk_size); if (gdb_read_memory (read_addr, search_buf + keep_len, nr_to_read) != search_buf_size) { warning ("Unable to access %ld bytes of target memory " "at 0x%lx, halting search.", (long) nr_to_read, (long) read_addr); return -1; } start_addr += chunk_size; } } /* Not found. */ return 0; } /* Handle qSearch:memory packets. */ static void handle_search_memory (char *own_buf, int packet_len) { CORE_ADDR start_addr; CORE_ADDR search_space_len; gdb_byte *pattern; unsigned int pattern_len; /* NOTE: also defined in find.c testcase. */ #define SEARCH_CHUNK_SIZE 16000 const unsigned chunk_size = SEARCH_CHUNK_SIZE; /* Buffer to hold memory contents for searching. */ gdb_byte *search_buf; unsigned search_buf_size; int found; CORE_ADDR found_addr; int cmd_name_len = sizeof ("qSearch:memory:") - 1; pattern = malloc (packet_len); if (pattern == NULL) { error ("Unable to allocate memory to perform the search"); strcpy (own_buf, "E00"); return; } if (decode_search_memory_packet (own_buf + cmd_name_len, packet_len - cmd_name_len, &start_addr, &search_space_len, pattern, &pattern_len) < 0) { free (pattern); error ("Error in parsing qSearch:memory packet"); strcpy (own_buf, "E00"); return; } search_buf_size = chunk_size + pattern_len - 1; /* No point in trying to allocate a buffer larger than the search space. */ if (search_space_len < search_buf_size) search_buf_size = search_space_len; search_buf = malloc (search_buf_size); if (search_buf == NULL) { free (pattern); error ("Unable to allocate memory to perform the search"); strcpy (own_buf, "E00"); return; } found = handle_search_memory_1 (start_addr, search_space_len, pattern, pattern_len, search_buf, chunk_size, search_buf_size, &found_addr); if (found > 0) sprintf (own_buf, "1,%lx", (long) found_addr); else if (found == 0) strcpy (own_buf, "0"); else strcpy (own_buf, "E00"); free (search_buf); free (pattern); } #define require_running(BUF) \ if (!target_running ()) \ { \ write_enn (BUF); \ return; \ } /* Parse options to --debug-format= and "monitor set debug-format". ARG is the text after "--debug-format=" or "monitor set debug-format". IS_MONITOR is non-zero if we're invoked via "monitor set debug-format". This triggers calls to monitor_output. The result is NULL if all options were parsed ok, otherwise an error message which the caller must free. N.B. These commands affect all debug format settings, they are not cumulative. If a format is not specified, it is turned off. However, we don't go to extra trouble with things like "monitor set debug-format all,none,timestamp". Instead we just parse them one at a time, in order. The syntax for "monitor set debug" we support here is not identical to gdb's "set debug foo on|off" because we also use this function to parse "--debug-format=foo,bar". */ static char * parse_debug_format_options (const char *arg, int is_monitor) { VEC (char_ptr) *options; int ix; char *option; /* First turn all debug format options off. */ debug_timestamp = 0; /* First remove leading spaces, for "monitor set debug-format". */ while (isspace (*arg)) ++arg; options = delim_string_to_char_ptr_vec (arg, ','); for (ix = 0; VEC_iterate (char_ptr, options, ix, option); ++ix) { if (strcmp (option, "all") == 0) { debug_timestamp = 1; if (is_monitor) monitor_output ("All extra debug format options enabled.\n"); } else if (strcmp (option, "none") == 0) { debug_timestamp = 0; if (is_monitor) monitor_output ("All extra debug format options disabled.\n"); } else if (strcmp (option, "timestamp") == 0) { debug_timestamp = 1; if (is_monitor) monitor_output ("Timestamps will be added to debug output.\n"); } else if (*option == '\0') { /* An empty option, e.g., "--debug-format=foo,,bar", is ignored. */ continue; } else { char *msg = xstrprintf ("Unknown debug-format argument: \"%s\"\n", option); free_char_ptr_vec (options); return msg; } } free_char_ptr_vec (options); return NULL; } /* Handle monitor commands not handled by target-specific handlers. */ static void handle_monitor_command (char *mon, char *own_buf) { if (strcmp (mon, "set debug 1") == 0) { debug_threads = 1; monitor_output ("Debug output enabled.\n"); } else if (strcmp (mon, "set debug 0") == 0) { debug_threads = 0; monitor_output ("Debug output disabled.\n"); } else if (strcmp (mon, "set debug-hw-points 1") == 0) { show_debug_regs = 1; monitor_output ("H/W point debugging output enabled.\n"); } else if (strcmp (mon, "set debug-hw-points 0") == 0) { show_debug_regs = 0; monitor_output ("H/W point debugging output disabled.\n"); } else if (strcmp (mon, "set remote-debug 1") == 0) { remote_debug = 1; monitor_output ("Protocol debug output enabled.\n"); } else if (strcmp (mon, "set remote-debug 0") == 0) { remote_debug = 0; monitor_output ("Protocol debug output disabled.\n"); } else if (strncmp (mon, "set debug-format ", sizeof ("set debug-format ") - 1) == 0) { char *error_msg = parse_debug_format_options (mon + sizeof ("set debug-format ") - 1, 1); if (error_msg != NULL) { monitor_output (error_msg); monitor_show_help (); write_enn (own_buf); xfree (error_msg); } } else if (strcmp (mon, "help") == 0) monitor_show_help (); else if (strcmp (mon, "exit") == 0) exit_requested = 1; else { monitor_output ("Unknown monitor command.\n\n"); monitor_show_help (); write_enn (own_buf); } } /* Associates a callback with each supported qXfer'able object. */ struct qxfer { /* The object this handler handles. */ const char *object; /* Request that the target transfer up to LEN 8-bit bytes of the target's OBJECT. The OFFSET, for a seekable object, specifies the starting point. The ANNEX can be used to provide additional data-specific information to the target. Return the number of bytes actually transfered, zero when no further transfer is possible, -1 on error, -2 when the transfer is not supported, and -3 on a verbose error message that should be preserved. Return of a positive value smaller than LEN does not indicate the end of the object, only the end of the transfer. One, and only one, of readbuf or writebuf must be non-NULL. */ int (*xfer) (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len); }; /* Handle qXfer:auxv:read. */ static int handle_qxfer_auxv (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { if (the_target->read_auxv == NULL || writebuf != NULL) return -2; if (annex[0] != '\0' || !target_running ()) return -1; return (*the_target->read_auxv) (offset, readbuf, len); } /* Handle qXfer:features:read. */ static int handle_qxfer_features (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { const char *document; size_t total_len; if (writebuf != NULL) return -2; if (!target_running ()) return -1; /* Grab the correct annex. */ document = get_features_xml (annex); if (document == NULL) return -1; total_len = strlen (document); if (offset > total_len) return -1; if (offset + len > total_len) len = total_len - offset; memcpy (readbuf, document + offset, len); return len; } /* Worker routine for handle_qxfer_libraries. Add to the length pointed to by ARG a conservative estimate of the length needed to transmit the file name of INF. */ static void accumulate_file_name_length (struct inferior_list_entry *inf, void *arg) { struct dll_info *dll = (struct dll_info *) inf; unsigned int *total_len = arg; /* Over-estimate the necessary memory. Assume that every character in the library name must be escaped. */ *total_len += 128 + 6 * strlen (dll->name); } /* Worker routine for handle_qxfer_libraries. Emit the XML to describe the library in INF. */ static void emit_dll_description (struct inferior_list_entry *inf, void *arg) { struct dll_info *dll = (struct dll_info *) inf; char **p_ptr = arg; char *p = *p_ptr; char *name; strcpy (p, " name); strcpy (p, name); free (name); p = p + strlen (p); strcpy (p, "\">base_addr); p = p + strlen (p); strcpy (p, "\"/>\n"); p = p + strlen (p); *p_ptr = p; } /* Handle qXfer:libraries:read. */ static int handle_qxfer_libraries (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { unsigned int total_len; char *document, *p; if (writebuf != NULL) return -2; if (annex[0] != '\0' || !target_running ()) return -1; total_len = 64; for_each_inferior_with_data (&all_dlls, accumulate_file_name_length, &total_len); document = malloc (total_len); if (document == NULL) return -1; strcpy (document, "\n"); p = document + strlen (document); for_each_inferior_with_data (&all_dlls, emit_dll_description, &p); strcpy (p, "\n"); total_len = strlen (document); if (offset > total_len) { free (document); return -1; } if (offset + len > total_len) len = total_len - offset; memcpy (readbuf, document + offset, len); free (document); return len; } /* Handle qXfer:libraries-svr4:read. */ static int handle_qxfer_libraries_svr4 (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { if (writebuf != NULL) return -2; if (!target_running () || the_target->qxfer_libraries_svr4 == NULL) return -1; return the_target->qxfer_libraries_svr4 (annex, readbuf, writebuf, offset, len); } /* Handle qXfer:osadata:read. */ static int handle_qxfer_osdata (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { if (the_target->qxfer_osdata == NULL || writebuf != NULL) return -2; return (*the_target->qxfer_osdata) (annex, readbuf, NULL, offset, len); } /* Handle qXfer:siginfo:read and qXfer:siginfo:write. */ static int handle_qxfer_siginfo (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { if (the_target->qxfer_siginfo == NULL) return -2; if (annex[0] != '\0' || !target_running ()) return -1; return (*the_target->qxfer_siginfo) (annex, readbuf, writebuf, offset, len); } /* Handle qXfer:spu:read and qXfer:spu:write. */ static int handle_qxfer_spu (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { if (the_target->qxfer_spu == NULL) return -2; if (!target_running ()) return -1; return (*the_target->qxfer_spu) (annex, readbuf, writebuf, offset, len); } /* Handle qXfer:statictrace:read. */ static int handle_qxfer_statictrace (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { ULONGEST nbytes; if (writebuf != NULL) return -2; if (annex[0] != '\0' || !target_running () || current_traceframe == -1) return -1; if (traceframe_read_sdata (current_traceframe, offset, readbuf, len, &nbytes)) return -1; return nbytes; } /* Helper for handle_qxfer_threads_proper. Emit the XML to describe the thread of INF. */ static void handle_qxfer_threads_worker (struct inferior_list_entry *inf, void *arg) { struct thread_info *thread = (struct thread_info *) inf; struct buffer *buffer = arg; ptid_t ptid = thread_to_gdb_id (thread); char ptid_s[100]; int core = target_core_of_thread (ptid); char core_s[21]; write_ptid (ptid_s, ptid); if (core != -1) { sprintf (core_s, "%d", core); buffer_xml_printf (buffer, "\n", ptid_s, core_s); } else { buffer_xml_printf (buffer, "\n", ptid_s); } } /* Helper for handle_qxfer_threads. */ static void handle_qxfer_threads_proper (struct buffer *buffer) { buffer_grow_str (buffer, "\n"); for_each_inferior_with_data (&all_threads, handle_qxfer_threads_worker, buffer); buffer_grow_str0 (buffer, "\n"); } /* Handle qXfer:threads:read. */ static int handle_qxfer_threads (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { static char *result = 0; static unsigned int result_length = 0; if (writebuf != NULL) return -2; if (!target_running () || annex[0] != '\0') return -1; if (offset == 0) { struct buffer buffer; /* When asked for data at offset 0, generate everything and store into 'result'. Successive reads will be served off 'result'. */ if (result) free (result); buffer_init (&buffer); handle_qxfer_threads_proper (&buffer); result = buffer_finish (&buffer); result_length = strlen (result); buffer_free (&buffer); } if (offset >= result_length) { /* We're out of data. */ free (result); result = NULL; result_length = 0; return 0; } if (len > result_length - offset) len = result_length - offset; memcpy (readbuf, result + offset, len); return len; } /* Handle qXfer:traceframe-info:read. */ static int handle_qxfer_traceframe_info (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { static char *result = 0; static unsigned int result_length = 0; if (writebuf != NULL) return -2; if (!target_running () || annex[0] != '\0' || current_traceframe == -1) return -1; if (offset == 0) { struct buffer buffer; /* When asked for data at offset 0, generate everything and store into 'result'. Successive reads will be served off 'result'. */ free (result); buffer_init (&buffer); traceframe_read_info (current_traceframe, &buffer); result = buffer_finish (&buffer); result_length = strlen (result); buffer_free (&buffer); } if (offset >= result_length) { /* We're out of data. */ free (result); result = NULL; result_length = 0; return 0; } if (len > result_length - offset) len = result_length - offset; memcpy (readbuf, result + offset, len); return len; } /* Handle qXfer:fdpic:read. */ static int handle_qxfer_fdpic (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { if (the_target->read_loadmap == NULL) return -2; if (!target_running ()) return -1; return (*the_target->read_loadmap) (annex, offset, readbuf, len); } /* Handle qXfer:btrace:read. */ static int handle_qxfer_btrace (const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, LONGEST len) { static struct buffer cache; struct thread_info *thread; int type, result; if (the_target->read_btrace == NULL || writebuf != NULL) return -2; if (!target_running ()) return -1; if (ptid_equal (general_thread, null_ptid) || ptid_equal (general_thread, minus_one_ptid)) { strcpy (own_buf, "E.Must select a single thread."); return -3; } thread = find_thread_ptid (general_thread); if (thread == NULL) { strcpy (own_buf, "E.No such thread."); return -3; } if (thread->btrace == NULL) { strcpy (own_buf, "E.Btrace not enabled."); return -3; } if (strcmp (annex, "all") == 0) type = BTRACE_READ_ALL; else if (strcmp (annex, "new") == 0) type = BTRACE_READ_NEW; else if (strcmp (annex, "delta") == 0) type = BTRACE_READ_DELTA; else { strcpy (own_buf, "E.Bad annex."); return -3; } if (offset == 0) { buffer_free (&cache); result = target_read_btrace (thread->btrace, &cache, type); if (result != 0) { memcpy (own_buf, cache.buffer, cache.used_size); return -3; } } else if (offset > cache.used_size) { buffer_free (&cache); return -3; } if (len > cache.used_size - offset) len = cache.used_size - offset; memcpy (readbuf, cache.buffer + offset, len); return len; } static const struct qxfer qxfer_packets[] = { { "auxv", handle_qxfer_auxv }, { "btrace", handle_qxfer_btrace }, { "fdpic", handle_qxfer_fdpic}, { "features", handle_qxfer_features }, { "libraries", handle_qxfer_libraries }, { "libraries-svr4", handle_qxfer_libraries_svr4 }, { "osdata", handle_qxfer_osdata }, { "siginfo", handle_qxfer_siginfo }, { "spu", handle_qxfer_spu }, { "statictrace", handle_qxfer_statictrace }, { "threads", handle_qxfer_threads }, { "traceframe-info", handle_qxfer_traceframe_info }, }; static int handle_qxfer (char *own_buf, int packet_len, int *new_packet_len_p) { int i; char *object; char *rw; char *annex; char *offset; if (strncmp (own_buf, "qXfer:", 6) != 0) return 0; /* Grab the object, r/w and annex. */ if (decode_xfer (own_buf + 6, &object, &rw, &annex, &offset) < 0) { write_enn (own_buf); return 1; } for (i = 0; i < sizeof (qxfer_packets) / sizeof (qxfer_packets[0]); i++) { const struct qxfer *q = &qxfer_packets[i]; if (strcmp (object, q->object) == 0) { if (strcmp (rw, "read") == 0) { unsigned char *data; int n; CORE_ADDR ofs; unsigned int len; /* Grab the offset and length. */ if (decode_xfer_read (offset, &ofs, &len) < 0) { write_enn (own_buf); return 1; } /* Read one extra byte, as an indicator of whether there is more. */ if (len > PBUFSIZ - 2) len = PBUFSIZ - 2; data = malloc (len + 1); if (data == NULL) { write_enn (own_buf); return 1; } n = (*q->xfer) (annex, data, NULL, ofs, len + 1); if (n == -2) { free (data); return 0; } else if (n == -3) { /* Preserve error message. */ } else if (n < 0) write_enn (own_buf); else if (n > len) *new_packet_len_p = write_qxfer_response (own_buf, data, len, 1); else *new_packet_len_p = write_qxfer_response (own_buf, data, n, 0); free (data); return 1; } else if (strcmp (rw, "write") == 0) { int n; unsigned int len; CORE_ADDR ofs; unsigned char *data; strcpy (own_buf, "E00"); data = malloc (packet_len - (offset - own_buf)); if (data == NULL) { write_enn (own_buf); return 1; } if (decode_xfer_write (offset, packet_len - (offset - own_buf), &ofs, &len, data) < 0) { free (data); write_enn (own_buf); return 1; } n = (*q->xfer) (annex, NULL, data, ofs, len); if (n == -2) { free (data); return 0; } else if (n == -3) { /* Preserve error message. */ } else if (n < 0) write_enn (own_buf); else sprintf (own_buf, "%x", n); free (data); return 1; } return 0; } } return 0; } /* Table used by the crc32 function to calcuate the checksum. */ static unsigned int crc32_table[256] = {0, 0}; /* Compute 32 bit CRC from inferior memory. On success, return 32 bit CRC. On failure, return (unsigned long long) -1. */ static unsigned long long crc32 (CORE_ADDR base, int len, unsigned int crc) { if (!crc32_table[1]) { /* Initialize the CRC table and the decoding table. */ int i, j; unsigned int c; for (i = 0; i < 256; i++) { for (c = i << 24, j = 8; j > 0; --j) c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1); crc32_table[i] = c; } } while (len--) { unsigned char byte = 0; /* Return failure if memory read fails. */ if (read_inferior_memory (base, &byte, 1) != 0) return (unsigned long long) -1; crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ byte) & 255]; base++; } return (unsigned long long) crc; } /* Handle all of the extended 'q' packets. */ void handle_query (char *own_buf, int packet_len, int *new_packet_len_p) { static struct inferior_list_entry *thread_ptr; /* Reply the current thread id. */ if (strcmp ("qC", own_buf) == 0 && !disable_packet_qC) { ptid_t gdb_id; require_running (own_buf); if (!ptid_equal (general_thread, null_ptid) && !ptid_equal (general_thread, minus_one_ptid)) gdb_id = general_thread; else { thread_ptr = get_first_inferior (&all_threads); gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr); } sprintf (own_buf, "QC"); own_buf += 2; write_ptid (own_buf, gdb_id); return; } if (strcmp ("qSymbol::", own_buf) == 0) { /* GDB is suggesting new symbols have been loaded. This may mean a new shared library has been detected as loaded, so take the opportunity to check if breakpoints we think are inserted, still are. Note that it isn't guaranteed that we'll see this when a shared library is loaded, and nor will we see this for unloads (although breakpoints in unloaded libraries shouldn't trigger), as GDB may not find symbols for the library at all. We also re-validate breakpoints when we see a second GDB breakpoint for the same address, and or when we access breakpoint shadows. */ validate_breakpoints (); if (target_supports_tracepoints ()) tracepoint_look_up_symbols (); if (target_running () && the_target->look_up_symbols != NULL) (*the_target->look_up_symbols) (); strcpy (own_buf, "OK"); return; } if (!disable_packet_qfThreadInfo) { if (strcmp ("qfThreadInfo", own_buf) == 0) { ptid_t gdb_id; require_running (own_buf); thread_ptr = get_first_inferior (&all_threads); *own_buf++ = 'm'; gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr); write_ptid (own_buf, gdb_id); thread_ptr = thread_ptr->next; return; } if (strcmp ("qsThreadInfo", own_buf) == 0) { ptid_t gdb_id; require_running (own_buf); if (thread_ptr != NULL) { *own_buf++ = 'm'; gdb_id = thread_to_gdb_id ((struct thread_info *)thread_ptr); write_ptid (own_buf, gdb_id); thread_ptr = thread_ptr->next; return; } else { sprintf (own_buf, "l"); return; } } } if (the_target->read_offsets != NULL && strcmp ("qOffsets", own_buf) == 0) { CORE_ADDR text, data; require_running (own_buf); if (the_target->read_offsets (&text, &data)) sprintf (own_buf, "Text=%lX;Data=%lX;Bss=%lX", (long)text, (long)data, (long)data); else write_enn (own_buf); return; } /* Protocol features query. */ if (strncmp ("qSupported", own_buf, 10) == 0 && (own_buf[10] == ':' || own_buf[10] == '\0')) { char *p = &own_buf[10]; int gdb_supports_qRelocInsn = 0; /* Start processing qSupported packet. */ target_process_qsupported (NULL); /* Process each feature being provided by GDB. The first feature will follow a ':', and latter features will follow ';'. */ if (*p == ':') { char **qsupported = NULL; int count = 0; int i; /* Two passes, to avoid nested strtok calls in target_process_qsupported. */ for (p = strtok (p + 1, ";"); p != NULL; p = strtok (NULL, ";")) { count++; qsupported = xrealloc (qsupported, count * sizeof (char *)); qsupported[count - 1] = xstrdup (p); } for (i = 0; i < count; i++) { p = qsupported[i]; if (strcmp (p, "multiprocess+") == 0) { /* GDB supports and wants multi-process support if possible. */ if (target_supports_multi_process ()) multi_process = 1; } else if (strcmp (p, "qRelocInsn+") == 0) { /* GDB supports relocate instruction requests. */ gdb_supports_qRelocInsn = 1; } else target_process_qsupported (p); free (p); } free (qsupported); } sprintf (own_buf, "PacketSize=%x;QPassSignals+;QProgramSignals+", PBUFSIZ - 1); if (the_target->qxfer_libraries_svr4 != NULL) strcat (own_buf, ";qXfer:libraries-svr4:read+" ";augmented-libraries-svr4-read+"); else { /* We do not have any hook to indicate whether the non-SVR4 target backend supports qXfer:libraries:read, so always report it. */ strcat (own_buf, ";qXfer:libraries:read+"); } if (the_target->read_auxv != NULL) strcat (own_buf, ";qXfer:auxv:read+"); if (the_target->qxfer_spu != NULL) strcat (own_buf, ";qXfer:spu:read+;qXfer:spu:write+"); if (the_target->qxfer_siginfo != NULL) strcat (own_buf, ";qXfer:siginfo:read+;qXfer:siginfo:write+"); if (the_target->read_loadmap != NULL) strcat (own_buf, ";qXfer:fdpic:read+"); /* We always report qXfer:features:read, as targets may install XML files on a subsequent call to arch_setup. If we reported to GDB on startup that we don't support qXfer:feature:read at all, we will never be re-queried. */ strcat (own_buf, ";qXfer:features:read+"); if (transport_is_reliable) strcat (own_buf, ";QStartNoAckMode+"); if (the_target->qxfer_osdata != NULL) strcat (own_buf, ";qXfer:osdata:read+"); if (target_supports_multi_process ()) strcat (own_buf, ";multiprocess+"); if (target_supports_non_stop ()) strcat (own_buf, ";QNonStop+"); if (target_supports_disable_randomization ()) strcat (own_buf, ";QDisableRandomization+"); strcat (own_buf, ";qXfer:threads:read+"); if (target_supports_tracepoints ()) { strcat (own_buf, ";ConditionalTracepoints+"); strcat (own_buf, ";TraceStateVariables+"); strcat (own_buf, ";TracepointSource+"); strcat (own_buf, ";DisconnectedTracing+"); if (gdb_supports_qRelocInsn && target_supports_fast_tracepoints ()) strcat (own_buf, ";FastTracepoints+"); strcat (own_buf, ";StaticTracepoints+"); strcat (own_buf, ";InstallInTrace+"); strcat (own_buf, ";qXfer:statictrace:read+"); strcat (own_buf, ";qXfer:traceframe-info:read+"); strcat (own_buf, ";EnableDisableTracepoints+"); strcat (own_buf, ";QTBuffer:size+"); strcat (own_buf, ";tracenz+"); } /* Support target-side breakpoint conditions and commands. */ strcat (own_buf, ";ConditionalBreakpoints+"); strcat (own_buf, ";BreakpointCommands+"); if (target_supports_agent ()) strcat (own_buf, ";QAgent+"); if (target_supports_btrace ()) { strcat (own_buf, ";Qbtrace:bts+"); strcat (own_buf, ";Qbtrace:off+"); strcat (own_buf, ";qXfer:btrace:read+"); } return; } /* Thread-local storage support. */ if (the_target->get_tls_address != NULL && strncmp ("qGetTLSAddr:", own_buf, 12) == 0) { char *p = own_buf + 12; CORE_ADDR parts[2], address = 0; int i, err; ptid_t ptid = null_ptid; require_running (own_buf); for (i = 0; i < 3; i++) { char *p2; int len; if (p == NULL) break; p2 = strchr (p, ','); if (p2) { len = p2 - p; p2++; } else { len = strlen (p); p2 = NULL; } if (i == 0) ptid = read_ptid (p, NULL); else decode_address (&parts[i - 1], p, len); p = p2; } if (p != NULL || i < 3) err = 1; else { struct thread_info *thread = find_thread_ptid (ptid); if (thread == NULL) err = 2; else err = the_target->get_tls_address (thread, parts[0], parts[1], &address); } if (err == 0) { strcpy (own_buf, paddress(address)); return; } else if (err > 0) { write_enn (own_buf); return; } /* Otherwise, pretend we do not understand this packet. */ } /* Windows OS Thread Information Block address support. */ if (the_target->get_tib_address != NULL && strncmp ("qGetTIBAddr:", own_buf, 12) == 0) { char *annex; int n; CORE_ADDR tlb; ptid_t ptid = read_ptid (own_buf + 12, &annex); n = (*the_target->get_tib_address) (ptid, &tlb); if (n == 1) { strcpy (own_buf, paddress(tlb)); return; } else if (n == 0) { write_enn (own_buf); return; } return; } /* Handle "monitor" commands. */ if (strncmp ("qRcmd,", own_buf, 6) == 0) { char *mon = malloc (PBUFSIZ); int len = strlen (own_buf + 6); if (mon == NULL) { write_enn (own_buf); return; } if ((len % 2) != 0 || hex2bin (own_buf + 6, (gdb_byte *) mon, len / 2) != len / 2) { write_enn (own_buf); free (mon); return; } mon[len / 2] = '\0'; write_ok (own_buf); if (the_target->handle_monitor_command == NULL || (*the_target->handle_monitor_command) (mon) == 0) /* Default processing. */ handle_monitor_command (mon, own_buf); free (mon); return; } if (strncmp ("qSearch:memory:", own_buf, sizeof ("qSearch:memory:") - 1) == 0) { require_running (own_buf); handle_search_memory (own_buf, packet_len); return; } if (strcmp (own_buf, "qAttached") == 0 || strncmp (own_buf, "qAttached:", sizeof ("qAttached:") - 1) == 0) { struct process_info *process; if (own_buf[sizeof ("qAttached") - 1]) { int pid = strtoul (own_buf + sizeof ("qAttached:") - 1, NULL, 16); process = (struct process_info *) find_inferior_id (&all_processes, pid_to_ptid (pid)); } else { require_running (own_buf); process = current_process (); } if (process == NULL) { write_enn (own_buf); return; } strcpy (own_buf, process->attached ? "1" : "0"); return; } if (strncmp ("qCRC:", own_buf, 5) == 0) { /* CRC check (compare-section). */ char *comma; ULONGEST base; int len; unsigned long long crc; require_running (own_buf); comma = unpack_varlen_hex (own_buf + 5, &base); if (*comma++ != ',') { write_enn (own_buf); return; } len = strtoul (comma, NULL, 16); crc = crc32 (base, len, 0xffffffff); /* Check for memory failure. */ if (crc == (unsigned long long) -1) { write_enn (own_buf); return; } sprintf (own_buf, "C%lx", (unsigned long) crc); return; } if (handle_qxfer (own_buf, packet_len, new_packet_len_p)) return; if (target_supports_tracepoints () && handle_tracepoint_query (own_buf)) return; /* Otherwise we didn't know what packet it was. Say we didn't understand it. */ own_buf[0] = 0; } static void gdb_wants_all_threads_stopped (void); static void resume (struct thread_resume *actions, size_t n); /* The callback that is passed to visit_actioned_threads. */ typedef int (visit_actioned_threads_callback_ftype) (const struct thread_resume *, struct thread_info *); /* Struct to pass data to visit_actioned_threads. */ struct visit_actioned_threads_data { const struct thread_resume *actions; size_t num_actions; visit_actioned_threads_callback_ftype *callback; }; /* Call CALLBACK for any thread to which ACTIONS applies to. Returns true if CALLBACK returns true. Returns false if no matching thread is found or CALLBACK results false. Note: This function is itself a callback for find_inferior. */ static int visit_actioned_threads (struct inferior_list_entry *entry, void *datap) { struct visit_actioned_threads_data *data = datap; const struct thread_resume *actions = data->actions; size_t num_actions = data->num_actions; visit_actioned_threads_callback_ftype *callback = data->callback; size_t i; for (i = 0; i < num_actions; i++) { const struct thread_resume *action = &actions[i]; if (ptid_equal (action->thread, minus_one_ptid) || ptid_equal (action->thread, entry->id) || ((ptid_get_pid (action->thread) == ptid_get_pid (entry->id)) && ptid_get_lwp (action->thread) == -1)) { struct thread_info *thread = (struct thread_info *) entry; if ((*callback) (action, thread)) return 1; } } return 0; } /* Callback for visit_actioned_threads. If the thread has a pending status to report, report it now. */ static int handle_pending_status (const struct thread_resume *resumption, struct thread_info *thread) { if (thread->status_pending_p) { thread->status_pending_p = 0; last_status = thread->last_status; last_ptid = thread->entry.id; prepare_resume_reply (own_buf, last_ptid, &last_status); return 1; } return 0; } /* Parse vCont packets. */ void handle_v_cont (char *own_buf) { char *p, *q; int n = 0, i = 0; struct thread_resume *resume_info; struct thread_resume default_action = {{0}}; /* Count the number of semicolons in the packet. There should be one for every action. */ p = &own_buf[5]; while (p) { n++; p++; p = strchr (p, ';'); } resume_info = malloc (n * sizeof (resume_info[0])); if (resume_info == NULL) goto err; p = &own_buf[5]; while (*p) { p++; memset (&resume_info[i], 0, sizeof resume_info[i]); if (p[0] == 's' || p[0] == 'S') resume_info[i].kind = resume_step; else if (p[0] == 'r') resume_info[i].kind = resume_step; else if (p[0] == 'c' || p[0] == 'C') resume_info[i].kind = resume_continue; else if (p[0] == 't') resume_info[i].kind = resume_stop; else goto err; if (p[0] == 'S' || p[0] == 'C') { int sig; sig = strtol (p + 1, &q, 16); if (p == q) goto err; p = q; if (!gdb_signal_to_host_p (sig)) goto err; resume_info[i].sig = gdb_signal_to_host (sig); } else if (p[0] == 'r') { ULONGEST addr; p = unpack_varlen_hex (p + 1, &addr); resume_info[i].step_range_start = addr; if (*p != ',') goto err; p = unpack_varlen_hex (p + 1, &addr); resume_info[i].step_range_end = addr; } else { p = p + 1; } if (p[0] == 0) { resume_info[i].thread = minus_one_ptid; default_action = resume_info[i]; /* Note: we don't increment i here, we'll overwrite this entry the next time through. */ } else if (p[0] == ':') { ptid_t ptid = read_ptid (p + 1, &q); if (p == q) goto err; p = q; if (p[0] != ';' && p[0] != 0) goto err; resume_info[i].thread = ptid; i++; } } if (i < n) resume_info[i] = default_action; set_desired_thread (0); resume (resume_info, n); free (resume_info); return; err: write_enn (own_buf); free (resume_info); return; } /* Resume target with ACTIONS, an array of NUM_ACTIONS elements. */ static void resume (struct thread_resume *actions, size_t num_actions) { if (!non_stop) { /* Check if among the threads that GDB wants actioned, there's one with a pending status to report. If so, skip actually resuming/stopping and report the pending event immediately. */ struct visit_actioned_threads_data data; data.actions = actions; data.num_actions = num_actions; data.callback = handle_pending_status; if (find_inferior (&all_threads, visit_actioned_threads, &data) != NULL) return; enable_async_io (); } (*the_target->resume) (actions, num_actions); if (non_stop) write_ok (own_buf); else { last_ptid = mywait (minus_one_ptid, &last_status, 0, 1); if (last_status.kind == TARGET_WAITKIND_NO_RESUMED) { /* No proper RSP support for this yet. At least return error. */ sprintf (own_buf, "E.No unwaited-for children left."); disable_async_io (); return; } if (last_status.kind != TARGET_WAITKIND_EXITED && last_status.kind != TARGET_WAITKIND_SIGNALLED && last_status.kind != TARGET_WAITKIND_NO_RESUMED) current_thread->last_status = last_status; /* From the client's perspective, all-stop mode always stops all threads implicitly (and the target backend has already done so by now). Tag all threads as "want-stopped", so we don't resume them implicitly without the client telling us to. */ gdb_wants_all_threads_stopped (); prepare_resume_reply (own_buf, last_ptid, &last_status); disable_async_io (); if (last_status.kind == TARGET_WAITKIND_EXITED || last_status.kind == TARGET_WAITKIND_SIGNALLED) mourn_inferior (find_process_pid (ptid_get_pid (last_ptid))); } } /* Attach to a new program. Return 1 if successful, 0 if failure. */ int handle_v_attach (char *own_buf) { int pid; pid = strtol (own_buf + 8, NULL, 16); if (pid != 0 && attach_inferior (pid) == 0) { /* Don't report shared library events after attaching, even if some libraries are preloaded. GDB will always poll the library list. Avoids the "stopped by shared library event" notice on the GDB side. */ dlls_changed = 0; if (non_stop) { /* In non-stop, we don't send a resume reply. Stop events will follow up using the normal notification mechanism. */ write_ok (own_buf); } else prepare_resume_reply (own_buf, last_ptid, &last_status); return 1; } else { write_enn (own_buf); return 0; } } /* Run a new program. Return 1 if successful, 0 if failure. */ static int handle_v_run (char *own_buf) { char *p, *next_p, **new_argv; int i, new_argc; new_argc = 0; for (p = own_buf + strlen ("vRun;"); p && *p; p = strchr (p, ';')) { p++; new_argc++; } new_argv = calloc (new_argc + 2, sizeof (char *)); if (new_argv == NULL) { write_enn (own_buf); return 0; } i = 0; for (p = own_buf + strlen ("vRun;"); *p; p = next_p) { next_p = strchr (p, ';'); if (next_p == NULL) next_p = p + strlen (p); if (i == 0 && p == next_p) new_argv[i] = NULL; else { /* FIXME: Fail request if out of memory instead of dying. */ new_argv[i] = xmalloc (1 + (next_p - p) / 2); hex2bin (p, (gdb_byte *) new_argv[i], (next_p - p) / 2); new_argv[i][(next_p - p) / 2] = '\0'; } if (*next_p) next_p++; i++; } new_argv[i] = NULL; if (new_argv[0] == NULL) { /* GDB didn't specify a program to run. Use the program from the last run with the new argument list. */ if (program_argv == NULL) { write_enn (own_buf); freeargv (new_argv); return 0; } new_argv[0] = strdup (program_argv[0]); if (new_argv[0] == NULL) { write_enn (own_buf); freeargv (new_argv); return 0; } } /* Free the old argv and install the new one. */ freeargv (program_argv); program_argv = new_argv; start_inferior (program_argv); if (last_status.kind == TARGET_WAITKIND_STOPPED) { prepare_resume_reply (own_buf, last_ptid, &last_status); /* In non-stop, sending a resume reply doesn't set the general thread, but GDB assumes a vRun sets it (this is so GDB can query which is the main thread of the new inferior. */ if (non_stop) general_thread = last_ptid; return 1; } else { write_enn (own_buf); return 0; } } /* Kill process. Return 1 if successful, 0 if failure. */ int handle_v_kill (char *own_buf) { int pid; char *p = &own_buf[6]; if (multi_process) pid = strtol (p, NULL, 16); else pid = signal_pid; if (pid != 0 && kill_inferior (pid) == 0) { last_status.kind = TARGET_WAITKIND_SIGNALLED; last_status.value.sig = GDB_SIGNAL_KILL; last_ptid = pid_to_ptid (pid); discard_queued_stop_replies (pid); write_ok (own_buf); return 1; } else { write_enn (own_buf); return 0; } } /* Handle all of the extended 'v' packets. */ void handle_v_requests (char *own_buf, int packet_len, int *new_packet_len) { if (!disable_packet_vCont) { if (strncmp (own_buf, "vCont;", 6) == 0) { require_running (own_buf); handle_v_cont (own_buf); return; } if (strncmp (own_buf, "vCont?", 6) == 0) { strcpy (own_buf, "vCont;c;C;s;S;t"); if (target_supports_range_stepping ()) { own_buf = own_buf + strlen (own_buf); strcpy (own_buf, ";r"); } return; } } if (strncmp (own_buf, "vFile:", 6) == 0 && handle_vFile (own_buf, packet_len, new_packet_len)) return; if (strncmp (own_buf, "vAttach;", 8) == 0) { if ((!extended_protocol || !multi_process) && target_running ()) { fprintf (stderr, "Already debugging a process\n"); write_enn (own_buf); return; } handle_v_attach (own_buf); return; } if (strncmp (own_buf, "vRun;", 5) == 0) { if ((!extended_protocol || !multi_process) && target_running ()) { fprintf (stderr, "Already debugging a process\n"); write_enn (own_buf); return; } handle_v_run (own_buf); return; } if (strncmp (own_buf, "vKill;", 6) == 0) { if (!target_running ()) { fprintf (stderr, "No process to kill\n"); write_enn (own_buf); return; } handle_v_kill (own_buf); return; } if (handle_notif_ack (own_buf, packet_len)) return; /* Otherwise we didn't know what packet it was. Say we didn't understand it. */ own_buf[0] = 0; return; } /* Resume thread and wait for another event. In non-stop mode, don't really wait here, but return immediatelly to the event loop. */ static void myresume (char *own_buf, int step, int sig) { struct thread_resume resume_info[2]; int n = 0; int valid_cont_thread; set_desired_thread (0); valid_cont_thread = (!ptid_equal (cont_thread, null_ptid) && !ptid_equal (cont_thread, minus_one_ptid)); if (step || sig || valid_cont_thread) { resume_info[0].thread = current_ptid; if (step) resume_info[0].kind = resume_step; else resume_info[0].kind = resume_continue; resume_info[0].sig = sig; n++; } if (!valid_cont_thread) { resume_info[n].thread = minus_one_ptid; resume_info[n].kind = resume_continue; resume_info[n].sig = 0; n++; } resume (resume_info, n); } /* Callback for for_each_inferior. Make a new stop reply for each stopped thread. */ static int queue_stop_reply_callback (struct inferior_list_entry *entry, void *arg) { struct thread_info *thread = (struct thread_info *) entry; /* For now, assume targets that don't have this callback also don't manage the thread's last_status field. */ if (the_target->thread_stopped == NULL) { struct vstop_notif *new_notif = xmalloc (sizeof (*new_notif)); new_notif->ptid = entry->id; new_notif->status = thread->last_status; /* Pass the last stop reply back to GDB, but don't notify yet. */ notif_event_enque (¬if_stop, (struct notif_event *) new_notif); } else { if (thread_stopped (thread)) { if (debug_threads) { char *status_string = target_waitstatus_to_string (&thread->last_status); debug_printf ("Reporting thread %s as already stopped with %s\n", target_pid_to_str (entry->id), status_string); xfree (status_string); } gdb_assert (thread->last_status.kind != TARGET_WAITKIND_IGNORE); /* Pass the last stop reply back to GDB, but don't notify yet. */ queue_stop_reply (entry->id, &thread->last_status); } } return 0; } /* Set this inferior threads's state as "want-stopped". We won't resume this thread until the client gives us another action for it. */ static void gdb_wants_thread_stopped (struct inferior_list_entry *entry) { struct thread_info *thread = (struct thread_info *) entry; thread->last_resume_kind = resume_stop; if (thread->last_status.kind == TARGET_WAITKIND_IGNORE) { /* Most threads are stopped implicitly (all-stop); tag that with signal 0. */ thread->last_status.kind = TARGET_WAITKIND_STOPPED; thread->last_status.value.sig = GDB_SIGNAL_0; } } /* Set all threads' states as "want-stopped". */ static void gdb_wants_all_threads_stopped (void) { for_each_inferior (&all_threads, gdb_wants_thread_stopped); } /* Clear the gdb_detached flag of every process. */ static void gdb_reattached_process (struct inferior_list_entry *entry) { struct process_info *process = (struct process_info *) entry; process->gdb_detached = 0; } /* Callback for for_each_inferior. Clear the thread's pending status flag. */ static void clear_pending_status_callback (struct inferior_list_entry *entry) { struct thread_info *thread = (struct thread_info *) entry; thread->status_pending_p = 0; } /* Callback for for_each_inferior. If the thread is stopped with an interesting event, mark it as having a pending event. */ static void set_pending_status_callback (struct inferior_list_entry *entry) { struct thread_info *thread = (struct thread_info *) entry; if (thread->last_status.kind != TARGET_WAITKIND_STOPPED || (thread->last_status.value.sig != GDB_SIGNAL_0 /* A breakpoint, watchpoint or finished step from a previous GDB run isn't considered interesting for a new GDB run. If we left those pending, the new GDB could consider them random SIGTRAPs. This leaves out real async traps. We'd have to peek into the (target-specific) siginfo to distinguish those. */ && thread->last_status.value.sig != GDB_SIGNAL_TRAP)) thread->status_pending_p = 1; } /* Callback for find_inferior. Return true if ENTRY (a thread) has a pending status to report to GDB. */ static int find_status_pending_thread_callback (struct inferior_list_entry *entry, void *data) { struct thread_info *thread = (struct thread_info *) entry; return thread->status_pending_p; } /* Status handler for the '?' packet. */ static void handle_status (char *own_buf) { /* GDB is connected, don't forward events to the target anymore. */ for_each_inferior (&all_processes, gdb_reattached_process); /* In non-stop mode, we must send a stop reply for each stopped thread. In all-stop mode, just send one for the first stopped thread we find. */ if (non_stop) { find_inferior (&all_threads, queue_stop_reply_callback, NULL); /* The first is sent immediatly. OK is sent if there is no stopped thread, which is the same handling of the vStopped packet (by design). */ notif_write_event (¬if_stop, own_buf); } else { struct inferior_list_entry *thread = NULL; pause_all (0); stabilize_threads (); gdb_wants_all_threads_stopped (); /* We can only report one status, but we might be coming out of non-stop -- if more than one thread is stopped with interesting events, leave events for the threads we're not reporting now pending. They'll be reported the next time the threads are resumed. Start by marking all interesting events as pending. */ for_each_inferior (&all_threads, set_pending_status_callback); /* Prefer the last thread that reported an event to GDB (even if that was a GDB_SIGNAL_TRAP). */ if (last_status.kind != TARGET_WAITKIND_IGNORE && last_status.kind != TARGET_WAITKIND_EXITED && last_status.kind != TARGET_WAITKIND_SIGNALLED) thread = find_inferior_id (&all_threads, last_ptid); /* If the last event thread is not found for some reason, look for some other thread that might have an event to report. */ if (thread == NULL) thread = find_inferior (&all_threads, find_status_pending_thread_callback, NULL); /* If we're still out of luck, simply pick the first thread in the thread list. */ if (thread == NULL) thread = get_first_inferior (&all_threads); if (thread != NULL) { struct thread_info *tp = (struct thread_info *) thread; /* We're reporting this event, so it's no longer pending. */ tp->status_pending_p = 0; /* GDB assumes the current thread is the thread we're reporting the status for. */ general_thread = thread->id; set_desired_thread (1); gdb_assert (tp->last_status.kind != TARGET_WAITKIND_IGNORE); prepare_resume_reply (own_buf, tp->entry.id, &tp->last_status); } else strcpy (own_buf, "W00"); } } static void gdbserver_version (void) { printf ("GNU gdbserver %s%s\n" "Copyright (C) 2015 Free Software Foundation, Inc.\n" "gdbserver is free software, covered by the " "GNU General Public License.\n" "This gdbserver was configured as \"%s\"\n", PKGVERSION, version, host_name); } static void gdbserver_usage (FILE *stream) { fprintf (stream, "Usage:\tgdbserver [OPTIONS] COMM PROG [ARGS ...]\n" "\tgdbserver [OPTIONS] --attach COMM PID\n" "\tgdbserver [OPTIONS] --multi COMM\n" "\n" "COMM may either be a tty device (for serial debugging), or \n" "HOST:PORT to listen for a TCP connection.\n" "\n" "Options:\n" " --debug Enable general debugging output.\n" " --debug-format=opt1[,opt2,...]\n" " Specify extra content in debugging output.\n" " Options:\n" " all\n" " none\n" " timestamp\n" " --remote-debug Enable remote protocol debugging output.\n" " --version Display version information and exit.\n" " --wrapper WRAPPER -- Run WRAPPER to start new programs.\n" " --once Exit after the first connection has " "closed.\n"); if (REPORT_BUGS_TO[0] && stream == stdout) fprintf (stream, "Report bugs to \"%s\".\n", REPORT_BUGS_TO); } static void gdbserver_show_disableable (FILE *stream) { fprintf (stream, "Disableable packets:\n" " vCont \tAll vCont packets\n" " qC \tQuerying the current thread\n" " qfThreadInfo\tThread listing\n" " Tthread \tPassing the thread specifier in the " "T stop reply packet\n" " threads \tAll of the above\n"); } #undef require_running #define require_running(BUF) \ if (!target_running ()) \ { \ write_enn (BUF); \ break; \ } static int first_thread_of (struct inferior_list_entry *entry, void *args) { int pid = * (int *) args; if (ptid_get_pid (entry->id) == pid) return 1; return 0; } static void kill_inferior_callback (struct inferior_list_entry *entry) { struct process_info *process = (struct process_info *) entry; int pid = ptid_get_pid (process->entry.id); kill_inferior (pid); discard_queued_stop_replies (pid); } /* Callback for for_each_inferior to detach or kill the inferior, depending on whether we attached to it or not. We inform the user whether we're detaching or killing the process as this is only called when gdbserver is about to exit. */ static void detach_or_kill_inferior_callback (struct inferior_list_entry *entry) { struct process_info *process = (struct process_info *) entry; int pid = ptid_get_pid (process->entry.id); if (process->attached) detach_inferior (pid); else kill_inferior (pid); discard_queued_stop_replies (pid); } /* for_each_inferior callback for detach_or_kill_for_exit to print the pids of started inferiors. */ static void print_started_pid (struct inferior_list_entry *entry) { struct process_info *process = (struct process_info *) entry; if (! process->attached) { int pid = ptid_get_pid (process->entry.id); fprintf (stderr, " %d", pid); } } /* for_each_inferior callback for detach_or_kill_for_exit to print the pids of attached inferiors. */ static void print_attached_pid (struct inferior_list_entry *entry) { struct process_info *process = (struct process_info *) entry; if (process->attached) { int pid = ptid_get_pid (process->entry.id); fprintf (stderr, " %d", pid); } } /* Call this when exiting gdbserver with possible inferiors that need to be killed or detached from. */ static void detach_or_kill_for_exit (void) { /* First print a list of the inferiors we will be killing/detaching. This is to assist the user, for example, in case the inferior unexpectedly dies after we exit: did we screw up or did the inferior exit on its own? Having this info will save some head-scratching. */ if (have_started_inferiors_p ()) { fprintf (stderr, "Killing process(es):"); for_each_inferior (&all_processes, print_started_pid); fprintf (stderr, "\n"); } if (have_attached_inferiors_p ()) { fprintf (stderr, "Detaching process(es):"); for_each_inferior (&all_processes, print_attached_pid); fprintf (stderr, "\n"); } /* Now we can kill or detach the inferiors. */ for_each_inferior (&all_processes, detach_or_kill_inferior_callback); } /* Value that will be passed to exit(3) when gdbserver exits. */ static int exit_code; /* Cleanup version of detach_or_kill_for_exit. */ static void detach_or_kill_for_exit_cleanup (void *ignore) { volatile struct gdb_exception exception; TRY_CATCH (exception, RETURN_MASK_ALL) { detach_or_kill_for_exit (); } if (exception.reason < 0) { fflush (stdout); fprintf (stderr, "Detach or kill failed: %s\n", exception.message); exit_code = 1; } } /* Main function. This is called by the real "main" function, wrapped in a TRY_CATCH that handles any uncaught exceptions. */ static void ATTRIBUTE_NORETURN captured_main (int argc, char *argv[]) { int bad_attach; int pid; char *arg_end, *port; char **next_arg = &argv[1]; volatile int multi_mode = 0; volatile int attach = 0; int was_running; while (*next_arg != NULL && **next_arg == '-') { if (strcmp (*next_arg, "--version") == 0) { gdbserver_version (); exit (0); } else if (strcmp (*next_arg, "--help") == 0) { gdbserver_usage (stdout); exit (0); } else if (strcmp (*next_arg, "--attach") == 0) attach = 1; else if (strcmp (*next_arg, "--multi") == 0) multi_mode = 1; else if (strcmp (*next_arg, "--wrapper") == 0) { next_arg++; wrapper_argv = next_arg; while (*next_arg != NULL && strcmp (*next_arg, "--") != 0) next_arg++; if (next_arg == wrapper_argv || *next_arg == NULL) { gdbserver_usage (stderr); exit (1); } /* Consume the "--". */ *next_arg = NULL; } else if (strcmp (*next_arg, "--debug") == 0) debug_threads = 1; else if (strncmp (*next_arg, "--debug-format=", sizeof ("--debug-format=") - 1) == 0) { char *error_msg = parse_debug_format_options ((*next_arg) + sizeof ("--debug-format=") - 1, 0); if (error_msg != NULL) { fprintf (stderr, "%s", error_msg); exit (1); } } else if (strcmp (*next_arg, "--remote-debug") == 0) remote_debug = 1; else if (strcmp (*next_arg, "--disable-packet") == 0) { gdbserver_show_disableable (stdout); exit (0); } else if (strncmp (*next_arg, "--disable-packet=", sizeof ("--disable-packet=") - 1) == 0) { char *packets, *tok; packets = *next_arg += sizeof ("--disable-packet=") - 1; for (tok = strtok (packets, ","); tok != NULL; tok = strtok (NULL, ",")) { if (strcmp ("vCont", tok) == 0) disable_packet_vCont = 1; else if (strcmp ("Tthread", tok) == 0) disable_packet_Tthread = 1; else if (strcmp ("qC", tok) == 0) disable_packet_qC = 1; else if (strcmp ("qfThreadInfo", tok) == 0) disable_packet_qfThreadInfo = 1; else if (strcmp ("threads", tok) == 0) { disable_packet_vCont = 1; disable_packet_Tthread = 1; disable_packet_qC = 1; disable_packet_qfThreadInfo = 1; } else { fprintf (stderr, "Don't know how to disable \"%s\".\n\n", tok); gdbserver_show_disableable (stderr); exit (1); } } } else if (strcmp (*next_arg, "-") == 0) { /* "-" specifies a stdio connection and is a form of port specification. */ *next_arg = STDIO_CONNECTION_NAME; break; } else if (strcmp (*next_arg, "--disable-randomization") == 0) disable_randomization = 1; else if (strcmp (*next_arg, "--no-disable-randomization") == 0) disable_randomization = 0; else if (strcmp (*next_arg, "--once") == 0) run_once = 1; else { fprintf (stderr, "Unknown argument: %s\n", *next_arg); exit (1); } next_arg++; continue; } port = *next_arg; next_arg++; if (port == NULL || (!attach && !multi_mode && *next_arg == NULL)) { gdbserver_usage (stderr); exit (1); } /* Remember stdio descriptors. LISTEN_DESC must not be listed, it will be opened by remote_prepare. */ notice_open_fds (); /* We need to know whether the remote connection is stdio before starting the inferior. Inferiors created in this scenario have stdin,stdout redirected. So do this here before we call start_inferior. */ remote_prepare (port); bad_attach = 0; pid = 0; /* --attach used to come after PORT, so allow it there for compatibility. */ if (*next_arg != NULL && strcmp (*next_arg, "--attach") == 0) { attach = 1; next_arg++; } if (attach && (*next_arg == NULL || (*next_arg)[0] == '\0' || (pid = strtoul (*next_arg, &arg_end, 0)) == 0 || *arg_end != '\0' || next_arg[1] != NULL)) bad_attach = 1; if (bad_attach) { gdbserver_usage (stderr); exit (1); } initialize_async_io (); initialize_low (); initialize_event_loop (); if (target_supports_tracepoints ()) initialize_tracepoint (); own_buf = xmalloc (PBUFSIZ + 1); mem_buf = xmalloc (PBUFSIZ); if (pid == 0 && *next_arg != NULL) { int i, n; n = argc - (next_arg - argv); program_argv = xmalloc (sizeof (char *) * (n + 1)); for (i = 0; i < n; i++) program_argv[i] = xstrdup (next_arg[i]); program_argv[i] = NULL; /* Wait till we are at first instruction in program. */ start_inferior (program_argv); /* We are now (hopefully) stopped at the first instruction of the target process. This assumes that the target process was successfully created. */ } else if (pid != 0) { if (attach_inferior (pid) == -1) error ("Attaching not supported on this target"); /* Otherwise succeeded. */ } else { last_status.kind = TARGET_WAITKIND_EXITED; last_status.value.integer = 0; last_ptid = minus_one_ptid; } make_cleanup (detach_or_kill_for_exit_cleanup, NULL); initialize_notif (); /* Don't report shared library events on the initial connection, even if some libraries are preloaded. Avoids the "stopped by shared library event" notice on gdb side. */ dlls_changed = 0; if (last_status.kind == TARGET_WAITKIND_EXITED || last_status.kind == TARGET_WAITKIND_SIGNALLED) was_running = 0; else was_running = 1; if (!was_running && !multi_mode) error ("No program to debug"); while (1) { volatile struct gdb_exception exception; noack_mode = 0; multi_process = 0; /* Be sure we're out of tfind mode. */ current_traceframe = -1; cont_thread = null_ptid; remote_open (port); TRY_CATCH (exception, RETURN_MASK_ERROR) { /* Wait for events. This will return when all event sources are removed from the event loop. */ start_event_loop (); /* If an exit was requested (using the "monitor exit" command), terminate now. The only other way to get here is for getpkt to fail; close the connection and reopen it at the top of the loop. */ if (exit_requested || run_once) throw_quit ("Quit"); fprintf (stderr, "Remote side has terminated connection. " "GDBserver will reopen the connection.\n"); /* Get rid of any pending statuses. An eventual reconnection (by the same GDB instance or another) will refresh all its state from scratch. */ discard_queued_stop_replies (-1); for_each_inferior (&all_threads, clear_pending_status_callback); if (tracing) { if (disconnected_tracing) { /* Try to enable non-stop/async mode, so we we can both wait for an async socket accept, and handle async target events simultaneously. There's also no point either in having the target always stop all threads, when we're going to pass signals down without informing GDB. */ if (!non_stop) { if (start_non_stop (1)) non_stop = 1; /* Detaching implicitly resumes all threads; simply disconnecting does not. */ } } else { fprintf (stderr, "Disconnected tracing disabled; " "stopping trace run.\n"); stop_tracing (); } } } if (exception.reason == RETURN_ERROR) { if (response_needed) { write_enn (own_buf); putpkt (own_buf); } } } } /* Main function. */ int main (int argc, char *argv[]) { volatile struct gdb_exception exception; TRY_CATCH (exception, RETURN_MASK_ALL) { captured_main (argc, argv); } /* captured_main should never return. */ gdb_assert (exception.reason < 0); if (exception.reason == RETURN_ERROR) { fflush (stdout); fprintf (stderr, "%s\n", exception.message); fprintf (stderr, "Exiting\n"); exit_code = 1; } exit (exit_code); } /* Skip PACKET until the next semi-colon (or end of string). */ static void skip_to_semicolon (char **packet) { while (**packet != '\0' && **packet != ';') (*packet)++; } /* Process options coming from Z packets for a breakpoint. PACKET is the packet buffer. *PACKET is updated to point to the first char after the last processed option. */ static void process_point_options (struct breakpoint *bp, char **packet) { char *dataptr = *packet; int persist; /* Check if data has the correct format. */ if (*dataptr != ';') return; dataptr++; while (*dataptr) { if (*dataptr == ';') ++dataptr; if (*dataptr == 'X') { /* Conditional expression. */ if (debug_threads) debug_printf ("Found breakpoint condition.\n"); if (!add_breakpoint_condition (bp, &dataptr)) skip_to_semicolon (&dataptr); } else if (strncmp (dataptr, "cmds:", strlen ("cmds:")) == 0) { dataptr += strlen ("cmds:"); if (debug_threads) debug_printf ("Found breakpoint commands %s.\n", dataptr); persist = (*dataptr == '1'); dataptr += 2; if (add_breakpoint_commands (bp, &dataptr, persist)) skip_to_semicolon (&dataptr); } else { fprintf (stderr, "Unknown token %c, ignoring.\n", *dataptr); /* Skip tokens until we find one that we recognize. */ skip_to_semicolon (&dataptr); } } *packet = dataptr; } /* Event loop callback that handles a serial event. The first byte in the serial buffer gets us here. We expect characters to arrive at a brisk pace, so we read the rest of the packet with a blocking getpkt call. */ static int process_serial_event (void) { char ch; int i = 0; int signal; unsigned int len; int res; CORE_ADDR mem_addr; int pid; unsigned char sig; int packet_len; int new_packet_len = -1; /* Used to decide when gdbserver should exit in multi-mode/remote. */ static int have_ran = 0; if (!have_ran) have_ran = target_running (); disable_async_io (); response_needed = 0; packet_len = getpkt (own_buf); if (packet_len <= 0) { remote_close (); /* Force an event loop break. */ return -1; } response_needed = 1; i = 0; ch = own_buf[i++]; switch (ch) { case 'q': handle_query (own_buf, packet_len, &new_packet_len); break; case 'Q': handle_general_set (own_buf); break; case 'D': require_running (own_buf); if (multi_process) { i++; /* skip ';' */ pid = strtol (&own_buf[i], NULL, 16); } else pid = ptid_get_pid (current_ptid); if ((tracing && disconnected_tracing) || any_persistent_commands ()) { struct thread_resume resume_info; struct process_info *process = find_process_pid (pid); if (process == NULL) { write_enn (own_buf); break; } if (tracing && disconnected_tracing) fprintf (stderr, "Disconnected tracing in effect, " "leaving gdbserver attached to the process\n"); if (any_persistent_commands ()) fprintf (stderr, "Persistent commands are present, " "leaving gdbserver attached to the process\n"); /* Make sure we're in non-stop/async mode, so we we can both wait for an async socket accept, and handle async target events simultaneously. There's also no point either in having the target stop all threads, when we're going to pass signals down without informing GDB. */ if (!non_stop) { if (debug_threads) debug_printf ("Forcing non-stop mode\n"); non_stop = 1; start_non_stop (1); } process->gdb_detached = 1; /* Detaching implicitly resumes all threads. */ resume_info.thread = minus_one_ptid; resume_info.kind = resume_continue; resume_info.sig = 0; (*the_target->resume) (&resume_info, 1); write_ok (own_buf); break; /* from switch/case */ } fprintf (stderr, "Detaching from process %d\n", pid); stop_tracing (); if (detach_inferior (pid) != 0) write_enn (own_buf); else { discard_queued_stop_replies (pid); write_ok (own_buf); if (extended_protocol) { /* Treat this like a normal program exit. */ last_status.kind = TARGET_WAITKIND_EXITED; last_status.value.integer = 0; last_ptid = pid_to_ptid (pid); current_thread = NULL; } else { putpkt (own_buf); remote_close (); /* If we are attached, then we can exit. Otherwise, we need to hang around doing nothing, until the child is gone. */ join_inferior (pid); exit (0); } } break; case '!': extended_protocol = 1; write_ok (own_buf); break; case '?': handle_status (own_buf); break; case 'H': if (own_buf[1] == 'c' || own_buf[1] == 'g' || own_buf[1] == 's') { ptid_t gdb_id, thread_id; int pid; require_running (own_buf); gdb_id = read_ptid (&own_buf[2], NULL); pid = ptid_get_pid (gdb_id); if (ptid_equal (gdb_id, null_ptid) || ptid_equal (gdb_id, minus_one_ptid)) thread_id = null_ptid; else if (pid != 0 && ptid_equal (pid_to_ptid (pid), gdb_id)) { struct thread_info *thread = (struct thread_info *) find_inferior (&all_threads, first_thread_of, &pid); if (!thread) { write_enn (own_buf); break; } thread_id = thread->entry.id; } else { thread_id = gdb_id_to_thread_id (gdb_id); if (ptid_equal (thread_id, null_ptid)) { write_enn (own_buf); break; } } if (own_buf[1] == 'g') { if (ptid_equal (thread_id, null_ptid)) { /* GDB is telling us to choose any thread. Check if the currently selected thread is still valid. If it is not, select the first available. */ struct thread_info *thread = (struct thread_info *) find_inferior_id (&all_threads, general_thread); if (thread == NULL) { thread = get_first_thread (); thread_id = thread->entry.id; } } general_thread = thread_id; set_desired_thread (1); } else if (own_buf[1] == 'c') cont_thread = thread_id; write_ok (own_buf); } else { /* Silently ignore it so that gdb can extend the protocol without compatibility headaches. */ own_buf[0] = '\0'; } break; case 'g': require_running (own_buf); if (current_traceframe >= 0) { struct regcache *regcache = new_register_cache (current_target_desc ()); if (fetch_traceframe_registers (current_traceframe, regcache, -1) == 0) registers_to_string (regcache, own_buf); else write_enn (own_buf); free_register_cache (regcache); } else { struct regcache *regcache; set_desired_thread (1); regcache = get_thread_regcache (current_thread, 1); registers_to_string (regcache, own_buf); } break; case 'G': require_running (own_buf); if (current_traceframe >= 0) write_enn (own_buf); else { struct regcache *regcache; set_desired_thread (1); regcache = get_thread_regcache (current_thread, 1); registers_from_string (regcache, &own_buf[1]); write_ok (own_buf); } break; case 'm': require_running (own_buf); decode_m_packet (&own_buf[1], &mem_addr, &len); res = gdb_read_memory (mem_addr, mem_buf, len); if (res < 0) write_enn (own_buf); else bin2hex (mem_buf, own_buf, res); break; case 'M': require_running (own_buf); decode_M_packet (&own_buf[1], &mem_addr, &len, &mem_buf); if (gdb_write_memory (mem_addr, mem_buf, len) == 0) write_ok (own_buf); else write_enn (own_buf); break; case 'X': require_running (own_buf); if (decode_X_packet (&own_buf[1], packet_len - 1, &mem_addr, &len, &mem_buf) < 0 || gdb_write_memory (mem_addr, mem_buf, len) != 0) write_enn (own_buf); else write_ok (own_buf); break; case 'C': require_running (own_buf); hex2bin (own_buf + 1, &sig, 1); if (gdb_signal_to_host_p (sig)) signal = gdb_signal_to_host (sig); else signal = 0; myresume (own_buf, 0, signal); break; case 'S': require_running (own_buf); hex2bin (own_buf + 1, &sig, 1); if (gdb_signal_to_host_p (sig)) signal = gdb_signal_to_host (sig); else signal = 0; myresume (own_buf, 1, signal); break; case 'c': require_running (own_buf); signal = 0; myresume (own_buf, 0, signal); break; case 's': require_running (own_buf); signal = 0; myresume (own_buf, 1, signal); break; case 'Z': /* insert_ ... */ /* Fallthrough. */ case 'z': /* remove_ ... */ { char *dataptr; ULONGEST addr; int len; char type = own_buf[1]; int res; const int insert = ch == 'Z'; char *p = &own_buf[3]; p = unpack_varlen_hex (p, &addr); len = strtol (p + 1, &dataptr, 16); if (insert) { struct breakpoint *bp; bp = set_gdb_breakpoint (type, addr, len, &res); if (bp != NULL) { res = 0; /* GDB may have sent us a list of *point parameters to be evaluated on the target's side. Read such list here. If we already have a list of parameters, GDB is telling us to drop that list and use this one instead. */ clear_breakpoint_conditions_and_commands (bp); process_point_options (bp, &dataptr); } } else res = delete_gdb_breakpoint (type, addr, len); if (res == 0) write_ok (own_buf); else if (res == 1) /* Unsupported. */ own_buf[0] = '\0'; else write_enn (own_buf); break; } case 'k': response_needed = 0; if (!target_running ()) /* The packet we received doesn't make sense - but we can't reply to it, either. */ return 0; fprintf (stderr, "Killing all inferiors\n"); for_each_inferior (&all_processes, kill_inferior_callback); /* When using the extended protocol, we wait with no program running. The traditional protocol will exit instead. */ if (extended_protocol) { last_status.kind = TARGET_WAITKIND_EXITED; last_status.value.sig = GDB_SIGNAL_KILL; return 0; } else exit (0); case 'T': { ptid_t gdb_id, thread_id; require_running (own_buf); gdb_id = read_ptid (&own_buf[1], NULL); thread_id = gdb_id_to_thread_id (gdb_id); if (ptid_equal (thread_id, null_ptid)) { write_enn (own_buf); break; } if (mythread_alive (thread_id)) write_ok (own_buf); else write_enn (own_buf); } break; case 'R': response_needed = 0; /* Restarting the inferior is only supported in the extended protocol. */ if (extended_protocol) { if (target_running ()) for_each_inferior (&all_processes, kill_inferior_callback); fprintf (stderr, "GDBserver restarting\n"); /* Wait till we are at 1st instruction in prog. */ if (program_argv != NULL) start_inferior (program_argv); else { last_status.kind = TARGET_WAITKIND_EXITED; last_status.value.sig = GDB_SIGNAL_KILL; } return 0; } else { /* It is a request we don't understand. Respond with an empty packet so that gdb knows that we don't support this request. */ own_buf[0] = '\0'; break; } case 'v': /* Extended (long) request. */ handle_v_requests (own_buf, packet_len, &new_packet_len); break; default: /* It is a request we don't understand. Respond with an empty packet so that gdb knows that we don't support this request. */ own_buf[0] = '\0'; break; } if (new_packet_len != -1) putpkt_binary (own_buf, new_packet_len); else putpkt (own_buf); response_needed = 0; if (!extended_protocol && have_ran && !target_running ()) { /* In non-stop, defer exiting until GDB had a chance to query the whole vStopped list (until it gets an OK). */ if (QUEUE_is_empty (notif_event_p, notif_stop.queue)) { /* Be transparent when GDB is connected through stdio -- no need to spam GDB's console. */ if (!remote_connection_is_stdio ()) fprintf (stderr, "GDBserver exiting\n"); remote_close (); exit (0); } } if (exit_requested) return -1; return 0; } /* Event-loop callback for serial events. */ int handle_serial_event (int err, gdb_client_data client_data) { if (debug_threads) debug_printf ("handling possible serial event\n"); /* Really handle it. */ if (process_serial_event () < 0) return -1; /* Be sure to not change the selected thread behind GDB's back. Important in the non-stop mode asynchronous protocol. */ set_desired_thread (1); return 0; } /* Event-loop callback for target events. */ int handle_target_event (int err, gdb_client_data client_data) { if (debug_threads) debug_printf ("handling possible target event\n"); last_ptid = mywait (minus_one_ptid, &last_status, TARGET_WNOHANG, 1); if (last_status.kind == TARGET_WAITKIND_NO_RESUMED) { /* No RSP support for this yet. */ } else if (last_status.kind != TARGET_WAITKIND_IGNORE) { int pid = ptid_get_pid (last_ptid); struct process_info *process = find_process_pid (pid); int forward_event = !gdb_connected () || process->gdb_detached; if (last_status.kind == TARGET_WAITKIND_EXITED || last_status.kind == TARGET_WAITKIND_SIGNALLED) { mark_breakpoints_out (process); mourn_inferior (process); } else { /* We're reporting this thread as stopped. Update its "want-stopped" state to what the client wants, until it gets a new resume action. */ current_thread->last_resume_kind = resume_stop; current_thread->last_status = last_status; } if (forward_event) { if (!target_running ()) { /* The last process exited. We're done. */ exit (0); } if (last_status.kind == TARGET_WAITKIND_STOPPED) { /* A thread stopped with a signal, but gdb isn't connected to handle it. Pass it down to the inferior, as if it wasn't being traced. */ struct thread_resume resume_info; if (debug_threads) debug_printf ("GDB not connected; forwarding event %d for" " [%s]\n", (int) last_status.kind, target_pid_to_str (last_ptid)); resume_info.thread = last_ptid; resume_info.kind = resume_continue; resume_info.sig = gdb_signal_to_host (last_status.value.sig); (*the_target->resume) (&resume_info, 1); } else if (debug_threads) debug_printf ("GDB not connected; ignoring event %d for [%s]\n", (int) last_status.kind, target_pid_to_str (last_ptid)); } else { struct vstop_notif *vstop_notif = xmalloc (sizeof (struct vstop_notif)); vstop_notif->status = last_status; vstop_notif->ptid = last_ptid; /* Push Stop notification. */ notif_push (¬if_stop, (struct notif_event *) vstop_notif); } } /* Be sure to not change the selected thread behind GDB's back. Important in the non-stop mode asynchronous protocol. */ set_desired_thread (1); return 0; }