;; Linux BPF CPU description -*- Scheme -*- ;; Copyright (C) 2019 Free Software Foundation, Inc. ;; ;; Contributed by Oracle Inc. ;; ;; This file is part of the GNU Binutils and of GDB. ;; ;; This program is free software; you can redistribute it and/or ;; modify it under the terms of the GNU General Public License as ;; published by the Free Software Foundation; either version 3 of the ;; License, or (at your option) any later version. ;; ;; This program is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with this program; if not, write to the Free Software ;; Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA ;; 02110-1301, USA. ;; This file contains a CGEN CPU description for the Linux kernel eBPF ;; instruction set. eBPF is documented in the linux kernel source ;; tree. See linux/Documentation/networking/filter.txt, and also the ;; sources in the networking subsystem, notably ;; linux/net/core/filter.c. (include "simplify.inc") (define-arch (name bpf) (comment "Linux kernel BPF") (insn-lsb0? #t) ;; XXX explain the default-alignment setting is for the simulator. ;; It is confusing that the simulator follows the emulated memory ;; access conventions for fetching instructions by pieces... (default-alignment unaligned) (machs bpf xbpf) (isas ebpfle ebpfbe xbpfle xbpfbe)) ;;;; The ISAs ;; Logically, eBPF comforms a single instruction set featuring two ;; kind of instructions: 64-bit instructions and 128-bit instructions. ;; ;; The 64-bit instructions have the form: ;; ;; code:8 regs:8 offset:16 imm:32 ;; ;; Whereas the 128-bit instructions (at the moment there is only one ;; of such instructions, lddw) have the form: ;; ;; code:8 regs:8 offset:16 imm:32 unused:32 imm:32 ;; ;; In both formats `regs' is itself composed by two fields: ;; ;; dst:4 src:4 ;; ;; The ISA is supposed to be orthogonal to endianness: the endianness ;; of the instruction fields follow the endianness of the host running ;; the eBPF program, and that's all. However, this is not entirely ;; true. The definition of an eBPF code in the Linux kernel is: ;; ;; struct bpf_insn { ;; __u8 code; /* opcode */ ;; __u8 dst_reg:4; /* dest register */ ;; __u8 src_reg:4; /* source register */ ;; __s16 off; /* signed offset */ ;; __s32 imm; /* signed immediate constant */ ;; }; ;; ;; Since the ordering of fields in C bitmaps is defined by the ;; implementation, the impact of endianness in the encoding of eBPF ;; instructions is effectively defined by GCC. In particular, GCC ;; places dst_reg before src_reg in little-endian code, and the other ;; way around in big-endian code. ;; ;; So, in reality, eBPF comprises two instruction sets: one for ;; little-endian with instructions like: ;; ;; code:8 src:4 dst:4 offset:16 imm:32 [unused:32 imm:32] ;; ;; and another for big-endian with instructions like: ;; ;; code:8 dst:4 src:4 offset:16 imm:32 [unused:32 imm:32] ;; ;; where `offset' and the immediate fields are encoded in ;; little-endian and big-endian byte-order, respectively. (define-pmacro (define-bpf-isa x-endian) (define-isa (name (.sym ebpf x-endian)) (comment "The eBPF instruction set") ;; Default length to record in ifields. This is used in ;; calculations involving bit numbers. (default-insn-word-bitsize 64) ;; Length of an unknown instruction. Used by disassembly and by the ;; simulator's invalid insn handler. (default-insn-bitsize 64) ;; Number of bits of insn that can be initially fetched. This is ;; the size of the smallest insn. (base-insn-bitsize 64))) (define-bpf-isa le) (define-bpf-isa be) (define-pmacro (define-xbpf-isa x-endian) (define-isa (name (.sym xbpf x-endian)) (comment "The xBPF instruction set") (default-insn-word-bitsize 64) (default-insn-bitsize 64) (base-insn-bitsize 64))) (define-xbpf-isa le) (define-xbpf-isa be) (define-pmacro all-isas () (ISA ebpfle,ebpfbe,xbpfle,xbpfbe)) (define-pmacro xbpf-isas () (ISA xbpfle,xbpfbe)) (define-pmacro (endian-isas x-endian) ((ISA (.sym ebpf x-endian) (.sym xbpf x-endian)))) ;;;; Hardware Hierarchy ;; ;; bpf architecture ;; | ;; bpfbf cpu-family ;; / \ ;; bpf xbpf machine ;; | | ;; bpf-def xbpf-def model (define-cpu (name bpfbf) (comment "Linux kernel eBPF virtual CPU") (insn-endian big) (word-bitsize 64)) (define-mach (name bpf) (comment "Linux eBPF") (cpu bpfbf) (isas ebpfle ebpfbe)) (define-model (name bpf-def) (comment "Linux eBPF default model") (mach bpf) (unit u-exec "execution unit" () 1 ; issue 1 ; done () ; state () ; inputs () ; outputs () ; profile action (default) )) (define-mach (name xbpf) (comment "Experimental BPF") (cpu bpfbf) (isas ebpfle ebpfbe xbpfle xbpfbe)) (define-model (name xbpf-def) (comment "xBPF default model") (mach xbpf) (unit u-exec "execution unit" () 1 ; issue 1 ; done () ; state () ; inputs () ; outputs () ; profile action (default) )) ;;;; Hardware Elements ;; eBPF programs can access 10 general-purpose registers which are ;; 64-bit. (define-hardware (name h-gpr) (comment "General Purpose Registers") (attrs all-isas (MACH bpf xbpf)) (type register DI (16)) (indices keyword "%" ;; XXX the frame pointer fp is read-only, so it should ;; go in a different hardware. (;; ABI names. Take priority when disassembling. (r0 0) (r1 1) (r2 2) (r3 3) (r4 4) (r5 5) (r6 6) (r7 7) (r8 8) (r9 9) (fp 10) ;; Additional names recognized when assembling. (r0 0) (r6 6) (r10 10)))) ;; The program counter. CGEN requires it, even if it is not visible ;; to eBPF programs. (define-hardware (name h-pc) (comment "program counter") (attrs PC PROFILE all-isas) (type pc UDI) (get () (raw-reg h-pc)) (set (newval) (set (raw-reg h-pc) newval))) ;; A 64-bit h-sint to be used by the imm64 operand below. XXX this ;; shouldn't be needed, as h-sint is supposed to be able to hold ;; 64-bit values. However, in practice CGEN limits h-sint to 32 bits ;; in 32-bit hosts. To be fixed in CGEN. (dnh h-sint64 "signed 64-bit integer" (all-isas) (immediate DI) () () ()) ;;;; The Instruction Sets ;;; Fields and Opcodes ;; Convenience macro to shorten the definition of the fields below. (define-pmacro (dwf x-name x-comment x-attrs x-word-offset x-word-length x-start x-length x-mode) "Define a field including its containing word." (define-ifield (name x-name) (comment x-comment) (.splice attrs (.unsplice x-attrs)) (word-offset x-word-offset) (word-length x-word-length) (start x-start) (length x-length) (mode x-mode))) ;; For arithmetic and jump instructions the 8-bit code field is ;; subdivided in: ;; ;; op-code:4 op-src:1 op-class:3 (dwf f-op-code "eBPF opcode code" (all-isas) 0 8 7 4 UINT) (dwf f-op-src "eBPF opcode source" (all-isas) 0 8 3 1 UINT) (dwf f-op-class "eBPF opcode instruction class" (all-isas) 0 8 2 3 UINT) (define-normal-insn-enum insn-op-code-alu "eBPF instruction codes" (all-isas) OP_CODE_ f-op-code (;; Codes for OP_CLASS_ALU and OP_CLASS_ALU64 (ADD #x0) (SUB #x1) (MUL #x2) (DIV #x3) (OR #x4) (AND #x5) (LSH #x6) (RSH #x7) (NEG #x8) (MOD #x9) (XOR #xa) (MOV #xb) (ARSH #xc) (END #xd) ;; xBPF-only: signed div, signed mod (SDIV #xe) (SMOD #xf) ;; Codes for OP_CLASS_JMP (JA #x0) (JEQ #x1) (JGT #x2) (JGE #x3) (JSET #x4) (JNE #x5) (JSGT #x6) (JSGE #x7) (CALL #x8) (EXIT #x9) (JLT #xa) (JLE #xb) (JSLT #xc) (JSLE #xd))) (define-normal-insn-enum insn-op-src "eBPF instruction source" (all-isas) OP_SRC_ f-op-src ;; X => use `src' as source operand. ;; K => use `imm32' as source operand. ((K #b0) (X #b1))) (define-normal-insn-enum insn-op-class "eBPF instruction class" (all-isas) OP_CLASS_ f-op-class ((LD #b000) (LDX #b001) (ST #b010) (STX #b011) (ALU #b100) (JMP #b101) (JMP32 #b110) (ALU64 #b111))) ;; For load/store instructions, the 8-bit code field is subdivided in: ;; ;; op-mode:3 op-size:2 op-class:3 (dwf f-op-mode "eBPF opcode mode" (all-isas) 0 8 7 3 UINT) (dwf f-op-size "eBPF opcode size" (all-isas) 0 8 4 2 UINT) (define-normal-insn-enum insn-op-mode "eBPF load/store instruction modes" (all-isas) OP_MODE_ f-op-mode ((IMM #b000) (ABS #b001) (IND #b010) (MEM #b011) ;; #b100 and #b101 are used in classic BPF only, reserved in eBPF. (XADD #b110))) (define-normal-insn-enum insn-op-size "eBPF load/store instruction sizes" (all-isas) OP_SIZE_ f-op-size ((W #b00) ;; Word: 4 byte (H #b01) ;; Half-word: 2 byte (B #b10) ;; Byte: 1 byte (DW #b11))) ;; Double-word: 8 byte ;; The fields for the source and destination registers are a bit ;; tricky. Due to the bizarre nibble swap between little-endian and ;; big-endian ISAs we need to keep different variants of the fields. ;; ;; Note that f-regs is used in the format spec of instructions that do ;; NOT use registers, where endianness is irrelevant i.e. f-regs is a ;; constant 0 opcode. (dwf f-dstle "eBPF dst register field" ((ISA ebpfle xbpfle)) 8 8 3 4 UINT) (dwf f-srcle "eBPF source register field" ((ISA ebpfle xbpfle)) 8 8 7 4 UINT) (dwf f-dstbe "eBPF dst register field" ((ISA ebpfbe xbpfbe)) 8 8 7 4 UINT) (dwf f-srcbe "eBPF source register field" ((ISA ebpfbe xbpfbe)) 8 8 3 4 UINT) (dwf f-regs "eBPF registers field" (all-isas) 8 8 7 8 UINT) ;; Finally, the fields for the immediates. ;; ;; The 16-bit offsets and 32-bit immediates do not present any special ;; difficulty: we put them in their own instruction word so the ;; byte-endianness will be properly applied. (dwf f-offset16 "eBPF offset field" (all-isas) 16 16 15 16 HI) (dwf f-imm32 "eBPF 32-bit immediate field" (all-isas) 32 32 31 32 INT) ;; For the disjoint 64-bit signed immediate, however, we need to use a ;; multi-ifield. (dwf f-imm64-a "eBPF 64-bit immediate a" (all-isas) 32 32 31 32 UINT) (dwf f-imm64-b "eBPF 64-bit immediate b" (all-isas) 64 32 31 32 UINT) (dwf f-imm64-c "eBPF 64-bit immediate c" (all-isas) 96 32 31 32 UINT) (define-multi-ifield (name f-imm64) (comment "eBPF 64-bit immediate field") (attrs all-isas) (mode DI) (subfields f-imm64-a f-imm64-b f-imm64-c) (insert (sequence () (set (ifield f-imm64-b) (const 0)) (set (ifield f-imm64-c) (srl (ifield f-imm64) (const 32))) (set (ifield f-imm64-a) (and (ifield f-imm64) (const #xffffffff))))) (extract (sequence () (set (ifield f-imm64) (or (sll UDI (zext UDI (ifield f-imm64-c)) (const 32)) (zext UDI (ifield f-imm64-a))))))) ;;; Operands ;; A couple of source and destination register operands are defined ;; for each ISA: ebpfle and ebpfbe. (dno dstle "destination register" ((ISA ebpfle xbpfle)) h-gpr f-dstle) (dno srcle "source register" ((ISA ebpfle xbpfle)) h-gpr f-srcle) (dno dstbe "destination register" ((ISA ebpfbe xbpfbe)) h-gpr f-dstbe) (dno srcbe "source register" ((ISA ebpfbe xbpfbe)) h-gpr f-srcbe) ;; Jump instructions have a 16-bit PC-relative address. ;; CALL instructions have a 32-bit PC-relative address. (dno disp16 "16-bit PC-relative address" (all-isas PCREL-ADDR) h-sint f-offset16) (dno disp32 "32-bit PC-relative address" (all-isas PCREL-ADDR) h-sint f-imm32) ;; Immediate operands in eBPF are signed, and we want the disassembler ;; to print negative values in a sane way. Therefore we use the macro ;; below to register a printer, which is itself defined as a C ;; function in bpf.opc. ;; define-normal-signed-immediate-operand (define-pmacro (dnsio x-name x-comment x-attrs x-type x-index) (define-operand (name x-name) (comment x-comment) (.splice attrs (.unsplice x-attrs)) (type x-type) (index x-index) (handlers (print "immediate")))) (dnsio imm32 "32-bit immediate" (all-isas) h-sint f-imm32) (dnsio offset16 "16-bit offset" (all-isas) h-sint f-offset16) ;; The 64-bit immediate cannot use the default ;; cgen_parse_signed_integer, because it assumes operands are at much ;; 32-bit wide. Use our own. (define-operand (name imm64) (comment "64-bit immediate") (attrs all-isas) (type h-sint64) (index f-imm64) (handlers (parse "imm64") (print "immediate"))) ;; The endle/endbe instructions take an operand to specify the word ;; width in endianness conversions. We use both a parser and printer, ;; which are defined as C functions in bpf.opc. (define-operand (name endsize) (comment "endianness size immediate: 16, 32 or 64") (attrs all-isas) (type h-uint) (index f-imm32) (handlers (parse "endsize") (print "endsize"))) ;;; ALU instructions ;; For each opcode in insn-op-code-alu representing and integer ;; arithmetic instruction (ADD, SUB, etc) we define a bunch of ;; instruction variants: ;; ;; ADD[32]{i,r}le for the little-endian ISA ;; ADD[32]{i,r}be for the big-endian ISA ;; ;; The `i' variants perform `dst OP imm32 -> dst' operations. ;; The `r' variants perform `dst OP src -> dst' operations. ;; ;; The variants with 32 in their name are of ALU class. Otherwise ;; they are ALU64 class. (define-pmacro (define-alu-insn-un x-basename x-suffix x-op-class x-op-code x-endian x-mode x-semop) (dni (.sym x-basename x-suffix x-endian) (.str x-basename x-suffix) (endian-isas x-endian) (.str x-basename x-suffix " $dst" x-endian) (+ (f-imm32 0) (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian) x-op-class OP_SRC_K x-op-code) (set x-mode (.sym dst x-endian) (x-semop x-mode (.sym dst x-endian))) ())) (define-pmacro (define-alu-insn-bin x-basename x-suffix x-op-class x-op-code x-endian x-mode x-semop x-isas) (begin ;; dst = dst OP immediate (dni (.sym x-basename x-suffix "i" x-endian) (.str x-basename x-suffix " immediate") (.splice (.unsplice x-isas)) (.str x-basename x-suffix " $dst" x-endian ",$imm32") (+ imm32 (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian) x-op-class OP_SRC_K x-op-code) (set x-mode (.sym dst x-endian) (x-semop x-mode (.sym dst x-endian) imm32)) ()) ;; dst = dst OP src (dni (.sym x-basename x-suffix "r" x-endian) (.str x-basename x-suffix " register") (.splice (.unsplice x-isas)) (.str x-basename x-suffix " $dst" x-endian ",$src" x-endian) (+ (f-imm32 0) (f-offset16 0) (.sym src x-endian) (.sym dst x-endian) x-op-class OP_SRC_X x-op-code) (set x-mode (.sym dst x-endian) (x-semop x-mode (.sym dst x-endian) (.sym src x-endian))) ()))) (define-pmacro (define-alu-insn-mov x-basename x-suffix x-op-class x-op-code x-endian x-mode) (begin (dni (.sym mov x-suffix "i" x-endian) (.str mov x-suffix " immediate") (endian-isas x-endian) (.str x-basename x-suffix " $dst" x-endian ",$imm32") (+ imm32 (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian) x-op-class OP_SRC_K x-op-code) (set x-mode (.sym dst x-endian) imm32) ()) (dni (.sym mov x-suffix "r" x-endian) (.str mov x-suffix " register") (endian-isas x-endian) (.str x-basename x-suffix " $dst" x-endian ",$src" x-endian) (+ (f-imm32 0) (f-offset16 0) (.sym src x-endian) (.sym dst x-endian) x-op-class OP_SRC_X x-op-code) (set x-mode (.sym dst x-endian) (.sym src x-endian)) ()))) ;; Unary ALU instructions (neg) (define-pmacro (daiu x-basename x-op-code x-endian x-semop) (begin (define-alu-insn-un x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI x-semop) (define-alu-insn-un x-basename "32" OP_CLASS_ALU x-op-code x-endian USI x-semop))) ;; Binary ALU instructions (all the others) ;; For ALU32: DST = (u32) DST OP (u32) SRC is correct semantics (define-pmacro (daib x-basename x-op-code x-endian x-semop x-isas) (begin (define-alu-insn-bin x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI x-semop x-isas) (define-alu-insn-bin x-basename "32" OP_CLASS_ALU x-op-code x-endian USI x-semop x-isas))) ;; Move ALU instructions (mov) (define-pmacro (daim x-basename x-op-code x-endian) (begin (define-alu-insn-mov x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI) (define-alu-insn-mov x-basename "32" OP_CLASS_ALU x-op-code x-endian USI))) (define-pmacro (define-alu-instructions x-endian) (begin (daib add OP_CODE_ADD x-endian add (endian-isas x-endian)) (daib sub OP_CODE_SUB x-endian sub (endian-isas x-endian)) (daib mul OP_CODE_MUL x-endian mul (endian-isas x-endian)) (daib div OP_CODE_DIV x-endian udiv (endian-isas x-endian)) (daib or OP_CODE_OR x-endian or (endian-isas x-endian)) (daib and OP_CODE_AND x-endian and (endian-isas x-endian)) (daib lsh OP_CODE_LSH x-endian sll (endian-isas x-endian)) (daib rsh OP_CODE_RSH x-endian srl (endian-isas x-endian)) (daib mod OP_CODE_MOD x-endian umod (endian-isas x-endian)) (daib xor OP_CODE_XOR x-endian xor (endian-isas x-endian)) (daib arsh OP_CODE_ARSH x-endian sra (endian-isas x-endian)) (daib sdiv OP_CODE_SDIV x-endian div ((ISA (.sym xbpf x-endian)))) (daib smod OP_CODE_SMOD x-endian mod ((ISA (.sym xbpf x-endian)))) (daiu neg OP_CODE_NEG x-endian neg) (daim mov OP_CODE_MOV x-endian))) (define-alu-instructions le) (define-alu-instructions be) ;;; Endianness conversion instructions ;; The endianness conversion instructions come in several variants: ;; ;; END{le,be}le for the little-endian ISA ;; END{le,be}be for the big-endian ISA ;; ;; Please do not be confused by the repeated `be' and `le' here. Each ;; ISA has both endle and endbe instructions. It is the disposition ;; of the source and destination register fields that change between ;; ISAs, not the semantics of the instructions themselves (see section ;; "The ISAs" above in this very file.) (define-pmacro (define-endian-insn x-suffix x-op-src x-endian) (dni (.sym "end" x-suffix x-endian) (.str "end" x-suffix " register") (endian-isas x-endian) (.str "end" x-suffix " $dst" x-endian ",$endsize") (+ (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian) endsize OP_CLASS_ALU x-op-src OP_CODE_END) (set (.sym dst x-endian) (c-call DI (.str "bpfbf_end" x-suffix) (.sym dst x-endian) endsize)) ())) (define-endian-insn "le" OP_SRC_K le) (define-endian-insn "be" OP_SRC_X le) (define-endian-insn "le" OP_SRC_K be) (define-endian-insn "be" OP_SRC_X be) ;;; Load/Store instructions ;; The lddw instruction takes a 64-bit immediate as an operand. Since ;; this instruction also takes a `dst' operand, we need to define a ;; variant for each ISA: ;; ;; LDDWle for the little-endian ISA ;; LDDWbe for the big-endian ISA (define-pmacro (define-lddw x-endian) (dni (.sym lddw x-endian) (.str "lddw" x-endian) (endian-isas x-endian) (.str "lddw $dst" x-endian ",$imm64") (+ imm64 (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian) OP_CLASS_LD OP_SIZE_DW OP_MODE_IMM) (set DI (.sym dst x-endian) imm64) ())) (define-lddw le) (define-lddw be) ;; The absolute load instructions are non-generic loads designed to be ;; used in socket filters. They come in several variants: ;; ;; LDABS{w,h,b,dw} (define-pmacro (dlabs x-suffix x-size x-smode) (dni (.sym "ldabs" x-suffix) (.str "ldabs" x-suffix) (all-isas) (.str "ldabs" x-suffix " $imm32") (+ imm32 (f-offset16 0) (f-regs 0) OP_CLASS_LD OP_MODE_ABS (.sym OP_SIZE_ x-size)) (set x-smode (reg x-smode h-gpr 0) (mem x-smode (add DI (mem DI (add DI (reg DI h-gpr 6) ;; Pointer to struct sk_buff (c-call "bpfbf_skb_data_offset"))) imm32))) ;; XXX this clobbers R1-R5 ())) (dlabs "w" W SI) (dlabs "h" H HI) (dlabs "b" B QI) (dlabs "dw" DW DI) ;; The indirect load instructions are non-generic loads designed to be ;; used in socket filters. They come in several variants: ;; ;; LDIND{w,h,b,dw}le for the little-endian ISA ;; LDIND[w,h,b,dw}be for the big-endian ISA (define-pmacro (dlind x-suffix x-size x-endian x-smode) (dni (.sym "ldind" x-suffix x-endian) (.str "ldind" x-suffix) (endian-isas x-endian) (.str "ldind" x-suffix " $src" x-endian ",$imm32") (+ imm32 (f-offset16 0) ((.sym f-dst x-endian) 0) (.sym src x-endian) OP_CLASS_LD OP_MODE_IND (.sym OP_SIZE_ x-size)) (set x-smode (reg x-smode h-gpr 0) (mem x-smode (add DI (mem DI (add DI (reg DI h-gpr 6) ;; Pointer to struct sk_buff (c-call "bpfbf_skb_data_offset"))) (add DI (.sym src x-endian) imm32)))) ;; XXX this clobbers R1-R5 ())) (define-pmacro (define-ldind x-endian) (begin (dlind "w" W x-endian SI) (dlind "h" H x-endian HI) (dlind "b" B x-endian QI) (dlind "dw" DW x-endian DI))) (define-ldind le) (define-ldind be) ;; Generic load and store instructions are provided for several word ;; sizes. They come in several variants: ;; ;; LDX{b,h,w,dw}le, STX{b,h,w,dw}le for the little-endian ISA ;; ;; LDX{b,h,w,dw}be, STX{b,h,w,dw}be for the big-endian ISA ;; ;; Loads operate on [$SRC+-OFFSET] -> $DST ;; Stores operate on $SRC -> [$DST+-OFFSET] (define-pmacro (dxli x-basename x-suffix x-size x-endian x-mode) (dni (.sym x-basename x-suffix x-endian) (.str x-basename x-suffix) (endian-isas x-endian) (.str x-basename x-suffix " $dst" x-endian ",[$src" x-endian "+$offset16]") (+ (f-imm32 0) offset16 (.sym src x-endian) (.sym dst x-endian) OP_CLASS_LDX (.sym OP_SIZE_ x-size) OP_MODE_MEM) (set x-mode (.sym dst x-endian) (mem x-mode (add DI (.sym src x-endian) offset16))) ())) (define-pmacro (dxsi x-basename x-suffix x-size x-endian x-mode) (dni (.sym x-basename x-suffix x-endian) (.str x-basename x-suffix) (endian-isas x-endian) (.str x-basename x-suffix " [$dst" x-endian "+$offset16],$src" x-endian) (+ (f-imm32 0) offset16 (.sym src x-endian) (.sym dst x-endian) OP_CLASS_STX (.sym OP_SIZE_ x-size) OP_MODE_MEM) (set x-mode (mem x-mode (add DI (.sym dst x-endian) offset16)) (.sym src x-endian)) ;; XXX address is section-relative ())) (define-pmacro (define-ldstx-insns x-endian) (begin (dxli "ldx" "w" W x-endian SI) (dxli "ldx" "h" H x-endian HI) (dxli "ldx" "b" B x-endian QI) (dxli "ldx" "dw" DW x-endian DI) (dxsi "stx" "w" W x-endian SI) (dxsi "stx" "h" H x-endian HI) (dxsi "stx" "b" B x-endian QI) (dxsi "stx" "dw" DW x-endian DI))) (define-ldstx-insns le) (define-ldstx-insns be) ;; Generic store instructions of the form IMM32 -> [$DST+OFFSET] are ;; provided in several variants: ;; ;; ST{b,h,w,dw}le for the little-endian ISA ;; ST{b,h,w,dw}be for the big-endian ISA (define-pmacro (dsti x-suffix x-size x-endian x-mode) (dni (.sym "st" x-suffix x-endian) (.str "st" x-suffix) (endian-isas x-endian) (.str "st" x-suffix " [$dst" x-endian "+$offset16],$imm32") (+ imm32 offset16 ((.sym f-src x-endian) 0) (.sym dst x-endian) OP_CLASS_ST (.sym OP_SIZE_ x-size) OP_MODE_MEM) (set x-mode (mem x-mode (add DI (.sym dst x-endian) offset16)) imm32) ;; XXX address is section-relative ())) (define-pmacro (define-st-insns x-endian) (begin (dsti "b" B x-endian QI) (dsti "h" H x-endian HI) (dsti "w" W x-endian SI) (dsti "dw" DW x-endian DI))) (define-st-insns le) (define-st-insns be) ;;; Jump instructions ;; Compare-and-jump instructions, on the other hand, make use of ;; registers. Therefore, we need to define several variants in both ;; ISAs: ;; ;; J{eq,gt,ge,lt,le,set,ne,sgt,sge,slt,sle}[32]{i,r}le for the ;; little-endian ISA. ;; J{eq,gt,ge,lt,le,set,ne.sgt,sge,slt,sle}[32]{i,r}be for the ;; big-endian ISA. (define-pmacro (define-cond-jump-insn x-cond x-suffix x-op-class x-op-code x-endian x-mode x-semop) (begin (dni (.sym j x-cond x-suffix i x-endian) (.str j x-cond x-suffix " i") (endian-isas x-endian) (.str "j" x-cond x-suffix " $dst" x-endian ",$imm32,$disp16") (+ imm32 disp16 ((.sym f-src x-endian) 0) (.sym dst x-endian) x-op-class OP_SRC_K (.sym OP_CODE_ x-op-code)) (if VOID (x-semop x-mode (.sym dst x-endian) imm32) (set DI (reg DI h-pc) (add DI (reg DI h-pc) (mul DI (add HI disp16 1) 8)))) ()) (dni (.sym j x-cond x-suffix r x-endian) (.str j x-cond x-suffix " r") (endian-isas x-endian) (.str "j" x-cond x-suffix " $dst" x-endian ",$src" x-endian ",$disp16") (+ (f-imm32 0) disp16 (.sym src x-endian) (.sym dst x-endian) x-op-class OP_SRC_X (.sym OP_CODE_ x-op-code)) (if VOID (x-semop x-mode (.sym dst x-endian) (.sym src x-endian)) (set DI (reg DI h-pc) (add DI (reg DI h-pc) (mul DI (add HI disp16 1) 8)))) ()))) (define-pmacro (dcji x-cond x-op-code x-endian x-semop) (begin (define-cond-jump-insn x-cond "" OP_CLASS_JMP x-op-code x-endian DI x-semop) (define-cond-jump-insn x-cond "32" OP_CLASS_JMP32 x-op-code x-endian SI x-semop ))) (define-pmacro (define-condjump-insns x-endian) (begin (dcji "eq" JEQ x-endian eq) (dcji "gt" JGT x-endian gtu) (dcji "ge" JGE x-endian geu) (dcji "lt" JLT x-endian ltu) (dcji "le" JLE x-endian leu) (dcji "set" JSET x-endian and) (dcji "ne" JNE x-endian ne) (dcji "sgt" JSGT x-endian gt) (dcji "sge" JSGE x-endian ge) (dcji "slt" JSLT x-endian lt) (dcji "sle" JSLE x-endian le))) (define-condjump-insns le) (define-condjump-insns be) ;; The `call' instruction doesn't make use of registers, but the ;; semantic routine should have access to the src register in order to ;; properly interpret the meaning of disp32. Therefore we need one ;; version per ISA. (define-pmacro (define-call-insn x-endian) (dni (.sym call x-endian) "call" (endian-isas x-endian) "call $disp32" (+ disp32 (f-offset16 0) (.sym src x-endian) ((.sym f-dst x-endian) 0) OP_CLASS_JMP OP_SRC_K OP_CODE_CALL) (c-call VOID "bpfbf_call" disp32 (ifield (.sym f-src x-endian))) ())) (define-call-insn le) (define-call-insn be) (define-pmacro (define-callr-insn x-endian) (dni (.sym callr x-endian) "callr" ((ISA (.sym xbpf x-endian))) (.str "call $dst" x-endian) (+ (f-imm32 0) (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian) OP_CLASS_JMP OP_SRC_X OP_CODE_CALL) (c-call VOID "bpfbf_callr" (ifield (.sym f-dst x-endian))) ())) (define-callr-insn le) (define-callr-insn be) ;; The jump-always and `exit' instructions dont make use of either ;; source nor destination registers, so only one variant per ;; instruction is defined. (dni ja "ja" (all-isas) "ja $disp16" (+ (f-imm32 0) disp16 (f-regs 0) OP_CLASS_JMP OP_SRC_K OP_CODE_JA) (set DI (reg DI h-pc) (add DI (reg DI h-pc) (mul DI (add HI disp16 1) 8))) ()) (dni "exit" "exit" (all-isas) "exit" (+ (f-imm32 0) (f-offset16 0) (f-regs 0) OP_CLASS_JMP (f-op-src 0) OP_CODE_EXIT) (c-call VOID "bpfbf_exit") ()) ;;; Atomic instructions ;; The atomic exchange-and-add instructions come in two flavors: one ;; for swapping 64-bit quantities and another for 32-bit quantities. (define-pmacro (sem-exchange-and-add x-endian x-mode) (sequence VOID ((x-mode tmp)) ;; XXX acquire lock in simulator... as a hardware element? (set x-mode tmp (mem x-mode (add DI (.sym dst x-endian) offset16))) (set x-mode (mem x-mode (add DI (.sym dst x-endian) offset16)) (add x-mode tmp (.sym src x-endian))))) (define-pmacro (define-atomic-insns x-endian) (begin (dni (.str "xadddw" x-endian) "xadddw" (endian-isas x-endian) (.str "xadddw [$dst" x-endian "+$offset16],$src" x-endian) (+ (f-imm32 0) (.sym src x-endian) (.sym dst x-endian) offset16 OP_MODE_XADD OP_SIZE_DW OP_CLASS_STX) (sem-exchange-and-add x-endian DI) ()) (dni (.str "xaddw" x-endian) "xaddw" (endian-isas x-endian) (.str "xaddw [$dst" x-endian "+$offset16],$src" x-endian) (+ (f-imm32 0) (.sym src x-endian) (.sym dst x-endian) offset16 OP_MODE_XADD OP_SIZE_W OP_CLASS_STX) (sem-exchange-and-add x-endian SI) ()))) (define-atomic-insns le) (define-atomic-insns be) ;;; Breakpoint instruction ;; The brkpt instruction is used by the BPF simulator and it doesn't ;; really belong to the eBPF instruction set. (dni "brkpt" "brkpt" (all-isas) "brkpt" (+ (f-imm32 0) (f-offset16 0) (f-regs 0) OP_CLASS_ALU OP_SRC_X OP_CODE_NEG) (c-call VOID "bpfbf_breakpoint") ())