/* SPU specific support for 32-bit ELF Copyright 2006, 2007, 2008 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "libiberty.h" #include "bfd.h" #include "bfdlink.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/spu.h" #include "elf32-spu.h" /* We use RELA style relocs. Don't define USE_REL. */ static bfd_reloc_status_type spu_elf_rel9 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); /* Values of type 'enum elf_spu_reloc_type' are used to index this array, so it must be declared in the order of that type. */ static reloc_howto_type elf_howto_table[] = { HOWTO (R_SPU_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "SPU_NONE", FALSE, 0, 0x00000000, FALSE), HOWTO (R_SPU_ADDR10, 4, 2, 10, FALSE, 14, complain_overflow_bitfield, bfd_elf_generic_reloc, "SPU_ADDR10", FALSE, 0, 0x00ffc000, FALSE), HOWTO (R_SPU_ADDR16, 2, 2, 16, FALSE, 7, complain_overflow_bitfield, bfd_elf_generic_reloc, "SPU_ADDR16", FALSE, 0, 0x007fff80, FALSE), HOWTO (R_SPU_ADDR16_HI, 16, 2, 16, FALSE, 7, complain_overflow_bitfield, bfd_elf_generic_reloc, "SPU_ADDR16_HI", FALSE, 0, 0x007fff80, FALSE), HOWTO (R_SPU_ADDR16_LO, 0, 2, 16, FALSE, 7, complain_overflow_dont, bfd_elf_generic_reloc, "SPU_ADDR16_LO", FALSE, 0, 0x007fff80, FALSE), HOWTO (R_SPU_ADDR18, 0, 2, 18, FALSE, 7, complain_overflow_bitfield, bfd_elf_generic_reloc, "SPU_ADDR18", FALSE, 0, 0x01ffff80, FALSE), HOWTO (R_SPU_ADDR32, 0, 2, 32, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "SPU_ADDR32", FALSE, 0, 0xffffffff, FALSE), HOWTO (R_SPU_REL16, 2, 2, 16, TRUE, 7, complain_overflow_bitfield, bfd_elf_generic_reloc, "SPU_REL16", FALSE, 0, 0x007fff80, TRUE), HOWTO (R_SPU_ADDR7, 0, 2, 7, FALSE, 14, complain_overflow_dont, bfd_elf_generic_reloc, "SPU_ADDR7", FALSE, 0, 0x001fc000, FALSE), HOWTO (R_SPU_REL9, 2, 2, 9, TRUE, 0, complain_overflow_signed, spu_elf_rel9, "SPU_REL9", FALSE, 0, 0x0180007f, TRUE), HOWTO (R_SPU_REL9I, 2, 2, 9, TRUE, 0, complain_overflow_signed, spu_elf_rel9, "SPU_REL9I", FALSE, 0, 0x0000c07f, TRUE), HOWTO (R_SPU_ADDR10I, 0, 2, 10, FALSE, 14, complain_overflow_signed, bfd_elf_generic_reloc, "SPU_ADDR10I", FALSE, 0, 0x00ffc000, FALSE), HOWTO (R_SPU_ADDR16I, 0, 2, 16, FALSE, 7, complain_overflow_signed, bfd_elf_generic_reloc, "SPU_ADDR16I", FALSE, 0, 0x007fff80, FALSE), HOWTO (R_SPU_REL32, 0, 2, 32, TRUE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "SPU_REL32", FALSE, 0, 0xffffffff, TRUE), HOWTO (R_SPU_ADDR16X, 0, 2, 16, FALSE, 7, complain_overflow_bitfield, bfd_elf_generic_reloc, "SPU_ADDR16X", FALSE, 0, 0x007fff80, FALSE), HOWTO (R_SPU_PPU32, 0, 2, 32, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "SPU_PPU32", FALSE, 0, 0xffffffff, FALSE), HOWTO (R_SPU_PPU64, 0, 4, 64, FALSE, 0, complain_overflow_dont, bfd_elf_generic_reloc, "SPU_PPU64", FALSE, 0, -1, FALSE), }; static struct bfd_elf_special_section const spu_elf_special_sections[] = { { "._ea", 4, 0, SHT_PROGBITS, SHF_WRITE }, { ".toe", 4, 0, SHT_NOBITS, SHF_ALLOC }, { NULL, 0, 0, 0, 0 } }; static enum elf_spu_reloc_type spu_elf_bfd_to_reloc_type (bfd_reloc_code_real_type code) { switch (code) { default: return R_SPU_NONE; case BFD_RELOC_SPU_IMM10W: return R_SPU_ADDR10; case BFD_RELOC_SPU_IMM16W: return R_SPU_ADDR16; case BFD_RELOC_SPU_LO16: return R_SPU_ADDR16_LO; case BFD_RELOC_SPU_HI16: return R_SPU_ADDR16_HI; case BFD_RELOC_SPU_IMM18: return R_SPU_ADDR18; case BFD_RELOC_SPU_PCREL16: return R_SPU_REL16; case BFD_RELOC_SPU_IMM7: return R_SPU_ADDR7; case BFD_RELOC_SPU_IMM8: return R_SPU_NONE; case BFD_RELOC_SPU_PCREL9a: return R_SPU_REL9; case BFD_RELOC_SPU_PCREL9b: return R_SPU_REL9I; case BFD_RELOC_SPU_IMM10: return R_SPU_ADDR10I; case BFD_RELOC_SPU_IMM16: return R_SPU_ADDR16I; case BFD_RELOC_32: return R_SPU_ADDR32; case BFD_RELOC_32_PCREL: return R_SPU_REL32; case BFD_RELOC_SPU_PPU32: return R_SPU_PPU32; case BFD_RELOC_SPU_PPU64: return R_SPU_PPU64; } } static void spu_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, Elf_Internal_Rela *dst) { enum elf_spu_reloc_type r_type; r_type = (enum elf_spu_reloc_type) ELF32_R_TYPE (dst->r_info); BFD_ASSERT (r_type < R_SPU_max); cache_ptr->howto = &elf_howto_table[(int) r_type]; } static reloc_howto_type * spu_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { enum elf_spu_reloc_type r_type = spu_elf_bfd_to_reloc_type (code); if (r_type == R_SPU_NONE) return NULL; return elf_howto_table + r_type; } static reloc_howto_type * spu_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) if (elf_howto_table[i].name != NULL && strcasecmp (elf_howto_table[i].name, r_name) == 0) return &elf_howto_table[i]; return NULL; } /* Apply R_SPU_REL9 and R_SPU_REL9I relocs. */ static bfd_reloc_status_type spu_elf_rel9 (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message) { bfd_size_type octets; bfd_vma val; long insn; /* If this is a relocatable link (output_bfd test tells us), just call the generic function. Any adjustment will be done at final link time. */ if (output_bfd != NULL) return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) return bfd_reloc_outofrange; octets = reloc_entry->address * bfd_octets_per_byte (abfd); /* Get symbol value. */ val = 0; if (!bfd_is_com_section (symbol->section)) val = symbol->value; if (symbol->section->output_section) val += symbol->section->output_section->vma; val += reloc_entry->addend; /* Make it pc-relative. */ val -= input_section->output_section->vma + input_section->output_offset; val >>= 2; if (val + 256 >= 512) return bfd_reloc_overflow; insn = bfd_get_32 (abfd, (bfd_byte *) data + octets); /* Move two high bits of value to REL9I and REL9 position. The mask will take care of selecting the right field. */ val = (val & 0x7f) | ((val & 0x180) << 7) | ((val & 0x180) << 16); insn &= ~reloc_entry->howto->dst_mask; insn |= val & reloc_entry->howto->dst_mask; bfd_put_32 (abfd, insn, (bfd_byte *) data + octets); return bfd_reloc_ok; } static bfd_boolean spu_elf_new_section_hook (bfd *abfd, asection *sec) { if (!sec->used_by_bfd) { struct _spu_elf_section_data *sdata; sdata = bfd_zalloc (abfd, sizeof (*sdata)); if (sdata == NULL) return FALSE; sec->used_by_bfd = sdata; } return _bfd_elf_new_section_hook (abfd, sec); } /* Set up overlay info for executables. */ static bfd_boolean spu_elf_object_p (bfd *abfd) { if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) { unsigned int i, num_ovl, num_buf; Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr; Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); Elf_Internal_Phdr *last_phdr = NULL; for (num_buf = 0, num_ovl = 0, i = 0; i < ehdr->e_phnum; i++, phdr++) if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_OVERLAY) != 0) { unsigned int j; ++num_ovl; if (last_phdr == NULL || ((last_phdr->p_vaddr ^ phdr->p_vaddr) & 0x3ffff) != 0) ++num_buf; last_phdr = phdr; for (j = 1; j < elf_numsections (abfd); j++) { Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[j]; if (ELF_IS_SECTION_IN_SEGMENT_MEMORY (shdr, phdr)) { asection *sec = shdr->bfd_section; spu_elf_section_data (sec)->u.o.ovl_index = num_ovl; spu_elf_section_data (sec)->u.o.ovl_buf = num_buf; } } } } return TRUE; } /* Specially mark defined symbols named _EAR_* with BSF_KEEP so that strip --strip-unneeded will not remove them. */ static void spu_elf_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *sym) { if (sym->name != NULL && sym->section != bfd_abs_section_ptr && strncmp (sym->name, "_EAR_", 5) == 0) sym->flags |= BSF_KEEP; } /* SPU ELF linker hash table. */ struct spu_link_hash_table { struct elf_link_hash_table elf; /* Shortcuts to overlay sections. */ asection *ovtab; asection *toe; asection **ovl_sec; /* Count of stubs in each overlay section. */ unsigned int *stub_count; /* The stub section for each overlay section. */ asection **stub_sec; struct elf_link_hash_entry *ovly_load; struct elf_link_hash_entry *ovly_return; unsigned long ovly_load_r_symndx; /* Number of overlay buffers. */ unsigned int num_buf; /* Total number of overlays. */ unsigned int num_overlays; /* How much memory we have. */ unsigned int local_store; /* Local store --auto-overlay should reserve for non-overlay functions and data. */ unsigned int overlay_fixed; /* Local store --auto-overlay should reserve for stack and heap. */ unsigned int reserved; /* If reserved is not specified, stack analysis will calculate a value for the stack. This parameter adjusts that value to allow for negative sp access (the ABI says 2000 bytes below sp are valid, and the overlay manager uses some of this area). */ int extra_stack_space; /* Count of overlay stubs needed in non-overlay area. */ unsigned int non_ovly_stub; /* Stash various callbacks for --auto-overlay. */ void (*spu_elf_load_ovl_mgr) (void); FILE *(*spu_elf_open_overlay_script) (void); void (*spu_elf_relink) (void); /* Bit 0 set if --auto-overlay. Bit 1 set if --auto-relink. Bit 2 set if --overlay-rodata. */ unsigned int auto_overlay : 3; #define AUTO_OVERLAY 1 #define AUTO_RELINK 2 #define OVERLAY_RODATA 4 /* Set if we should emit symbols for stubs. */ unsigned int emit_stub_syms:1; /* Set if we want stubs on calls out of overlay regions to non-overlay regions. */ unsigned int non_overlay_stubs : 1; /* Set on error. */ unsigned int stub_err : 1; /* Set if stack size analysis should be done. */ unsigned int stack_analysis : 1; /* Set if __stack_* syms will be emitted. */ unsigned int emit_stack_syms : 1; }; /* Hijack the generic got fields for overlay stub accounting. */ struct got_entry { struct got_entry *next; unsigned int ovl; bfd_vma addend; bfd_vma stub_addr; }; #define spu_hash_table(p) \ ((struct spu_link_hash_table *) ((p)->hash)) /* Create a spu ELF linker hash table. */ static struct bfd_link_hash_table * spu_elf_link_hash_table_create (bfd *abfd) { struct spu_link_hash_table *htab; htab = bfd_malloc (sizeof (*htab)); if (htab == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, _bfd_elf_link_hash_newfunc, sizeof (struct elf_link_hash_entry))) { free (htab); return NULL; } memset (&htab->ovtab, 0, sizeof (*htab) - offsetof (struct spu_link_hash_table, ovtab)); htab->elf.init_got_refcount.refcount = 0; htab->elf.init_got_refcount.glist = NULL; htab->elf.init_got_offset.offset = 0; htab->elf.init_got_offset.glist = NULL; return &htab->elf.root; } /* Find the symbol for the given R_SYMNDX in IBFD and set *HP and *SYMP to (hash, NULL) for global symbols, and (NULL, sym) for locals. Set *SYMSECP to the symbol's section. *LOCSYMSP caches local syms. */ static bfd_boolean get_sym_h (struct elf_link_hash_entry **hp, Elf_Internal_Sym **symp, asection **symsecp, Elf_Internal_Sym **locsymsp, unsigned long r_symndx, bfd *ibfd) { Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; if (r_symndx >= symtab_hdr->sh_info) { struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd); struct elf_link_hash_entry *h; h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; if (hp != NULL) *hp = h; if (symp != NULL) *symp = NULL; if (symsecp != NULL) { asection *symsec = NULL; if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) symsec = h->root.u.def.section; *symsecp = symsec; } } else { Elf_Internal_Sym *sym; Elf_Internal_Sym *locsyms = *locsymsp; if (locsyms == NULL) { locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; if (locsyms == NULL) locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (locsyms == NULL) return FALSE; *locsymsp = locsyms; } sym = locsyms + r_symndx; if (hp != NULL) *hp = NULL; if (symp != NULL) *symp = sym; if (symsecp != NULL) *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx); } return TRUE; } /* Create the note section if not already present. This is done early so that the linker maps the sections to the right place in the output. */ bfd_boolean spu_elf_create_sections (struct bfd_link_info *info, int stack_analysis, int emit_stack_syms) { bfd *ibfd; struct spu_link_hash_table *htab = spu_hash_table (info); /* Stash some options away where we can get at them later. */ htab->stack_analysis = stack_analysis; htab->emit_stack_syms = emit_stack_syms; for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) if (bfd_get_section_by_name (ibfd, SPU_PTNOTE_SPUNAME) != NULL) break; if (ibfd == NULL) { /* Make SPU_PTNOTE_SPUNAME section. */ asection *s; size_t name_len; size_t size; bfd_byte *data; flagword flags; ibfd = info->input_bfds; flags = SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS | SEC_IN_MEMORY; s = bfd_make_section_anyway_with_flags (ibfd, SPU_PTNOTE_SPUNAME, flags); if (s == NULL || !bfd_set_section_alignment (ibfd, s, 4)) return FALSE; name_len = strlen (bfd_get_filename (info->output_bfd)) + 1; size = 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4); size += (name_len + 3) & -4; if (!bfd_set_section_size (ibfd, s, size)) return FALSE; data = bfd_zalloc (ibfd, size); if (data == NULL) return FALSE; bfd_put_32 (ibfd, sizeof (SPU_PLUGIN_NAME), data + 0); bfd_put_32 (ibfd, name_len, data + 4); bfd_put_32 (ibfd, 1, data + 8); memcpy (data + 12, SPU_PLUGIN_NAME, sizeof (SPU_PLUGIN_NAME)); memcpy (data + 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4), bfd_get_filename (info->output_bfd), name_len); s->contents = data; } return TRUE; } /* qsort predicate to sort sections by vma. */ static int sort_sections (const void *a, const void *b) { const asection *const *s1 = a; const asection *const *s2 = b; bfd_signed_vma delta = (*s1)->vma - (*s2)->vma; if (delta != 0) return delta < 0 ? -1 : 1; return (*s1)->index - (*s2)->index; } /* Identify overlays in the output bfd, and number them. */ bfd_boolean spu_elf_find_overlays (struct bfd_link_info *info) { struct spu_link_hash_table *htab = spu_hash_table (info); asection **alloc_sec; unsigned int i, n, ovl_index, num_buf; asection *s; bfd_vma ovl_end; if (info->output_bfd->section_count < 2) return FALSE; alloc_sec = bfd_malloc (info->output_bfd->section_count * sizeof (*alloc_sec)); if (alloc_sec == NULL) return FALSE; /* Pick out all the alloced sections. */ for (n = 0, s = info->output_bfd->sections; s != NULL; s = s->next) if ((s->flags & SEC_ALLOC) != 0 && (s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != SEC_THREAD_LOCAL && s->size != 0) alloc_sec[n++] = s; if (n == 0) { free (alloc_sec); return FALSE; } /* Sort them by vma. */ qsort (alloc_sec, n, sizeof (*alloc_sec), sort_sections); /* Look for overlapping vmas. Any with overlap must be overlays. Count them. Also count the number of overlay regions. */ ovl_end = alloc_sec[0]->vma + alloc_sec[0]->size; for (ovl_index = 0, num_buf = 0, i = 1; i < n; i++) { s = alloc_sec[i]; if (s->vma < ovl_end) { asection *s0 = alloc_sec[i - 1]; if (spu_elf_section_data (s0)->u.o.ovl_index == 0) { alloc_sec[ovl_index] = s0; spu_elf_section_data (s0)->u.o.ovl_index = ++ovl_index; spu_elf_section_data (s0)->u.o.ovl_buf = ++num_buf; } alloc_sec[ovl_index] = s; spu_elf_section_data (s)->u.o.ovl_index = ++ovl_index; spu_elf_section_data (s)->u.o.ovl_buf = num_buf; if (s0->vma != s->vma) { info->callbacks->einfo (_("%X%P: overlay sections %A and %A " "do not start at the same address.\n"), s0, s); return FALSE; } if (ovl_end < s->vma + s->size) ovl_end = s->vma + s->size; } else ovl_end = s->vma + s->size; } htab->num_overlays = ovl_index; htab->num_buf = num_buf; htab->ovl_sec = alloc_sec; htab->ovly_load = elf_link_hash_lookup (&htab->elf, "__ovly_load", FALSE, FALSE, FALSE); htab->ovly_return = elf_link_hash_lookup (&htab->elf, "__ovly_return", FALSE, FALSE, FALSE); return ovl_index != 0; } /* Support two sizes of overlay stubs, a slower more compact stub of two intructions, and a faster stub of four instructions. */ #ifndef OVL_STUB_SIZE /* Default to faster. */ #define OVL_STUB_SIZE 16 /* #define OVL_STUB_SIZE 8 */ #endif #define BRSL 0x33000000 #define BR 0x32000000 #define NOP 0x40200000 #define LNOP 0x00200000 #define ILA 0x42000000 /* Return true for all relative and absolute branch instructions. bra 00110000 0.. brasl 00110001 0.. br 00110010 0.. brsl 00110011 0.. brz 00100000 0.. brnz 00100001 0.. brhz 00100010 0.. brhnz 00100011 0.. */ static bfd_boolean is_branch (const unsigned char *insn) { return (insn[0] & 0xec) == 0x20 && (insn[1] & 0x80) == 0; } /* Return true for all indirect branch instructions. bi 00110101 000 bisl 00110101 001 iret 00110101 010 bisled 00110101 011 biz 00100101 000 binz 00100101 001 bihz 00100101 010 bihnz 00100101 011 */ static bfd_boolean is_indirect_branch (const unsigned char *insn) { return (insn[0] & 0xef) == 0x25 && (insn[1] & 0x80) == 0; } /* Return true for branch hint instructions. hbra 0001000.. hbrr 0001001.. */ static bfd_boolean is_hint (const unsigned char *insn) { return (insn[0] & 0xfc) == 0x10; } /* True if INPUT_SECTION might need overlay stubs. */ static bfd_boolean maybe_needs_stubs (asection *input_section, bfd *output_bfd) { /* No stubs for debug sections and suchlike. */ if ((input_section->flags & SEC_ALLOC) == 0) return FALSE; /* No stubs for link-once sections that will be discarded. */ if (input_section->output_section == NULL || input_section->output_section->owner != output_bfd) return FALSE; /* Don't create stubs for .eh_frame references. */ if (strcmp (input_section->name, ".eh_frame") == 0) return FALSE; return TRUE; } enum _stub_type { no_stub, ovl_stub, nonovl_stub, stub_error }; /* Return non-zero if this reloc symbol should go via an overlay stub. Return 2 if the stub must be in non-overlay area. */ static enum _stub_type needs_ovl_stub (struct elf_link_hash_entry *h, Elf_Internal_Sym *sym, asection *sym_sec, asection *input_section, Elf_Internal_Rela *irela, bfd_byte *contents, struct bfd_link_info *info) { struct spu_link_hash_table *htab = spu_hash_table (info); enum elf_spu_reloc_type r_type; unsigned int sym_type; bfd_boolean branch; enum _stub_type ret = no_stub; if (sym_sec == NULL || sym_sec->output_section == NULL || sym_sec->output_section->owner != info->output_bfd || spu_elf_section_data (sym_sec->output_section) == NULL) return ret; if (h != NULL) { /* Ensure no stubs for user supplied overlay manager syms. */ if (h == htab->ovly_load || h == htab->ovly_return) return ret; /* setjmp always goes via an overlay stub, because then the return and hence the longjmp goes via __ovly_return. That magically makes setjmp/longjmp between overlays work. */ if (strncmp (h->root.root.string, "setjmp", 6) == 0 && (h->root.root.string[6] == '\0' || h->root.root.string[6] == '@')) ret = ovl_stub; } /* Usually, symbols in non-overlay sections don't need stubs. */ if (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index == 0 && !htab->non_overlay_stubs) return ret; if (h != NULL) sym_type = h->type; else sym_type = ELF_ST_TYPE (sym->st_info); r_type = ELF32_R_TYPE (irela->r_info); branch = FALSE; if (r_type == R_SPU_REL16 || r_type == R_SPU_ADDR16) { bfd_byte insn[4]; if (contents == NULL) { contents = insn; if (!bfd_get_section_contents (input_section->owner, input_section, contents, irela->r_offset, 4)) return stub_error; } else contents += irela->r_offset; if (is_branch (contents) || is_hint (contents)) { branch = TRUE; if ((contents[0] & 0xfd) == 0x31 && sym_type != STT_FUNC && contents != insn) { /* It's common for people to write assembly and forget to give function symbols the right type. Handle calls to such symbols, but warn so that (hopefully) people will fix their code. We need the symbol type to be correct to distinguish function pointer initialisation from other pointer initialisations. */ const char *sym_name; if (h != NULL) sym_name = h->root.root.string; else { Elf_Internal_Shdr *symtab_hdr; symtab_hdr = &elf_tdata (input_section->owner)->symtab_hdr; sym_name = bfd_elf_sym_name (input_section->owner, symtab_hdr, sym, sym_sec); } (*_bfd_error_handler) (_("warning: call to non-function" " symbol %s defined in %B"), sym_sec->owner, sym_name); } } } if (sym_type != STT_FUNC && !branch && (sym_sec->flags & SEC_CODE) == 0) return ret; /* A reference from some other section to a symbol in an overlay section needs a stub. */ if (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != spu_elf_section_data (input_section->output_section)->u.o.ovl_index) ret = ovl_stub; /* If this insn isn't a branch then we are possibly taking the address of a function and passing it out somehow. */ return !branch && sym_type == STT_FUNC ? nonovl_stub : ret; } static bfd_boolean count_stub (struct spu_link_hash_table *htab, bfd *ibfd, asection *isec, enum _stub_type stub_type, struct elf_link_hash_entry *h, const Elf_Internal_Rela *irela) { unsigned int ovl = 0; struct got_entry *g, **head; bfd_vma addend; /* If this instruction is a branch or call, we need a stub for it. One stub per function per overlay. If it isn't a branch, then we are taking the address of this function so need a stub in the non-overlay area for it. One stub per function. */ if (stub_type != nonovl_stub) ovl = spu_elf_section_data (isec->output_section)->u.o.ovl_index; if (h != NULL) head = &h->got.glist; else { if (elf_local_got_ents (ibfd) == NULL) { bfd_size_type amt = (elf_tdata (ibfd)->symtab_hdr.sh_info * sizeof (*elf_local_got_ents (ibfd))); elf_local_got_ents (ibfd) = bfd_zmalloc (amt); if (elf_local_got_ents (ibfd) == NULL) return FALSE; } head = elf_local_got_ents (ibfd) + ELF32_R_SYM (irela->r_info); } addend = 0; if (irela != NULL) addend = irela->r_addend; if (ovl == 0) { struct got_entry *gnext; for (g = *head; g != NULL; g = g->next) if (g->addend == addend && g->ovl == 0) break; if (g == NULL) { /* Need a new non-overlay area stub. Zap other stubs. */ for (g = *head; g != NULL; g = gnext) { gnext = g->next; if (g->addend == addend) { htab->stub_count[g->ovl] -= 1; free (g); } } } } else { for (g = *head; g != NULL; g = g->next) if (g->addend == addend && (g->ovl == ovl || g->ovl == 0)) break; } if (g == NULL) { g = bfd_malloc (sizeof *g); if (g == NULL) return FALSE; g->ovl = ovl; g->addend = addend; g->stub_addr = (bfd_vma) -1; g->next = *head; *head = g; htab->stub_count[ovl] += 1; } return TRUE; } /* Two instruction overlay stubs look like: brsl $75,__ovly_load .word target_ovl_and_address ovl_and_address is a word with the overlay number in the top 14 bits and local store address in the bottom 18 bits. Four instruction overlay stubs look like: ila $78,ovl_number lnop ila $79,target_address br __ovly_load */ static bfd_boolean build_stub (struct spu_link_hash_table *htab, bfd *ibfd, asection *isec, enum _stub_type stub_type, struct elf_link_hash_entry *h, const Elf_Internal_Rela *irela, bfd_vma dest, asection *dest_sec) { unsigned int ovl; struct got_entry *g, **head; asection *sec; bfd_vma addend, val, from, to; ovl = 0; if (stub_type != nonovl_stub) ovl = spu_elf_section_data (isec->output_section)->u.o.ovl_index; if (h != NULL) head = &h->got.glist; else head = elf_local_got_ents (ibfd) + ELF32_R_SYM (irela->r_info); addend = 0; if (irela != NULL) addend = irela->r_addend; for (g = *head; g != NULL; g = g->next) if (g->addend == addend && (g->ovl == ovl || g->ovl == 0)) break; if (g == NULL) abort (); if (g->ovl == 0 && ovl != 0) return TRUE; if (g->stub_addr != (bfd_vma) -1) return TRUE; sec = htab->stub_sec[ovl]; dest += dest_sec->output_offset + dest_sec->output_section->vma; from = sec->size + sec->output_offset + sec->output_section->vma; g->stub_addr = from; to = (htab->ovly_load->root.u.def.value + htab->ovly_load->root.u.def.section->output_offset + htab->ovly_load->root.u.def.section->output_section->vma); val = to - from; if (OVL_STUB_SIZE == 16) val -= 12; if (((dest | to | from) & 3) != 0 || val + 0x40000 >= 0x80000) { htab->stub_err = 1; return FALSE; } ovl = spu_elf_section_data (dest_sec->output_section)->u.o.ovl_index; if (OVL_STUB_SIZE == 16) { bfd_put_32 (sec->owner, ILA + ((ovl << 7) & 0x01ffff80) + 78, sec->contents + sec->size); bfd_put_32 (sec->owner, LNOP, sec->contents + sec->size + 4); bfd_put_32 (sec->owner, ILA + ((dest << 7) & 0x01ffff80) + 79, sec->contents + sec->size + 8); bfd_put_32 (sec->owner, BR + ((val << 5) & 0x007fff80), sec->contents + sec->size + 12); } else if (OVL_STUB_SIZE == 8) { bfd_put_32 (sec->owner, BRSL + ((val << 5) & 0x007fff80) + 75, sec->contents + sec->size); val = (dest & 0x3ffff) | (ovl << 18); bfd_put_32 (sec->owner, val, sec->contents + sec->size + 4); } else abort (); sec->size += OVL_STUB_SIZE; if (htab->emit_stub_syms) { size_t len; char *name; int add; len = 8 + sizeof (".ovl_call.") - 1; if (h != NULL) len += strlen (h->root.root.string); else len += 8 + 1 + 8; add = 0; if (irela != NULL) add = (int) irela->r_addend & 0xffffffff; if (add != 0) len += 1 + 8; name = bfd_malloc (len); if (name == NULL) return FALSE; sprintf (name, "%08x.ovl_call.", g->ovl); if (h != NULL) strcpy (name + 8 + sizeof (".ovl_call.") - 1, h->root.root.string); else sprintf (name + 8 + sizeof (".ovl_call.") - 1, "%x:%x", dest_sec->id & 0xffffffff, (int) ELF32_R_SYM (irela->r_info) & 0xffffffff); if (add != 0) sprintf (name + len - 9, "+%x", add); h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE); free (name); if (h == NULL) return FALSE; if (h->root.type == bfd_link_hash_new) { h->root.type = bfd_link_hash_defined; h->root.u.def.section = sec; h->root.u.def.value = sec->size - OVL_STUB_SIZE; h->size = OVL_STUB_SIZE; h->type = STT_FUNC; h->ref_regular = 1; h->def_regular = 1; h->ref_regular_nonweak = 1; h->forced_local = 1; h->non_elf = 0; } } return TRUE; } /* Called via elf_link_hash_traverse to allocate stubs for any _SPUEAR_ symbols. */ static bfd_boolean allocate_spuear_stubs (struct elf_link_hash_entry *h, void *inf) { /* Symbols starting with _SPUEAR_ need a stub because they may be invoked by the PPU. */ struct bfd_link_info *info = inf; struct spu_link_hash_table *htab = spu_hash_table (info); asection *sym_sec; if ((h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && h->def_regular && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0 && (sym_sec = h->root.u.def.section) != NULL && sym_sec->output_section != NULL && sym_sec->output_section->owner == info->output_bfd && spu_elf_section_data (sym_sec->output_section) != NULL && (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != 0 || htab->non_overlay_stubs)) { return count_stub (htab, NULL, NULL, nonovl_stub, h, NULL); } return TRUE; } static bfd_boolean build_spuear_stubs (struct elf_link_hash_entry *h, void *inf) { /* Symbols starting with _SPUEAR_ need a stub because they may be invoked by the PPU. */ struct bfd_link_info *info = inf; struct spu_link_hash_table *htab = spu_hash_table (info); asection *sym_sec; if ((h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && h->def_regular && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0 && (sym_sec = h->root.u.def.section) != NULL && sym_sec->output_section != NULL && sym_sec->output_section->owner == info->output_bfd && spu_elf_section_data (sym_sec->output_section) != NULL && (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != 0 || htab->non_overlay_stubs)) { return build_stub (htab, NULL, NULL, nonovl_stub, h, NULL, h->root.u.def.value, sym_sec); } return TRUE; } /* Size or build stubs. */ static bfd_boolean process_stubs (struct bfd_link_info *info, bfd_boolean build) { struct spu_link_hash_table *htab = spu_hash_table (info); bfd *ibfd; for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { extern const bfd_target bfd_elf32_spu_vec; Elf_Internal_Shdr *symtab_hdr; asection *isec; Elf_Internal_Sym *local_syms = NULL; if (ibfd->xvec != &bfd_elf32_spu_vec) continue; /* We'll need the symbol table in a second. */ symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; if (symtab_hdr->sh_info == 0) continue; /* Walk over each section attached to the input bfd. */ for (isec = ibfd->sections; isec != NULL; isec = isec->next) { Elf_Internal_Rela *internal_relocs, *irelaend, *irela; /* If there aren't any relocs, then there's nothing more to do. */ if ((isec->flags & SEC_RELOC) == 0 || isec->reloc_count == 0) continue; if (!maybe_needs_stubs (isec, info->output_bfd)) continue; /* Get the relocs. */ internal_relocs = _bfd_elf_link_read_relocs (ibfd, isec, NULL, NULL, info->keep_memory); if (internal_relocs == NULL) goto error_ret_free_local; /* Now examine each relocation. */ irela = internal_relocs; irelaend = irela + isec->reloc_count; for (; irela < irelaend; irela++) { enum elf_spu_reloc_type r_type; unsigned int r_indx; asection *sym_sec; Elf_Internal_Sym *sym; struct elf_link_hash_entry *h; enum _stub_type stub_type; r_type = ELF32_R_TYPE (irela->r_info); r_indx = ELF32_R_SYM (irela->r_info); if (r_type >= R_SPU_max) { bfd_set_error (bfd_error_bad_value); error_ret_free_internal: if (elf_section_data (isec)->relocs != internal_relocs) free (internal_relocs); error_ret_free_local: if (local_syms != NULL && (symtab_hdr->contents != (unsigned char *) local_syms)) free (local_syms); return FALSE; } /* Determine the reloc target section. */ if (!get_sym_h (&h, &sym, &sym_sec, &local_syms, r_indx, ibfd)) goto error_ret_free_internal; stub_type = needs_ovl_stub (h, sym, sym_sec, isec, irela, NULL, info); if (stub_type == no_stub) continue; else if (stub_type == stub_error) goto error_ret_free_internal; if (htab->stub_count == NULL) { bfd_size_type amt; amt = (htab->num_overlays + 1) * sizeof (*htab->stub_count); htab->stub_count = bfd_zmalloc (amt); if (htab->stub_count == NULL) goto error_ret_free_internal; } if (!build) { if (!count_stub (htab, ibfd, isec, stub_type, h, irela)) goto error_ret_free_internal; } else { bfd_vma dest; if (h != NULL) dest = h->root.u.def.value; else dest = sym->st_value; dest += irela->r_addend; if (!build_stub (htab, ibfd, isec, stub_type, h, irela, dest, sym_sec)) goto error_ret_free_internal; } } /* We're done with the internal relocs, free them. */ if (elf_section_data (isec)->relocs != internal_relocs) free (internal_relocs); } if (local_syms != NULL && symtab_hdr->contents != (unsigned char *) local_syms) { if (!info->keep_memory) free (local_syms); else symtab_hdr->contents = (unsigned char *) local_syms; } } return TRUE; } /* Allocate space for overlay call and return stubs. */ int spu_elf_size_stubs (struct bfd_link_info *info, void (*place_spu_section) (asection *, asection *, const char *), int non_overlay_stubs) { struct spu_link_hash_table *htab = spu_hash_table (info); bfd *ibfd; bfd_size_type amt; flagword flags; unsigned int i; asection *stub; htab->non_overlay_stubs = non_overlay_stubs; if (!process_stubs (info, FALSE)) return 0; elf_link_hash_traverse (&htab->elf, allocate_spuear_stubs, info); if (htab->stub_err) return 0; if (htab->stub_count == NULL) return 1; ibfd = info->input_bfds; amt = (htab->num_overlays + 1) * sizeof (*htab->stub_sec); htab->stub_sec = bfd_zmalloc (amt); if (htab->stub_sec == NULL) return 0; flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY | SEC_HAS_CONTENTS | SEC_IN_MEMORY); stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags); htab->stub_sec[0] = stub; if (stub == NULL || !bfd_set_section_alignment (ibfd, stub, 3 + (OVL_STUB_SIZE > 8))) return 0; stub->size = htab->stub_count[0] * OVL_STUB_SIZE; (*place_spu_section) (stub, NULL, ".text"); for (i = 0; i < htab->num_overlays; ++i) { asection *osec = htab->ovl_sec[i]; unsigned int ovl = spu_elf_section_data (osec)->u.o.ovl_index; stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags); htab->stub_sec[ovl] = stub; if (stub == NULL || !bfd_set_section_alignment (ibfd, stub, 3 + (OVL_STUB_SIZE > 8))) return 0; stub->size = htab->stub_count[ovl] * OVL_STUB_SIZE; (*place_spu_section) (stub, osec, NULL); } /* htab->ovtab consists of two arrays. . struct { . u32 vma; . u32 size; . u32 file_off; . u32 buf; . } _ovly_table[]; . . struct { . u32 mapped; . } _ovly_buf_table[]; . */ flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY); htab->ovtab = bfd_make_section_anyway_with_flags (ibfd, ".ovtab", flags); if (htab->ovtab == NULL || !bfd_set_section_alignment (ibfd, htab->ovtab, 4)) return 0; htab->ovtab->size = htab->num_overlays * 16 + 16 + htab->num_buf * 4; (*place_spu_section) (htab->ovtab, NULL, ".data"); htab->toe = bfd_make_section_anyway_with_flags (ibfd, ".toe", SEC_ALLOC); if (htab->toe == NULL || !bfd_set_section_alignment (ibfd, htab->toe, 4)) return 0; htab->toe->size = 16; (*place_spu_section) (htab->toe, NULL, ".toe"); return 2; } /* Functions to handle embedded spu_ovl.o object. */ static void * ovl_mgr_open (struct bfd *nbfd ATTRIBUTE_UNUSED, void *stream) { return stream; } static file_ptr ovl_mgr_pread (struct bfd *abfd ATTRIBUTE_UNUSED, void *stream, void *buf, file_ptr nbytes, file_ptr offset) { struct _ovl_stream *os; size_t count; size_t max; os = (struct _ovl_stream *) stream; max = (const char *) os->end - (const char *) os->start; if ((ufile_ptr) offset >= max) return 0; count = nbytes; if (count > max - offset) count = max - offset; memcpy (buf, (const char *) os->start + offset, count); return count; } bfd_boolean spu_elf_open_builtin_lib (bfd **ovl_bfd, const struct _ovl_stream *stream) { *ovl_bfd = bfd_openr_iovec ("builtin ovl_mgr", "elf32-spu", ovl_mgr_open, (void *) stream, ovl_mgr_pread, NULL, NULL); return *ovl_bfd != NULL; } /* Define an STT_OBJECT symbol. */ static struct elf_link_hash_entry * define_ovtab_symbol (struct spu_link_hash_table *htab, const char *name) { struct elf_link_hash_entry *h; h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE); if (h == NULL) return NULL; if (h->root.type != bfd_link_hash_defined || !h->def_regular) { h->root.type = bfd_link_hash_defined; h->root.u.def.section = htab->ovtab; h->type = STT_OBJECT; h->ref_regular = 1; h->def_regular = 1; h->ref_regular_nonweak = 1; h->non_elf = 0; } else if (h->root.u.def.section->owner != NULL) { (*_bfd_error_handler) (_("%B is not allowed to define %s"), h->root.u.def.section->owner, h->root.root.string); bfd_set_error (bfd_error_bad_value); return NULL; } else { (*_bfd_error_handler) (_("you are not allowed to define %s in a script"), h->root.root.string); bfd_set_error (bfd_error_bad_value); return NULL; } return h; } /* Fill in all stubs and the overlay tables. */ bfd_boolean spu_elf_build_stubs (struct bfd_link_info *info, int emit_syms) { struct spu_link_hash_table *htab = spu_hash_table (info); struct elf_link_hash_entry *h; bfd_byte *p; asection *s; bfd *obfd; unsigned int i; htab->emit_stub_syms = emit_syms; if (htab->stub_count == NULL) return TRUE; for (i = 0; i <= htab->num_overlays; i++) if (htab->stub_sec[i]->size != 0) { htab->stub_sec[i]->contents = bfd_zalloc (htab->stub_sec[i]->owner, htab->stub_sec[i]->size); if (htab->stub_sec[i]->contents == NULL) return FALSE; htab->stub_sec[i]->rawsize = htab->stub_sec[i]->size; htab->stub_sec[i]->size = 0; } h = elf_link_hash_lookup (&htab->elf, "__ovly_load", FALSE, FALSE, FALSE); htab->ovly_load = h; BFD_ASSERT (h != NULL && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && h->def_regular); s = h->root.u.def.section->output_section; if (spu_elf_section_data (s)->u.o.ovl_index) { (*_bfd_error_handler) (_("%s in overlay section"), h->root.root.string); bfd_set_error (bfd_error_bad_value); return FALSE; } h = elf_link_hash_lookup (&htab->elf, "__ovly_return", FALSE, FALSE, FALSE); htab->ovly_return = h; /* Fill in all the stubs. */ process_stubs (info, TRUE); if (!htab->stub_err) elf_link_hash_traverse (&htab->elf, build_spuear_stubs, info); if (htab->stub_err) { (*_bfd_error_handler) (_("overlay stub relocation overflow")); bfd_set_error (bfd_error_bad_value); return FALSE; } for (i = 0; i <= htab->num_overlays; i++) { if (htab->stub_sec[i]->size != htab->stub_sec[i]->rawsize) { (*_bfd_error_handler) (_("stubs don't match calculated size")); bfd_set_error (bfd_error_bad_value); return FALSE; } htab->stub_sec[i]->rawsize = 0; } htab->ovtab->contents = bfd_zalloc (htab->ovtab->owner, htab->ovtab->size); if (htab->ovtab->contents == NULL) return FALSE; /* Write out _ovly_table. */ p = htab->ovtab->contents; /* set low bit of .size to mark non-overlay area as present. */ p[7] = 1; obfd = htab->ovtab->output_section->owner; for (s = obfd->sections; s != NULL; s = s->next) { unsigned int ovl_index = spu_elf_section_data (s)->u.o.ovl_index; if (ovl_index != 0) { unsigned long off = ovl_index * 16; unsigned int ovl_buf = spu_elf_section_data (s)->u.o.ovl_buf; bfd_put_32 (htab->ovtab->owner, s->vma, p + off); bfd_put_32 (htab->ovtab->owner, (s->size + 15) & -16, p + off + 4); /* file_off written later in spu_elf_modify_program_headers. */ bfd_put_32 (htab->ovtab->owner, ovl_buf, p + off + 12); } } h = define_ovtab_symbol (htab, "_ovly_table"); if (h == NULL) return FALSE; h->root.u.def.value = 16; h->size = htab->num_overlays * 16; h = define_ovtab_symbol (htab, "_ovly_table_end"); if (h == NULL) return FALSE; h->root.u.def.value = htab->num_overlays * 16 + 16; h->size = 0; h = define_ovtab_symbol (htab, "_ovly_buf_table"); if (h == NULL) return FALSE; h->root.u.def.value = htab->num_overlays * 16 + 16; h->size = htab->num_buf * 4; h = define_ovtab_symbol (htab, "_ovly_buf_table_end"); if (h == NULL) return FALSE; h->root.u.def.value = htab->num_overlays * 16 + 16 + htab->num_buf * 4; h->size = 0; h = define_ovtab_symbol (htab, "_EAR_"); if (h == NULL) return FALSE; h->root.u.def.section = htab->toe; h->root.u.def.value = 0; h->size = 16; return TRUE; } /* Check that all loadable section VMAs lie in the range LO .. HI inclusive, and stash some parameters for --auto-overlay. */ asection * spu_elf_check_vma (struct bfd_link_info *info, int auto_overlay, unsigned int lo, unsigned int hi, unsigned int overlay_fixed, unsigned int reserved, int extra_stack_space, void (*spu_elf_load_ovl_mgr) (void), FILE *(*spu_elf_open_overlay_script) (void), void (*spu_elf_relink) (void)) { struct elf_segment_map *m; unsigned int i; struct spu_link_hash_table *htab = spu_hash_table (info); bfd *abfd = info->output_bfd; if (auto_overlay & AUTO_OVERLAY) htab->auto_overlay = auto_overlay; htab->local_store = hi + 1 - lo; htab->overlay_fixed = overlay_fixed; htab->reserved = reserved; htab->extra_stack_space = extra_stack_space; htab->spu_elf_load_ovl_mgr = spu_elf_load_ovl_mgr; htab->spu_elf_open_overlay_script = spu_elf_open_overlay_script; htab->spu_elf_relink = spu_elf_relink; for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) if (m->p_type == PT_LOAD) for (i = 0; i < m->count; i++) if (m->sections[i]->size != 0 && (m->sections[i]->vma < lo || m->sections[i]->vma > hi || m->sections[i]->vma + m->sections[i]->size - 1 > hi)) return m->sections[i]; /* No need for overlays if it all fits. */ htab->auto_overlay = 0; return NULL; } /* OFFSET in SEC (presumably) is the beginning of a function prologue. Search for stack adjusting insns, and return the sp delta. */ static int find_function_stack_adjust (asection *sec, bfd_vma offset) { int reg[128]; memset (reg, 0, sizeof (reg)); for ( ; offset + 4 <= sec->size; offset += 4) { unsigned char buf[4]; int rt, ra; int imm; /* Assume no relocs on stack adjusing insns. */ if (!bfd_get_section_contents (sec->owner, sec, buf, offset, 4)) break; if (buf[0] == 0x24 /* stqd */) continue; rt = buf[3] & 0x7f; ra = ((buf[2] & 0x3f) << 1) | (buf[3] >> 7); /* Partly decoded immediate field. */ imm = (buf[1] << 9) | (buf[2] << 1) | (buf[3] >> 7); if (buf[0] == 0x1c /* ai */) { imm >>= 7; imm = (imm ^ 0x200) - 0x200; reg[rt] = reg[ra] + imm; if (rt == 1 /* sp */) { if (reg[rt] > 0) break; return reg[rt]; } } else if (buf[0] == 0x18 && (buf[1] & 0xe0) == 0 /* a */) { int rb = ((buf[1] & 0x1f) << 2) | ((buf[2] & 0xc0) >> 6); reg[rt] = reg[ra] + reg[rb]; if (rt == 1) { if (reg[rt] > 0) break; return reg[rt]; } } else if ((buf[0] & 0xfc) == 0x40 /* il, ilh, ilhu, ila */) { if (buf[0] >= 0x42 /* ila */) imm |= (buf[0] & 1) << 17; else { imm &= 0xffff; if (buf[0] == 0x40 /* il */) { if ((buf[1] & 0x80) == 0) continue; imm = (imm ^ 0x8000) - 0x8000; } else if ((buf[1] & 0x80) == 0 /* ilhu */) imm <<= 16; } reg[rt] = imm; continue; } else if (buf[0] == 0x60 && (buf[1] & 0x80) != 0 /* iohl */) { reg[rt] |= imm & 0xffff; continue; } else if (buf[0] == 0x04 /* ori */) { imm >>= 7; imm = (imm ^ 0x200) - 0x200; reg[rt] = reg[ra] | imm; continue; } else if (buf[0] == 0x32 && (buf[1] & 0x80) != 0 /* fsmbi */) { reg[rt] = ( ((imm & 0x8000) ? 0xff000000 : 0) | ((imm & 0x4000) ? 0x00ff0000 : 0) | ((imm & 0x2000) ? 0x0000ff00 : 0) | ((imm & 0x1000) ? 0x000000ff : 0)); continue; } else if (buf[0] == 0x16 /* andbi */) { imm >>= 7; imm &= 0xff; imm |= imm << 8; imm |= imm << 16; reg[rt] = reg[ra] & imm; continue; } else if (buf[0] == 0x33 && imm == 1 /* brsl .+4 */) { /* Used in pic reg load. Say rt is trashed. Won't be used in stack adjust, but we need to continue past this branch. */ reg[rt] = 0; continue; } else if (is_branch (buf) || is_indirect_branch (buf)) /* If we hit a branch then we must be out of the prologue. */ break; } return 0; } /* qsort predicate to sort symbols by section and value. */ static Elf_Internal_Sym *sort_syms_syms; static asection **sort_syms_psecs; static int sort_syms (const void *a, const void *b) { Elf_Internal_Sym *const *s1 = a; Elf_Internal_Sym *const *s2 = b; asection *sec1,*sec2; bfd_signed_vma delta; sec1 = sort_syms_psecs[*s1 - sort_syms_syms]; sec2 = sort_syms_psecs[*s2 - sort_syms_syms]; if (sec1 != sec2) return sec1->index - sec2->index; delta = (*s1)->st_value - (*s2)->st_value; if (delta != 0) return delta < 0 ? -1 : 1; delta = (*s2)->st_size - (*s1)->st_size; if (delta != 0) return delta < 0 ? -1 : 1; return *s1 < *s2 ? -1 : 1; } struct call_info { struct function_info *fun; struct call_info *next; unsigned int count; unsigned int max_depth; unsigned int is_tail : 1; unsigned int is_pasted : 1; }; struct function_info { /* List of functions called. Also branches to hot/cold part of function. */ struct call_info *call_list; /* For hot/cold part of function, point to owner. */ struct function_info *start; /* Symbol at start of function. */ union { Elf_Internal_Sym *sym; struct elf_link_hash_entry *h; } u; /* Function section. */ asection *sec; asection *rodata; /* Where last called from, and number of sections called from. */ asection *last_caller; unsigned int call_count; /* Address range of (this part of) function. */ bfd_vma lo, hi; /* Stack usage. */ int stack; /* Distance from root of call tree. Tail and hot/cold branches count as one deeper. We aren't counting stack frames here. */ unsigned int depth; /* Set if global symbol. */ unsigned int global : 1; /* Set if known to be start of function (as distinct from a hunk in hot/cold section. */ unsigned int is_func : 1; /* Set if not a root node. */ unsigned int non_root : 1; /* Flags used during call tree traversal. It's cheaper to replicate the visit flags than have one which needs clearing after a traversal. */ unsigned int visit1 : 1; unsigned int visit2 : 1; unsigned int marking : 1; unsigned int visit3 : 1; unsigned int visit4 : 1; unsigned int visit5 : 1; unsigned int visit6 : 1; unsigned int visit7 : 1; }; struct spu_elf_stack_info { int num_fun; int max_fun; /* Variable size array describing functions, one per contiguous address range belonging to a function. */ struct function_info fun[1]; }; /* Allocate a struct spu_elf_stack_info with MAX_FUN struct function_info entries for section SEC. */ static struct spu_elf_stack_info * alloc_stack_info (asection *sec, int max_fun) { struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec); bfd_size_type amt; amt = sizeof (struct spu_elf_stack_info); amt += (max_fun - 1) * sizeof (struct function_info); sec_data->u.i.stack_info = bfd_zmalloc (amt); if (sec_data->u.i.stack_info != NULL) sec_data->u.i.stack_info->max_fun = max_fun; return sec_data->u.i.stack_info; } /* Add a new struct function_info describing a (part of a) function starting at SYM_H. Keep the array sorted by address. */ static struct function_info * maybe_insert_function (asection *sec, void *sym_h, bfd_boolean global, bfd_boolean is_func) { struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec); struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info; int i; bfd_vma off, size; if (sinfo == NULL) { sinfo = alloc_stack_info (sec, 20); if (sinfo == NULL) return NULL; } if (!global) { Elf_Internal_Sym *sym = sym_h; off = sym->st_value; size = sym->st_size; } else { struct elf_link_hash_entry *h = sym_h; off = h->root.u.def.value; size = h->size; } for (i = sinfo->num_fun; --i >= 0; ) if (sinfo->fun[i].lo <= off) break; if (i >= 0) { /* Don't add another entry for an alias, but do update some info. */ if (sinfo->fun[i].lo == off) { /* Prefer globals over local syms. */ if (global && !sinfo->fun[i].global) { sinfo->fun[i].global = TRUE; sinfo->fun[i].u.h = sym_h; } if (is_func) sinfo->fun[i].is_func = TRUE; return &sinfo->fun[i]; } /* Ignore a zero-size symbol inside an existing function. */ else if (sinfo->fun[i].hi > off && size == 0) return &sinfo->fun[i]; } if (sinfo->num_fun >= sinfo->max_fun) { bfd_size_type amt = sizeof (struct spu_elf_stack_info); bfd_size_type old = amt; old += (sinfo->max_fun - 1) * sizeof (struct function_info); sinfo->max_fun += 20 + (sinfo->max_fun >> 1); amt += (sinfo->max_fun - 1) * sizeof (struct function_info); sinfo = bfd_realloc (sinfo, amt); if (sinfo == NULL) return NULL; memset ((char *) sinfo + old, 0, amt - old); sec_data->u.i.stack_info = sinfo; } if (++i < sinfo->num_fun) memmove (&sinfo->fun[i + 1], &sinfo->fun[i], (sinfo->num_fun - i) * sizeof (sinfo->fun[i])); sinfo->fun[i].is_func = is_func; sinfo->fun[i].global = global; sinfo->fun[i].sec = sec; if (global) sinfo->fun[i].u.h = sym_h; else sinfo->fun[i].u.sym = sym_h; sinfo->fun[i].lo = off; sinfo->fun[i].hi = off + size; sinfo->fun[i].stack = -find_function_stack_adjust (sec, off); sinfo->num_fun += 1; return &sinfo->fun[i]; } /* Return the name of FUN. */ static const char * func_name (struct function_info *fun) { asection *sec; bfd *ibfd; Elf_Internal_Shdr *symtab_hdr; while (fun->start != NULL) fun = fun->start; if (fun->global) return fun->u.h->root.root.string; sec = fun->sec; if (fun->u.sym->st_name == 0) { size_t len = strlen (sec->name); char *name = bfd_malloc (len + 10); if (name == NULL) return "(null)"; sprintf (name, "%s+%lx", sec->name, (unsigned long) fun->u.sym->st_value & 0xffffffff); return name; } ibfd = sec->owner; symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; return bfd_elf_sym_name (ibfd, symtab_hdr, fun->u.sym, sec); } /* Read the instruction at OFF in SEC. Return true iff the instruction is a nop, lnop, or stop 0 (all zero insn). */ static bfd_boolean is_nop (asection *sec, bfd_vma off) { unsigned char insn[4]; if (off + 4 > sec->size || !bfd_get_section_contents (sec->owner, sec, insn, off, 4)) return FALSE; if ((insn[0] & 0xbf) == 0 && (insn[1] & 0xe0) == 0x20) return TRUE; if (insn[0] == 0 && insn[1] == 0 && insn[2] == 0 && insn[3] == 0) return TRUE; return FALSE; } /* Extend the range of FUN to cover nop padding up to LIMIT. Return TRUE iff some instruction other than a NOP was found. */ static bfd_boolean insns_at_end (struct function_info *fun, bfd_vma limit) { bfd_vma off = (fun->hi + 3) & -4; while (off < limit && is_nop (fun->sec, off)) off += 4; if (off < limit) { fun->hi = off; return TRUE; } fun->hi = limit; return FALSE; } /* Check and fix overlapping function ranges. Return TRUE iff there are gaps in the current info we have about functions in SEC. */ static bfd_boolean check_function_ranges (asection *sec, struct bfd_link_info *info) { struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec); struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info; int i; bfd_boolean gaps = FALSE; if (sinfo == NULL) return FALSE; for (i = 1; i < sinfo->num_fun; i++) if (sinfo->fun[i - 1].hi > sinfo->fun[i].lo) { /* Fix overlapping symbols. */ const char *f1 = func_name (&sinfo->fun[i - 1]); const char *f2 = func_name (&sinfo->fun[i]); info->callbacks->einfo (_("warning: %s overlaps %s\n"), f1, f2); sinfo->fun[i - 1].hi = sinfo->fun[i].lo; } else if (insns_at_end (&sinfo->fun[i - 1], sinfo->fun[i].lo)) gaps = TRUE; if (sinfo->num_fun == 0) gaps = TRUE; else { if (sinfo->fun[0].lo != 0) gaps = TRUE; if (sinfo->fun[sinfo->num_fun - 1].hi > sec->size) { const char *f1 = func_name (&sinfo->fun[sinfo->num_fun - 1]); info->callbacks->einfo (_("warning: %s exceeds section size\n"), f1); sinfo->fun[sinfo->num_fun - 1].hi = sec->size; } else if (insns_at_end (&sinfo->fun[sinfo->num_fun - 1], sec->size)) gaps = TRUE; } return gaps; } /* Search current function info for a function that contains address OFFSET in section SEC. */ static struct function_info * find_function (asection *sec, bfd_vma offset, struct bfd_link_info *info) { struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec); struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info; int lo, hi, mid; lo = 0; hi = sinfo->num_fun; while (lo < hi) { mid = (lo + hi) / 2; if (offset < sinfo->fun[mid].lo) hi = mid; else if (offset >= sinfo->fun[mid].hi) lo = mid + 1; else return &sinfo->fun[mid]; } info->callbacks->einfo (_("%A:0x%v not found in function table\n"), sec, offset); return NULL; } /* Add CALLEE to CALLER call list if not already present. Return TRUE if CALLEE was new. If this function return FALSE, CALLEE should be freed. */ static bfd_boolean insert_callee (struct function_info *caller, struct call_info *callee) { struct call_info **pp, *p; for (pp = &caller->call_list; (p = *pp) != NULL; pp = &p->next) if (p->fun == callee->fun) { /* Tail calls use less stack than normal calls. Retain entry for normal call over one for tail call. */ p->is_tail &= callee->is_tail; if (!p->is_tail) { p->fun->start = NULL; p->fun->is_func = TRUE; } p->count += 1; /* Reorder list so most recent call is first. */ *pp = p->next; p->next = caller->call_list; caller->call_list = p; return FALSE; } callee->next = caller->call_list; callee->count += 1; caller->call_list = callee; return TRUE; } /* Copy CALL and insert the copy into CALLER. */ static bfd_boolean copy_callee (struct function_info *caller, const struct call_info *call) { struct call_info *callee; callee = bfd_malloc (sizeof (*callee)); if (callee == NULL) return FALSE; *callee = *call; if (!insert_callee (caller, callee)) free (callee); return TRUE; } /* We're only interested in code sections. Testing SEC_IN_MEMORY excludes overlay stub sections. */ static bfd_boolean interesting_section (asection *s, bfd *obfd) { return (s->output_section != NULL && s->output_section->owner == obfd && ((s->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_IN_MEMORY)) == (SEC_ALLOC | SEC_LOAD | SEC_CODE)) && s->size != 0); } /* Rummage through the relocs for SEC, looking for function calls. If CALL_TREE is true, fill in call graph. If CALL_TREE is false, mark destination symbols on calls as being functions. Also look at branches, which may be tail calls or go to hot/cold section part of same function. */ static bfd_boolean mark_functions_via_relocs (asection *sec, struct bfd_link_info *info, int call_tree) { Elf_Internal_Rela *internal_relocs, *irelaend, *irela; Elf_Internal_Shdr *symtab_hdr; void *psyms; static bfd_boolean warned; if (!interesting_section (sec, info->output_bfd) || sec->reloc_count == 0) return TRUE; internal_relocs = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, info->keep_memory); if (internal_relocs == NULL) return FALSE; symtab_hdr = &elf_tdata (sec->owner)->symtab_hdr; psyms = &symtab_hdr->contents; irela = internal_relocs; irelaend = irela + sec->reloc_count; for (; irela < irelaend; irela++) { enum elf_spu_reloc_type r_type; unsigned int r_indx; asection *sym_sec; Elf_Internal_Sym *sym; struct elf_link_hash_entry *h; bfd_vma val; bfd_boolean reject, is_call; struct function_info *caller; struct call_info *callee; reject = FALSE; r_type = ELF32_R_TYPE (irela->r_info); if (r_type != R_SPU_REL16 && r_type != R_SPU_ADDR16) { reject = TRUE; if (!(call_tree && spu_hash_table (info)->auto_overlay)) continue; } r_indx = ELF32_R_SYM (irela->r_info); if (!get_sym_h (&h, &sym, &sym_sec, psyms, r_indx, sec->owner)) return FALSE; if (sym_sec == NULL || sym_sec->output_section == NULL || sym_sec->output_section->owner != info->output_bfd) continue; is_call = FALSE; if (!reject) { unsigned char insn[4]; if (!bfd_get_section_contents (sec->owner, sec, insn, irela->r_offset, 4)) return FALSE; if (is_branch (insn)) { is_call = (insn[0] & 0xfd) == 0x31; if ((sym_sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE)) != (SEC_ALLOC | SEC_LOAD | SEC_CODE)) { if (!warned) info->callbacks->einfo (_("%B(%A+0x%v): call to non-code section" " %B(%A), analysis incomplete\n"), sec->owner, sec, irela->r_offset, sym_sec->owner, sym_sec); warned = TRUE; continue; } } else { reject = TRUE; if (!(call_tree && spu_hash_table (info)->auto_overlay) || is_hint (insn)) continue; } } if (reject) { /* For --auto-overlay, count possible stubs we need for function pointer references. */ unsigned int sym_type; if (h) sym_type = h->type; else sym_type = ELF_ST_TYPE (sym->st_info); if (sym_type == STT_FUNC) spu_hash_table (info)->non_ovly_stub += 1; continue; } if (h) val = h->root.u.def.value; else val = sym->st_value; val += irela->r_addend; if (!call_tree) { struct function_info *fun; if (irela->r_addend != 0) { Elf_Internal_Sym *fake = bfd_zmalloc (sizeof (*fake)); if (fake == NULL) return FALSE; fake->st_value = val; fake->st_shndx = _bfd_elf_section_from_bfd_section (sym_sec->owner, sym_sec); sym = fake; } if (sym) fun = maybe_insert_function (sym_sec, sym, FALSE, is_call); else fun = maybe_insert_function (sym_sec, h, TRUE, is_call); if (fun == NULL) return FALSE; if (irela->r_addend != 0 && fun->u.sym != sym) free (sym); continue; } caller = find_function (sec, irela->r_offset, info); if (caller == NULL) return FALSE; callee = bfd_malloc (sizeof *callee); if (callee == NULL) return FALSE; callee->fun = find_function (sym_sec, val, info); if (callee->fun == NULL) return FALSE; callee->is_tail = !is_call; callee->is_pasted = FALSE; callee->count = 0; if (callee->fun->last_caller != sec) { callee->fun->last_caller = sec; callee->fun->call_count += 1; } if (!insert_callee (caller, callee)) free (callee); else if (!is_call && !callee->fun->is_func && callee->fun->stack == 0) { /* This is either a tail call or a branch from one part of the function to another, ie. hot/cold section. If the destination has been called by some other function then it is a separate function. We also assume that functions are not split across input files. */ if (sec->owner != sym_sec->owner) { callee->fun->start = NULL; callee->fun->is_func = TRUE; } else if (callee->fun->start == NULL) callee->fun->start = caller; else { struct function_info *callee_start; struct function_info *caller_start; callee_start = callee->fun; while (callee_start->start) callee_start = callee_start->start; caller_start = caller; while (caller_start->start) caller_start = caller_start->start; if (caller_start != callee_start) { callee->fun->start = NULL; callee->fun->is_func = TRUE; } } } } return TRUE; } /* Handle something like .init or .fini, which has a piece of a function. These sections are pasted together to form a single function. */ static bfd_boolean pasted_function (asection *sec, struct bfd_link_info *info) { struct bfd_link_order *l; struct _spu_elf_section_data *sec_data; struct spu_elf_stack_info *sinfo; Elf_Internal_Sym *fake; struct function_info *fun, *fun_start; fake = bfd_zmalloc (sizeof (*fake)); if (fake == NULL) return FALSE; fake->st_value = 0; fake->st_size = sec->size; fake->st_shndx = _bfd_elf_section_from_bfd_section (sec->owner, sec); fun = maybe_insert_function (sec, fake, FALSE, FALSE); if (!fun) return FALSE; /* Find a function immediately preceding this section. */ fun_start = NULL; for (l = sec->output_section->map_head.link_order; l != NULL; l = l->next) { if (l->u.indirect.section == sec) { if (fun_start != NULL) { struct call_info *callee = bfd_malloc (sizeof *callee); if (callee == NULL) return FALSE; fun->start = fun_start; callee->fun = fun; callee->is_tail = TRUE; callee->is_pasted = TRUE; callee->count = 0; if (!insert_callee (fun_start, callee)) free (callee); return TRUE; } break; } if (l->type == bfd_indirect_link_order && (sec_data = spu_elf_section_data (l->u.indirect.section)) != NULL && (sinfo = sec_data->u.i.stack_info) != NULL && sinfo->num_fun != 0) fun_start = &sinfo->fun[sinfo->num_fun - 1]; } info->callbacks->einfo (_("%A link_order not found\n"), sec); return FALSE; } /* Map address ranges in code sections to functions. */ static bfd_boolean discover_functions (struct bfd_link_info *info) { bfd *ibfd; int bfd_idx; Elf_Internal_Sym ***psym_arr; asection ***sec_arr; bfd_boolean gaps = FALSE; bfd_idx = 0; for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) bfd_idx++; psym_arr = bfd_zmalloc (bfd_idx * sizeof (*psym_arr)); if (psym_arr == NULL) return FALSE; sec_arr = bfd_zmalloc (bfd_idx * sizeof (*sec_arr)); if (sec_arr == NULL) return FALSE; for (ibfd = info->input_bfds, bfd_idx = 0; ibfd != NULL; ibfd = ibfd->link_next, bfd_idx++) { extern const bfd_target bfd_elf32_spu_vec; Elf_Internal_Shdr *symtab_hdr; asection *sec; size_t symcount; Elf_Internal_Sym *syms, *sy, **psyms, **psy; asection **psecs, **p; if (ibfd->xvec != &bfd_elf32_spu_vec) continue; /* Read all the symbols. */ symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize; if (symcount == 0) { if (!gaps) for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next) if (interesting_section (sec, info->output_bfd)) { gaps = TRUE; break; } continue; } if (symtab_hdr->contents != NULL) { /* Don't use cached symbols since the generic ELF linker code only reads local symbols, and we need globals too. */ free (symtab_hdr->contents); symtab_hdr->contents = NULL; } syms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, 0, NULL, NULL, NULL); symtab_hdr->contents = (void *) syms; if (syms == NULL) return FALSE; /* Select defined function symbols that are going to be output. */ psyms = bfd_malloc ((symcount + 1) * sizeof (*psyms)); if (psyms == NULL) return FALSE; psym_arr[bfd_idx] = psyms; psecs = bfd_malloc (symcount * sizeof (*psecs)); if (psecs == NULL) return FALSE; sec_arr[bfd_idx] = psecs; for (psy = psyms, p = psecs, sy = syms; sy < syms + symcount; ++p, ++sy) if (ELF_ST_TYPE (sy->st_info) == STT_NOTYPE || ELF_ST_TYPE (sy->st_info) == STT_FUNC || ELF_ST_TYPE (sy->st_info) == STT_SECTION) { asection *s; *p = s = bfd_section_from_elf_index (ibfd, sy->st_shndx); if (s != NULL && interesting_section (s, info->output_bfd)) *psy++ = sy; } symcount = psy - psyms; *psy = NULL; /* Sort them by section and offset within section. */ sort_syms_syms = syms; sort_syms_psecs = psecs; qsort (psyms, symcount, sizeof (*psyms), sort_syms); /* Now inspect the function symbols. */ for (psy = psyms; psy < psyms + symcount; ) { asection *s = psecs[*psy - syms]; Elf_Internal_Sym **psy2; for (psy2 = psy; ++psy2 < psyms + symcount; ) if (psecs[*psy2 - syms] != s) break; if (!alloc_stack_info (s, psy2 - psy)) return FALSE; psy = psy2; } /* First install info about properly typed and sized functions. In an ideal world this will cover all code sections, except when partitioning functions into hot and cold sections, and the horrible pasted together .init and .fini functions. */ for (psy = psyms; psy < psyms + symcount; ++psy) { sy = *psy; if (ELF_ST_TYPE (sy->st_info) == STT_FUNC) { asection *s = psecs[sy - syms]; if (!maybe_insert_function (s, sy, FALSE, TRUE)) return FALSE; } } for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next) if (interesting_section (sec, info->output_bfd)) gaps |= check_function_ranges (sec, info); } if (gaps) { /* See if we can discover more function symbols by looking at relocations. */ for (ibfd = info->input_bfds, bfd_idx = 0; ibfd != NULL; ibfd = ibfd->link_next, bfd_idx++) { asection *sec; if (psym_arr[bfd_idx] == NULL) continue; for (sec = ibfd->sections; sec != NULL; sec = sec->next) if (!mark_functions_via_relocs (sec, info, FALSE)) return FALSE; } for (ibfd = info->input_bfds, bfd_idx = 0; ibfd != NULL; ibfd = ibfd->link_next, bfd_idx++) { Elf_Internal_Shdr *symtab_hdr; asection *sec; Elf_Internal_Sym *syms, *sy, **psyms, **psy; asection **psecs; if ((psyms = psym_arr[bfd_idx]) == NULL) continue; psecs = sec_arr[bfd_idx]; symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; syms = (Elf_Internal_Sym *) symtab_hdr->contents; gaps = FALSE; for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next) if (interesting_section (sec, info->output_bfd)) gaps |= check_function_ranges (sec, info); if (!gaps) continue; /* Finally, install all globals. */ for (psy = psyms; (sy = *psy) != NULL; ++psy) { asection *s; s = psecs[sy - syms]; /* Global syms might be improperly typed functions. */ if (ELF_ST_TYPE (sy->st_info) != STT_FUNC && ELF_ST_BIND (sy->st_info) == STB_GLOBAL) { if (!maybe_insert_function (s, sy, FALSE, FALSE)) return FALSE; } } } for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { extern const bfd_target bfd_elf32_spu_vec; asection *sec; if (ibfd->xvec != &bfd_elf32_spu_vec) continue; /* Some of the symbols we've installed as marking the beginning of functions may have a size of zero. Extend the range of such functions to the beginning of the next symbol of interest. */ for (sec = ibfd->sections; sec != NULL; sec = sec->next) if (interesting_section (sec, info->output_bfd)) { struct _spu_elf_section_data *sec_data; struct spu_elf_stack_info *sinfo; sec_data = spu_elf_section_data (sec); sinfo = sec_data->u.i.stack_info; if (sinfo != NULL) { int fun_idx; bfd_vma hi = sec->size; for (fun_idx = sinfo->num_fun; --fun_idx >= 0; ) { sinfo->fun[fun_idx].hi = hi; hi = sinfo->fun[fun_idx].lo; } } /* No symbols in this section. Must be .init or .fini or something similar. */ else if (!pasted_function (sec, info)) return FALSE; } } } for (ibfd = info->input_bfds, bfd_idx = 0; ibfd != NULL; ibfd = ibfd->link_next, bfd_idx++) { if (psym_arr[bfd_idx] == NULL) continue; free (psym_arr[bfd_idx]); free (sec_arr[bfd_idx]); } free (psym_arr); free (sec_arr); return TRUE; } /* Iterate over all function_info we have collected, calling DOIT on each node if ROOT_ONLY is false. Only call DOIT on root nodes if ROOT_ONLY. */ static bfd_boolean for_each_node (bfd_boolean (*doit) (struct function_info *, struct bfd_link_info *, void *), struct bfd_link_info *info, void *param, int root_only) { bfd *ibfd; for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { extern const bfd_target bfd_elf32_spu_vec; asection *sec; if (ibfd->xvec != &bfd_elf32_spu_vec) continue; for (sec = ibfd->sections; sec != NULL; sec = sec->next) { struct _spu_elf_section_data *sec_data; struct spu_elf_stack_info *sinfo; if ((sec_data = spu_elf_section_data (sec)) != NULL && (sinfo = sec_data->u.i.stack_info) != NULL) { int i; for (i = 0; i < sinfo->num_fun; ++i) if (!root_only || !sinfo->fun[i].non_root) if (!doit (&sinfo->fun[i], info, param)) return FALSE; } } } return TRUE; } /* Transfer call info attached to struct function_info entries for all of a given function's sections to the first entry. */ static bfd_boolean transfer_calls (struct function_info *fun, struct bfd_link_info *info ATTRIBUTE_UNUSED, void *param ATTRIBUTE_UNUSED) { struct function_info *start = fun->start; if (start != NULL) { struct call_info *call, *call_next; while (start->start != NULL) start = start->start; for (call = fun->call_list; call != NULL; call = call_next) { call_next = call->next; if (!insert_callee (start, call)) free (call); } fun->call_list = NULL; } return TRUE; } /* Mark nodes in the call graph that are called by some other node. */ static bfd_boolean mark_non_root (struct function_info *fun, struct bfd_link_info *info ATTRIBUTE_UNUSED, void *param ATTRIBUTE_UNUSED) { struct call_info *call; if (fun->visit1) return TRUE; fun->visit1 = TRUE; for (call = fun->call_list; call; call = call->next) { call->fun->non_root = TRUE; mark_non_root (call->fun, 0, 0); } return TRUE; } /* Remove cycles from the call graph. Set depth of nodes. */ static bfd_boolean remove_cycles (struct function_info *fun, struct bfd_link_info *info, void *param) { struct call_info **callp, *call; unsigned int depth = *(unsigned int *) param; unsigned int max_depth = depth; fun->depth = depth; fun->visit2 = TRUE; fun->marking = TRUE; callp = &fun->call_list; while ((call = *callp) != NULL) { if (!call->fun->visit2) { call->max_depth = depth + !call->is_pasted; if (!remove_cycles (call->fun, info, &call->max_depth)) return FALSE; if (max_depth < call->max_depth) max_depth = call->max_depth; } else if (call->fun->marking) { if (!spu_hash_table (info)->auto_overlay) { const char *f1 = func_name (fun); const char *f2 = func_name (call->fun); info->callbacks->info (_("Stack analysis will ignore the call " "from %s to %s\n"), f1, f2); } *callp = call->next; free (call); continue; } callp = &call->next; } fun->marking = FALSE; *(unsigned int *) param = max_depth; return TRUE; } /* Check that we actually visited all nodes in remove_cycles. If we didn't, then there is some cycle in the call graph not attached to any root node. Arbitrarily choose a node in the cycle as a new root and break the cycle. */ static bfd_boolean mark_detached_root (struct function_info *fun, struct bfd_link_info *info, void *param) { if (fun->visit2) return TRUE; fun->non_root = FALSE; *(unsigned int *) param = 0; return remove_cycles (fun, info, param); } /* Populate call_list for each function. */ static bfd_boolean build_call_tree (struct bfd_link_info *info) { bfd *ibfd; unsigned int depth; for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { extern const bfd_target bfd_elf32_spu_vec; asection *sec; if (ibfd->xvec != &bfd_elf32_spu_vec) continue; for (sec = ibfd->sections; sec != NULL; sec = sec->next) if (!mark_functions_via_relocs (sec, info, TRUE)) return FALSE; } /* Transfer call info from hot/cold section part of function to main entry. */ if (!spu_hash_table (info)->auto_overlay && !for_each_node (transfer_calls, info, 0, FALSE)) return FALSE; /* Find the call graph root(s). */ if (!for_each_node (mark_non_root, info, 0, FALSE)) return FALSE; /* Remove cycles from the call graph. We start from the root node(s) so that we break cycles in a reasonable place. */ depth = 0; if (!for_each_node (remove_cycles, info, &depth, TRUE)) return FALSE; return for_each_node (mark_detached_root, info, &depth, FALSE); } /* qsort predicate to sort calls by max_depth then count. */ static int sort_calls (const void *a, const void *b) { struct call_info *const *c1 = a; struct call_info *const *c2 = b; int delta; delta = (*c2)->max_depth - (*c1)->max_depth; if (delta != 0) return delta; delta = (*c2)->count - (*c1)->count; if (delta != 0) return delta; return (char *) c1 - (char *) c2; } struct _mos_param { unsigned int max_overlay_size; }; /* Set linker_mark and gc_mark on any sections that we will put in overlays. These flags are used by the generic ELF linker, but we won't be continuing on to bfd_elf_final_link so it is OK to use them. linker_mark is clear before we get here. Set segment_mark on sections that are part of a pasted function (excluding the last section). Set up function rodata section if --overlay-rodata. We don't currently include merged string constant rodata sections since Sort the call graph so that the deepest nodes will be visited first. */ static bfd_boolean mark_overlay_section (struct function_info *fun, struct bfd_link_info *info, void *param) { struct call_info *call; unsigned int count; struct _mos_param *mos_param = param; if (fun->visit4) return TRUE; fun->visit4 = TRUE; if (!fun->sec->linker_mark) { unsigned int size; fun->sec->linker_mark = 1; fun->sec->gc_mark = 1; fun->sec->segment_mark = 0; /* Ensure SEC_CODE is set on this text section (it ought to be!), and SEC_CODE is clear on rodata sections. We use this flag to differentiate the two overlay section types. */ fun->sec->flags |= SEC_CODE; if (spu_hash_table (info)->auto_overlay & OVERLAY_RODATA) { char *name = NULL; /* Find the rodata section corresponding to this function's text section. */ if (strcmp (fun->sec->name, ".text") == 0) { name = bfd_malloc (sizeof (".rodata")); if (name == NULL) return FALSE; memcpy (name, ".rodata", sizeof (".rodata")); } else if (strncmp (fun->sec->name, ".text.", 6) == 0) { size_t len = strlen (fun->sec->name); name = bfd_malloc (len + 3); if (name == NULL) return FALSE; memcpy (name, ".rodata", sizeof (".rodata")); memcpy (name + 7, fun->sec->name + 5, len - 4); } else if (strncmp (fun->sec->name, ".gnu.linkonce.t.", 16) == 0) { size_t len = strlen (fun->sec->name) + 1; name = bfd_malloc (len); if (name == NULL) return FALSE; memcpy (name, fun->sec->name, len); name[14] = 'r'; } if (name != NULL) { asection *rodata = NULL; asection *group_sec = elf_section_data (fun->sec)->next_in_group; if (group_sec == NULL) rodata = bfd_get_section_by_name (fun->sec->owner, name); else while (group_sec != NULL && group_sec != fun->sec) { if (strcmp (group_sec->name, name) == 0) { rodata = group_sec; break; } group_sec = elf_section_data (group_sec)->next_in_group; } fun->rodata = rodata; if (fun->rodata) { fun->rodata->linker_mark = 1; fun->rodata->gc_mark = 1; fun->rodata->flags &= ~SEC_CODE; } free (name); } } size = fun->sec->size; if (fun->rodata) size += fun->rodata->size; if (mos_param->max_overlay_size < size) mos_param->max_overlay_size = size; } for (count = 0, call = fun->call_list; call != NULL; call = call->next) count += 1; if (count > 1) { struct call_info **calls = bfd_malloc (count * sizeof (*calls)); if (calls == NULL) return FALSE; for (count = 0, call = fun->call_list; call != NULL; call = call->next) calls[count++] = call; qsort (calls, count, sizeof (*calls), sort_calls); fun->call_list = NULL; while (count != 0) { --count; calls[count]->next = fun->call_list; fun->call_list = calls[count]; } free (calls); } for (call = fun->call_list; call != NULL; call = call->next) { if (call->is_pasted) { /* There can only be one is_pasted call per function_info. */ BFD_ASSERT (!fun->sec->segment_mark); fun->sec->segment_mark = 1; } if (!mark_overlay_section (call->fun, info, param)) return FALSE; } /* Don't put entry code into an overlay. The overlay manager needs a stack! */ if (fun->lo + fun->sec->output_offset + fun->sec->output_section->vma == info->output_bfd->start_address) { fun->sec->linker_mark = 0; if (fun->rodata != NULL) fun->rodata->linker_mark = 0; } return TRUE; } /* If non-zero then unmark functions called from those within sections that we need to unmark. Unfortunately this isn't reliable since the call graph cannot know the destination of function pointer calls. */ #define RECURSE_UNMARK 0 struct _uos_param { asection *exclude_input_section; asection *exclude_output_section; unsigned long clearing; }; /* Undo some of mark_overlay_section's work. */ static bfd_boolean unmark_overlay_section (struct function_info *fun, struct bfd_link_info *info, void *param) { struct call_info *call; struct _uos_param *uos_param = param; unsigned int excluded = 0; if (fun->visit5) return TRUE; fun->visit5 = TRUE; excluded = 0; if (fun->sec == uos_param->exclude_input_section || fun->sec->output_section == uos_param->exclude_output_section) excluded = 1; if (RECURSE_UNMARK) uos_param->clearing += excluded; if (RECURSE_UNMARK ? uos_param->clearing : excluded) { fun->sec->linker_mark = 0; if (fun->rodata) fun->rodata->linker_mark = 0; } for (call = fun->call_list; call != NULL; call = call->next) if (!unmark_overlay_section (call->fun, info, param)) return FALSE; if (RECURSE_UNMARK) uos_param->clearing -= excluded; return TRUE; } struct _cl_param { unsigned int lib_size; asection **lib_sections; }; /* Add sections we have marked as belonging to overlays to an array for consideration as non-overlay sections. The array consist of pairs of sections, (text,rodata), for functions in the call graph. */ static bfd_boolean collect_lib_sections (struct function_info *fun, struct bfd_link_info *info, void *param) { struct _cl_param *lib_param = param; struct call_info *call; unsigned int size; if (fun->visit6) return TRUE; fun->visit6 = TRUE; if (!fun->sec->linker_mark || !fun->sec->gc_mark || fun->sec->segment_mark) return TRUE; size = fun->sec->size; if (fun->rodata) size += fun->rodata->size; if (size <= lib_param->lib_size) { *lib_param->lib_sections++ = fun->sec; fun->sec->gc_mark = 0; if (fun->rodata && fun->rodata->linker_mark && fun->rodata->gc_mark) { *lib_param->lib_sections++ = fun->rodata; fun->rodata->gc_mark = 0; } else *lib_param->lib_sections++ = NULL; } for (call = fun->call_list; call != NULL; call = call->next) collect_lib_sections (call->fun, info, param); return TRUE; } /* qsort predicate to sort sections by call count. */ static int sort_lib (const void *a, const void *b) { asection *const *s1 = a; asection *const *s2 = b; struct _spu_elf_section_data *sec_data; struct spu_elf_stack_info *sinfo; int delta; delta = 0; if ((sec_data = spu_elf_section_data (*s1)) != NULL && (sinfo = sec_data->u.i.stack_info) != NULL) { int i; for (i = 0; i < sinfo->num_fun; ++i) delta -= sinfo->fun[i].call_count; } if ((sec_data = spu_elf_section_data (*s2)) != NULL && (sinfo = sec_data->u.i.stack_info) != NULL) { int i; for (i = 0; i < sinfo->num_fun; ++i) delta += sinfo->fun[i].call_count; } if (delta != 0) return delta; return s1 - s2; } /* Remove some sections from those marked to be in overlays. Choose those that are called from many places, likely library functions. */ static unsigned int auto_ovl_lib_functions (struct bfd_link_info *info, unsigned int lib_size) { bfd *ibfd; asection **lib_sections; unsigned int i, lib_count; struct _cl_param collect_lib_param; struct function_info dummy_caller; memset (&dummy_caller, 0, sizeof (dummy_caller)); lib_count = 0; for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { extern const bfd_target bfd_elf32_spu_vec; asection *sec; if (ibfd->xvec != &bfd_elf32_spu_vec) continue; for (sec = ibfd->sections; sec != NULL; sec = sec->next) if (sec->linker_mark && sec->size < lib_size && (sec->flags & SEC_CODE) != 0) lib_count += 1; } lib_sections = bfd_malloc (lib_count * 2 * sizeof (*lib_sections)); if (lib_sections == NULL) return (unsigned int) -1; collect_lib_param.lib_size = lib_size; collect_lib_param.lib_sections = lib_sections; if (!for_each_node (collect_lib_sections, info, &collect_lib_param, TRUE)) return (unsigned int) -1; lib_count = (collect_lib_param.lib_sections - lib_sections) / 2; /* Sort sections so that those with the most calls are first. */ if (lib_count > 1) qsort (lib_sections, lib_count, 2 * sizeof (*lib_sections), sort_lib); for (i = 0; i < lib_count; i++) { unsigned int tmp, stub_size; asection *sec; struct _spu_elf_section_data *sec_data; struct spu_elf_stack_info *sinfo; sec = lib_sections[2 * i]; /* If this section is OK, its size must be less than lib_size. */ tmp = sec->size; /* If it has a rodata section, then add that too. */ if (lib_sections[2 * i + 1]) tmp += lib_sections[2 * i + 1]->size; /* Add any new overlay call stubs needed by the section. */ stub_size = 0; if (tmp < lib_size && (sec_data = spu_elf_section_data (sec)) != NULL && (sinfo = sec_data->u.i.stack_info) != NULL) { int k; struct call_info *call; for (k = 0; k < sinfo->num_fun; ++k) for (call = sinfo->fun[k].call_list; call; call = call->next) if (call->fun->sec->linker_mark) { struct call_info *p; for (p = dummy_caller.call_list; p; p = p->next) if (p->fun == call->fun) break; if (!p) stub_size += OVL_STUB_SIZE; } } if (tmp + stub_size < lib_size) { struct call_info **pp, *p; /* This section fits. Mark it as non-overlay. */ lib_sections[2 * i]->linker_mark = 0; if (lib_sections[2 * i + 1]) lib_sections[2 * i + 1]->linker_mark = 0; lib_size -= tmp + stub_size; /* Call stubs to the section we just added are no longer needed. */ pp = &dummy_caller.call_list; while ((p = *pp) != NULL) if (!p->fun->sec->linker_mark) { lib_size += OVL_STUB_SIZE; *pp = p->next; free (p); } else pp = &p->next; /* Add new call stubs to dummy_caller. */ if ((sec_data = spu_elf_section_data (sec)) != NULL && (sinfo = sec_data->u.i.stack_info) != NULL) { int k; struct call_info *call; for (k = 0; k < sinfo->num_fun; ++k) for (call = sinfo->fun[k].call_list; call; call = call->next) if (call->fun->sec->linker_mark) { struct call_info *callee; callee = bfd_malloc (sizeof (*callee)); if (callee == NULL) return (unsigned int) -1; *callee = *call; if (!insert_callee (&dummy_caller, callee)) free (callee); } } } } while (dummy_caller.call_list != NULL) { struct call_info *call = dummy_caller.call_list; dummy_caller.call_list = call->next; free (call); } for (i = 0; i < 2 * lib_count; i++) if (lib_sections[i]) lib_sections[i]->gc_mark = 1; free (lib_sections); return lib_size; } /* Build an array of overlay sections. The deepest node's section is added first, then its parent node's section, then everything called from the parent section. The idea being to group sections to minimise calls between different overlays. */ static bfd_boolean collect_overlays (struct function_info *fun, struct bfd_link_info *info, void *param) { struct call_info *call; bfd_boolean added_fun; asection ***ovly_sections = param; if (fun->visit7) return TRUE; fun->visit7 = TRUE; for (call = fun->call_list; call != NULL; call = call->next) if (!call->is_pasted) { if (!collect_overlays (call->fun, info, ovly_sections)) return FALSE; break; } added_fun = FALSE; if (fun->sec->linker_mark && fun->sec->gc_mark) { fun->sec->gc_mark = 0; *(*ovly_sections)++ = fun->sec; if (fun->rodata && fun->rodata->linker_mark && fun->rodata->gc_mark) { fun->rodata->gc_mark = 0; *(*ovly_sections)++ = fun->rodata; } else *(*ovly_sections)++ = NULL; added_fun = TRUE; /* Pasted sections must stay with the first section. We don't put pasted sections in the array, just the first section. Mark subsequent sections as already considered. */ if (fun->sec->segment_mark) { struct function_info *call_fun = fun; do { for (call = call_fun->call_list; call != NULL; call = call->next) if (call->is_pasted) { call_fun = call->fun; call_fun->sec->gc_mark = 0; if (call_fun->rodata) call_fun->rodata->gc_mark = 0; break; } if (call == NULL) abort (); } while (call_fun->sec->segment_mark); } } for (call = fun->call_list; call != NULL; call = call->next) if (!collect_overlays (call->fun, info, ovly_sections)) return FALSE; if (added_fun) { struct _spu_elf_section_data *sec_data; struct spu_elf_stack_info *sinfo; if ((sec_data = spu_elf_section_data (fun->sec)) != NULL && (sinfo = sec_data->u.i.stack_info) != NULL) { int i; for (i = 0; i < sinfo->num_fun; ++i) if (!collect_overlays (&sinfo->fun[i], info, ovly_sections)) return FALSE; } } return TRUE; } struct _sum_stack_param { size_t cum_stack; size_t overall_stack; bfd_boolean emit_stack_syms; }; /* Descend the call graph for FUN, accumulating total stack required. */ static bfd_boolean sum_stack (struct function_info *fun, struct bfd_link_info *info, void *param) { struct call_info *call; struct function_info *max; size_t stack, cum_stack; const char *f1; bfd_boolean has_call; struct _sum_stack_param *sum_stack_param = param; struct spu_link_hash_table *htab; cum_stack = fun->stack; sum_stack_param->cum_stack = cum_stack; if (fun->visit3) return TRUE; has_call = FALSE; max = NULL; for (call = fun->call_list; call; call = call->next) { if (!call->is_pasted) has_call = TRUE; if (!sum_stack (call->fun, info, sum_stack_param)) return FALSE; stack = sum_stack_param->cum_stack; /* Include caller stack for normal calls, don't do so for tail calls. fun->stack here is local stack usage for this function. */ if (!call->is_tail || call->is_pasted || call->fun->start != NULL) stack += fun->stack; if (cum_stack < stack) { cum_stack = stack; max = call->fun; } } sum_stack_param->cum_stack = cum_stack; stack = fun->stack; /* Now fun->stack holds cumulative stack. */ fun->stack = cum_stack; fun->visit3 = TRUE; if (!fun->non_root && sum_stack_param->overall_stack < cum_stack) sum_stack_param->overall_stack = cum_stack; htab = spu_hash_table (info); if (htab->auto_overlay) return TRUE; f1 = func_name (fun); if (!fun->non_root) info->callbacks->info (_(" %s: 0x%v\n"), f1, (bfd_vma) cum_stack); info->callbacks->minfo (_("%s: 0x%v 0x%v\n"), f1, (bfd_vma) stack, (bfd_vma) cum_stack); if (has_call) { info->callbacks->minfo (_(" calls:\n")); for (call = fun->call_list; call; call = call->next) if (!call->is_pasted) { const char *f2 = func_name (call->fun); const char *ann1 = call->fun == max ? "*" : " "; const char *ann2 = call->is_tail ? "t" : " "; info->callbacks->minfo (_(" %s%s %s\n"), ann1, ann2, f2); } } if (sum_stack_param->emit_stack_syms) { char *name = bfd_malloc (18 + strlen (f1)); struct elf_link_hash_entry *h; if (name == NULL) return FALSE; if (fun->global || ELF_ST_BIND (fun->u.sym->st_info) == STB_GLOBAL) sprintf (name, "__stack_%s", f1); else sprintf (name, "__stack_%x_%s", fun->sec->id & 0xffffffff, f1); h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE); free (name); if (h != NULL && (h->root.type == bfd_link_hash_new || h->root.type == bfd_link_hash_undefined || h->root.type == bfd_link_hash_undefweak)) { h->root.type = bfd_link_hash_defined; h->root.u.def.section = bfd_abs_section_ptr; h->root.u.def.value = cum_stack; h->size = 0; h->type = 0; h->ref_regular = 1; h->def_regular = 1; h->ref_regular_nonweak = 1; h->forced_local = 1; h->non_elf = 0; } } return TRUE; } /* SEC is part of a pasted function. Return the call_info for the next section of this function. */ static struct call_info * find_pasted_call (asection *sec) { struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec); struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info; struct call_info *call; int k; for (k = 0; k < sinfo->num_fun; ++k) for (call = sinfo->fun[k].call_list; call != NULL; call = call->next) if (call->is_pasted) return call; abort (); return 0; } /* qsort predicate to sort bfds by file name. */ static int sort_bfds (const void *a, const void *b) { bfd *const *abfd1 = a; bfd *const *abfd2 = b; return strcmp ((*abfd1)->filename, (*abfd2)->filename); } /* Handle --auto-overlay. */ static void spu_elf_auto_overlay (struct bfd_link_info *, void (*) (void)) ATTRIBUTE_NORETURN; static void spu_elf_auto_overlay (struct bfd_link_info *info, void (*spu_elf_load_ovl_mgr) (void)) { bfd *ibfd; bfd **bfd_arr; struct elf_segment_map *m; unsigned int fixed_size, lo, hi; struct spu_link_hash_table *htab; unsigned int base, i, count, bfd_count; int ovlynum; asection **ovly_sections, **ovly_p; FILE *script; unsigned int total_overlay_size, overlay_size; struct elf_link_hash_entry *h; struct _mos_param mos_param; struct _uos_param uos_param; struct function_info dummy_caller; /* Find the extents of our loadable image. */ lo = (unsigned int) -1; hi = 0; for (m = elf_tdata (info->output_bfd)->segment_map; m != NULL; m = m->next) if (m->p_type == PT_LOAD) for (i = 0; i < m->count; i++) if (m->sections[i]->size != 0) { if (m->sections[i]->vma < lo) lo = m->sections[i]->vma; if (m->sections[i]->vma + m->sections[i]->size - 1 > hi) hi = m->sections[i]->vma + m->sections[i]->size - 1; } fixed_size = hi + 1 - lo; if (!discover_functions (info)) goto err_exit; if (!build_call_tree (info)) goto err_exit; uos_param.exclude_input_section = 0; uos_param.exclude_output_section = bfd_get_section_by_name (info->output_bfd, ".interrupt"); htab = spu_hash_table (info); h = elf_link_hash_lookup (&htab->elf, "__ovly_load", FALSE, FALSE, FALSE); if (h != NULL && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && h->def_regular) { /* We have a user supplied overlay manager. */ uos_param.exclude_input_section = h->root.u.def.section; } else { /* If no user overlay manager, spu_elf_load_ovl_mgr will add our builtin version to .text, and will adjust .text size. */ asection *text = bfd_get_section_by_name (info->output_bfd, ".text"); if (text != NULL) fixed_size -= text->size; spu_elf_load_ovl_mgr (); text = bfd_get_section_by_name (info->output_bfd, ".text"); if (text != NULL) fixed_size += text->size; } /* Mark overlay sections, and find max overlay section size. */ mos_param.max_overlay_size = 0; if (!for_each_node (mark_overlay_section, info, &mos_param, TRUE)) goto err_exit; /* We can't put the overlay manager or interrupt routines in overlays. */ uos_param.clearing = 0; if ((uos_param.exclude_input_section || uos_param.exclude_output_section) && !for_each_node (unmark_overlay_section, info, &uos_param, TRUE)) goto err_exit; bfd_count = 0; for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) ++bfd_count; bfd_arr = bfd_malloc (bfd_count * sizeof (*bfd_arr)); if (bfd_arr == NULL) goto err_exit; /* Count overlay sections, and subtract their sizes from "fixed_size". */ count = 0; bfd_count = 0; total_overlay_size = 0; for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { extern const bfd_target bfd_elf32_spu_vec; asection *sec; unsigned int old_count; if (ibfd->xvec != &bfd_elf32_spu_vec) continue; old_count = count; for (sec = ibfd->sections; sec != NULL; sec = sec->next) if (sec->linker_mark) { if ((sec->flags & SEC_CODE) != 0) count += 1; fixed_size -= sec->size; total_overlay_size += sec->size; } if (count != old_count) bfd_arr[bfd_count++] = ibfd; } /* Since the overlay link script selects sections by file name and section name, ensure that file names are unique. */ if (bfd_count > 1) { bfd_boolean ok = TRUE; qsort (bfd_arr, bfd_count, sizeof (*bfd_arr), sort_bfds); for (i = 1; i < bfd_count; ++i) if (strcmp (bfd_arr[i - 1]->filename, bfd_arr[i]->filename) == 0) { if (bfd_arr[i - 1]->my_archive == bfd_arr[i]->my_archive) { if (bfd_arr[i - 1]->my_archive && bfd_arr[i]->my_archive) info->callbacks->einfo (_("%s duplicated in %s\n"), bfd_arr[i]->filename, bfd_arr[i]->my_archive->filename); else info->callbacks->einfo (_("%s duplicated\n"), bfd_arr[i]->filename); ok = FALSE; } } if (!ok) { info->callbacks->einfo (_("sorry, no support for duplicate " "object files in auto-overlay script\n")); bfd_set_error (bfd_error_bad_value); goto err_exit; } } free (bfd_arr); if (htab->reserved == 0) { struct _sum_stack_param sum_stack_param; sum_stack_param.emit_stack_syms = 0; sum_stack_param.overall_stack = 0; if (!for_each_node (sum_stack, info, &sum_stack_param, TRUE)) goto err_exit; htab->reserved = sum_stack_param.overall_stack + htab->extra_stack_space; } fixed_size += htab->reserved; fixed_size += htab->non_ovly_stub * OVL_STUB_SIZE; if (fixed_size + mos_param.max_overlay_size <= htab->local_store) { /* Guess number of overlays. Assuming overlay buffer is on average only half full should be conservative. */ ovlynum = total_overlay_size * 2 / (htab->local_store - fixed_size); /* Space for _ovly_table[], _ovly_buf_table[] and toe. */ fixed_size += ovlynum * 16 + 16 + 4 + 16; } if (fixed_size + mos_param.max_overlay_size > htab->local_store) info->callbacks->einfo (_("non-overlay size of 0x%v plus maximum overlay " "size of 0x%v exceeds local store\n"), (bfd_vma) fixed_size, (bfd_vma) mos_param.max_overlay_size); /* Now see if we should put some functions in the non-overlay area. */ else if (fixed_size < htab->overlay_fixed) { unsigned int max_fixed, lib_size; max_fixed = htab->local_store - mos_param.max_overlay_size; if (max_fixed > htab->overlay_fixed) max_fixed = htab->overlay_fixed; lib_size = max_fixed - fixed_size; lib_size = auto_ovl_lib_functions (info, lib_size); if (lib_size == (unsigned int) -1) goto err_exit; fixed_size = max_fixed - lib_size; } /* Build an array of sections, suitably sorted to place into overlays. */ ovly_sections = bfd_malloc (2 * count * sizeof (*ovly_sections)); if (ovly_sections == NULL) goto err_exit; ovly_p = ovly_sections; if (!for_each_node (collect_overlays, info, &ovly_p, TRUE)) goto err_exit; count = (size_t) (ovly_p - ovly_sections) / 2; script = htab->spu_elf_open_overlay_script (); if (fprintf (script, "SECTIONS\n{\n OVERLAY :\n {\n") <= 0) goto file_err; memset (&dummy_caller, 0, sizeof (dummy_caller)); overlay_size = htab->local_store - fixed_size; base = 0; ovlynum = 0; while (base < count) { unsigned int size = 0; unsigned int j; for (i = base; i < count; i++) { asection *sec; unsigned int tmp; unsigned int stub_size; struct call_info *call, *pasty; struct _spu_elf_section_data *sec_data; struct spu_elf_stack_info *sinfo; int k; /* See whether we can add this section to the current overlay without overflowing our overlay buffer. */ sec = ovly_sections[2 * i]; tmp = size + sec->size; if (ovly_sections[2 * i + 1]) tmp += ovly_sections[2 * i + 1]->size; if (tmp > overlay_size) break; if (sec->segment_mark) { /* Pasted sections must stay together, so add their sizes too. */ struct call_info *pasty = find_pasted_call (sec); while (pasty != NULL) { struct function_info *call_fun = pasty->fun; tmp += call_fun->sec->size; if (call_fun->rodata) tmp += call_fun->rodata->size; for (pasty = call_fun->call_list; pasty; pasty = pasty->next) if (pasty->is_pasted) break; } } if (tmp > overlay_size) break; /* If we add this section, we might need new overlay call stubs. Add any overlay section calls to dummy_call. */ pasty = NULL; sec_data = spu_elf_section_data (sec); sinfo = sec_data->u.i.stack_info; for (k = 0; k < sinfo->num_fun; ++k) for (call = sinfo->fun[k].call_list; call; call = call->next) if (call->is_pasted) { BFD_ASSERT (pasty == NULL); pasty = call; } else if (call->fun->sec->linker_mark) { if (!copy_callee (&dummy_caller, call)) goto err_exit; } while (pasty != NULL) { struct function_info *call_fun = pasty->fun; pasty = NULL; for (call = call_fun->call_list; call; call = call->next) if (call->is_pasted) { BFD_ASSERT (pasty == NULL); pasty = call; } else if (!copy_callee (&dummy_caller, call)) goto err_exit; } /* Calculate call stub size. */ stub_size = 0; for (call = dummy_caller.call_list; call; call = call->next) { unsigned int k; stub_size += OVL_STUB_SIZE; /* If the call is within this overlay, we won't need a stub. */ for (k = base; k < i + 1; k++) if (call->fun->sec == ovly_sections[2 * k]) { stub_size -= OVL_STUB_SIZE; break; } } if (tmp + stub_size > overlay_size) break; size = tmp; } if (i == base) { info->callbacks->einfo (_("%B:%A%s exceeds overlay size\n"), ovly_sections[2 * i]->owner, ovly_sections[2 * i], ovly_sections[2 * i + 1] ? " + rodata" : ""); bfd_set_error (bfd_error_bad_value); goto err_exit; } if (fprintf (script, " .ovly%d {\n", ++ovlynum) <= 0) goto file_err; for (j = base; j < i; j++) { asection *sec = ovly_sections[2 * j]; if (fprintf (script, " %s%c%s (%s)\n", (sec->owner->my_archive != NULL ? sec->owner->my_archive->filename : ""), info->path_separator, sec->owner->filename, sec->name) <= 0) goto file_err; if (sec->segment_mark) { struct call_info *call = find_pasted_call (sec); while (call != NULL) { struct function_info *call_fun = call->fun; sec = call_fun->sec; if (fprintf (script, " %s%c%s (%s)\n", (sec->owner->my_archive != NULL ? sec->owner->my_archive->filename : ""), info->path_separator, sec->owner->filename, sec->name) <= 0) goto file_err; for (call = call_fun->call_list; call; call = call->next) if (call->is_pasted) break; } } } for (j = base; j < i; j++) { asection *sec = ovly_sections[2 * j + 1]; if (sec != NULL && fprintf (script, " %s%c%s (%s)\n", (sec->owner->my_archive != NULL ? sec->owner->my_archive->filename : ""), info->path_separator, sec->owner->filename, sec->name) <= 0) goto file_err; sec = ovly_sections[2 * j]; if (sec->segment_mark) { struct call_info *call = find_pasted_call (sec); while (call != NULL) { struct function_info *call_fun = call->fun; sec = call_fun->rodata; if (sec != NULL && fprintf (script, " %s%c%s (%s)\n", (sec->owner->my_archive != NULL ? sec->owner->my_archive->filename : ""), info->path_separator, sec->owner->filename, sec->name) <= 0) goto file_err; for (call = call_fun->call_list; call; call = call->next) if (call->is_pasted) break; } } } if (fprintf (script, " }\n") <= 0) goto file_err; while (dummy_caller.call_list != NULL) { struct call_info *call = dummy_caller.call_list; dummy_caller.call_list = call->next; free (call); } base = i; } free (ovly_sections); if (fprintf (script, " }\n}\nINSERT AFTER .text;\n") <= 0) goto file_err; if (fclose (script) != 0) goto file_err; if (htab->auto_overlay & AUTO_RELINK) htab->spu_elf_relink (); xexit (0); file_err: bfd_set_error (bfd_error_system_call); err_exit: info->callbacks->einfo ("%F%P: auto overlay error: %E\n"); xexit (1); } /* Provide an estimate of total stack required. */ static bfd_boolean spu_elf_stack_analysis (struct bfd_link_info *info, int emit_stack_syms) { struct _sum_stack_param sum_stack_param; if (!discover_functions (info)) return FALSE; if (!build_call_tree (info)) return FALSE; info->callbacks->info (_("Stack size for call graph root nodes.\n")); info->callbacks->minfo (_("\nStack size for functions. " "Annotations: '*' max stack, 't' tail call\n")); sum_stack_param.emit_stack_syms = emit_stack_syms; sum_stack_param.overall_stack = 0; if (!for_each_node (sum_stack, info, &sum_stack_param, TRUE)) return FALSE; info->callbacks->info (_("Maximum stack required is 0x%v\n"), (bfd_vma) sum_stack_param.overall_stack); return TRUE; } /* Perform a final link. */ static bfd_boolean spu_elf_final_link (bfd *output_bfd, struct bfd_link_info *info) { struct spu_link_hash_table *htab = spu_hash_table (info); if (htab->auto_overlay) spu_elf_auto_overlay (info, htab->spu_elf_load_ovl_mgr); if (htab->stack_analysis && !spu_elf_stack_analysis (info, htab->emit_stack_syms)) info->callbacks->einfo ("%X%P: stack analysis error: %E\n"); return bfd_elf_final_link (output_bfd, info); } /* Called when not normally emitting relocs, ie. !info->relocatable and !info->emitrelocations. Returns a count of special relocs that need to be emitted. */ static unsigned int spu_elf_count_relocs (struct bfd_link_info *info, asection *sec) { Elf_Internal_Rela *relocs; unsigned int count = 0; relocs = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, info->keep_memory); if (relocs != NULL) { Elf_Internal_Rela *rel; Elf_Internal_Rela *relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) { int r_type = ELF32_R_TYPE (rel->r_info); if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64) ++count; } if (elf_section_data (sec)->relocs != relocs) free (relocs); } return count; } /* Apply RELOCS to CONTENTS of INPUT_SECTION from INPUT_BFD. */ static int spu_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; Elf_Internal_Rela *rel, *relend; struct spu_link_hash_table *htab; asection *ea = bfd_get_section_by_name (output_bfd, "._ea"); int ret = TRUE; bfd_boolean emit_these_relocs = FALSE; bfd_boolean is_ea_sym; bfd_boolean stubs; htab = spu_hash_table (info); stubs = (htab->stub_sec != NULL && maybe_needs_stubs (input_section, output_bfd)); symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; sym_hashes = (struct elf_link_hash_entry **) (elf_sym_hashes (input_bfd)); rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; reloc_howto_type *howto; unsigned int r_symndx; Elf_Internal_Sym *sym; asection *sec; struct elf_link_hash_entry *h; const char *sym_name; bfd_vma relocation; bfd_vma addend; bfd_reloc_status_type r; bfd_boolean unresolved_reloc; bfd_boolean warned; enum _stub_type stub_type; r_symndx = ELF32_R_SYM (rel->r_info); r_type = ELF32_R_TYPE (rel->r_info); howto = elf_howto_table + r_type; unresolved_reloc = FALSE; warned = FALSE; h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec); relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); } else { if (sym_hashes == NULL) return FALSE; h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; relocation = 0; if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { sec = h->root.u.def.section; if (sec == NULL || sec->output_section == NULL) /* Set a flag that will be cleared later if we find a relocation value for this symbol. output_section is typically NULL for symbols satisfied by a shared library. */ unresolved_reloc = TRUE; else relocation = (h->root.u.def.value + sec->output_section->vma + sec->output_offset); } else if (h->root.type == bfd_link_hash_undefweak) ; else if (info->unresolved_syms_in_objects == RM_IGNORE && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) ; else if (!info->relocatable && !(r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)) { bfd_boolean err; err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT); if (!info->callbacks->undefined_symbol (info, h->root.root.string, input_bfd, input_section, rel->r_offset, err)) return FALSE; warned = TRUE; } sym_name = h->root.root.string; } if (sec != NULL && elf_discarded_section (sec)) { /* For relocs against symbols from removed linkonce sections, or sections discarded by a linker script, we just want the section contents zeroed. Avoid any special processing. */ _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); rel->r_info = 0; rel->r_addend = 0; continue; } if (info->relocatable) continue; is_ea_sym = (ea != NULL && sec != NULL && sec->output_section == ea); if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64) { if (is_ea_sym) { /* ._ea is a special section that isn't allocated in SPU memory, but rather occupies space in PPU memory as part of an embedded ELF image. If this reloc is against a symbol defined in ._ea, then transform the reloc into an equivalent one without a symbol relative to the start of the ELF image. */ rel->r_addend += (relocation - ea->vma + elf_section_data (ea)->this_hdr.sh_offset); rel->r_info = ELF32_R_INFO (0, r_type); } emit_these_relocs = TRUE; continue; } if (is_ea_sym) unresolved_reloc = TRUE; if (unresolved_reloc) { (*_bfd_error_handler) (_("%B(%s+0x%lx): unresolvable %s relocation against symbol `%s'"), input_bfd, bfd_get_section_name (input_bfd, input_section), (long) rel->r_offset, howto->name, sym_name); ret = FALSE; } /* If this symbol is in an overlay area, we may need to relocate to the overlay stub. */ addend = rel->r_addend; if (stubs && (stub_type = needs_ovl_stub (h, sym, sec, input_section, rel, contents, info)) != no_stub) { unsigned int ovl = 0; struct got_entry *g, **head; if (stub_type != nonovl_stub) ovl = (spu_elf_section_data (input_section->output_section) ->u.o.ovl_index); if (h != NULL) head = &h->got.glist; else head = elf_local_got_ents (input_bfd) + r_symndx; for (g = *head; g != NULL; g = g->next) if (g->addend == addend && (g->ovl == ovl || g->ovl == 0)) break; if (g == NULL) abort (); relocation = g->stub_addr; addend = 0; } r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, addend); if (r != bfd_reloc_ok) { const char *msg = (const char *) 0; switch (r) { case bfd_reloc_overflow: if (!((*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), sym_name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return FALSE; break; case bfd_reloc_undefined: if (!((*info->callbacks->undefined_symbol) (info, sym_name, input_bfd, input_section, rel->r_offset, TRUE))) return FALSE; break; case bfd_reloc_outofrange: msg = _("internal error: out of range error"); goto common_error; case bfd_reloc_notsupported: msg = _("internal error: unsupported relocation error"); goto common_error; case bfd_reloc_dangerous: msg = _("internal error: dangerous error"); goto common_error; default: msg = _("internal error: unknown error"); /* fall through */ common_error: ret = FALSE; if (!((*info->callbacks->warning) (info, msg, sym_name, input_bfd, input_section, rel->r_offset))) return FALSE; break; } } } if (ret && emit_these_relocs && !info->emitrelocations) { Elf_Internal_Rela *wrel; Elf_Internal_Shdr *rel_hdr; wrel = rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; r_type = ELF32_R_TYPE (rel->r_info); if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64) *wrel++ = *rel; } input_section->reloc_count = wrel - relocs; /* Backflips for _bfd_elf_link_output_relocs. */ rel_hdr = &elf_section_data (input_section)->rel_hdr; rel_hdr->sh_size = input_section->reloc_count * rel_hdr->sh_entsize; ret = 2; } return ret; } /* Adjust _SPUEAR_ syms to point at their overlay stubs. */ static bfd_boolean spu_elf_output_symbol_hook (struct bfd_link_info *info, const char *sym_name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, asection *sym_sec ATTRIBUTE_UNUSED, struct elf_link_hash_entry *h) { struct spu_link_hash_table *htab = spu_hash_table (info); if (!info->relocatable && htab->stub_sec != NULL && h != NULL && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && h->def_regular && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0) { struct got_entry *g; for (g = h->got.glist; g != NULL; g = g->next) if (g->addend == 0 && g->ovl == 0) { sym->st_shndx = (_bfd_elf_section_from_bfd_section (htab->stub_sec[0]->output_section->owner, htab->stub_sec[0]->output_section)); sym->st_value = g->stub_addr; break; } } return TRUE; } static int spu_plugin = 0; void spu_elf_plugin (int val) { spu_plugin = val; } /* Set ELF header e_type for plugins. */ static void spu_elf_post_process_headers (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) { if (spu_plugin) { Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd); i_ehdrp->e_type = ET_DYN; } } /* We may add an extra PT_LOAD segment for .toe. We also need extra segments for overlays. */ static int spu_elf_additional_program_headers (bfd *abfd, struct bfd_link_info *info) { int extra = 0; asection *sec; if (info != NULL) { struct spu_link_hash_table *htab = spu_hash_table (info); extra = htab->num_overlays; } if (extra) ++extra; sec = bfd_get_section_by_name (abfd, ".toe"); if (sec != NULL && (sec->flags & SEC_LOAD) != 0) ++extra; return extra; } /* Remove .toe section from other PT_LOAD segments and put it in a segment of its own. Put overlays in separate segments too. */ static bfd_boolean spu_elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info) { asection *toe, *s; struct elf_segment_map *m; unsigned int i; if (info == NULL) return TRUE; toe = bfd_get_section_by_name (abfd, ".toe"); for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) if (m->p_type == PT_LOAD && m->count > 1) for (i = 0; i < m->count; i++) if ((s = m->sections[i]) == toe || spu_elf_section_data (s)->u.o.ovl_index != 0) { struct elf_segment_map *m2; bfd_vma amt; if (i + 1 < m->count) { amt = sizeof (struct elf_segment_map); amt += (m->count - (i + 2)) * sizeof (m->sections[0]); m2 = bfd_zalloc (abfd, amt); if (m2 == NULL) return FALSE; m2->count = m->count - (i + 1); memcpy (m2->sections, m->sections + i + 1, m2->count * sizeof (m->sections[0])); m2->p_type = PT_LOAD; m2->next = m->next; m->next = m2; } m->count = 1; if (i != 0) { m->count = i; amt = sizeof (struct elf_segment_map); m2 = bfd_zalloc (abfd, amt); if (m2 == NULL) return FALSE; m2->p_type = PT_LOAD; m2->count = 1; m2->sections[0] = s; m2->next = m->next; m->next = m2; } break; } return TRUE; } /* Tweak the section type of .note.spu_name. */ static bfd_boolean spu_elf_fake_sections (bfd *obfd ATTRIBUTE_UNUSED, Elf_Internal_Shdr *hdr, asection *sec) { if (strcmp (sec->name, SPU_PTNOTE_SPUNAME) == 0) hdr->sh_type = SHT_NOTE; return TRUE; } /* Tweak phdrs before writing them out. */ static int spu_elf_modify_program_headers (bfd *abfd, struct bfd_link_info *info) { const struct elf_backend_data *bed; struct elf_obj_tdata *tdata; Elf_Internal_Phdr *phdr, *last; struct spu_link_hash_table *htab; unsigned int count; unsigned int i; if (info == NULL) return TRUE; bed = get_elf_backend_data (abfd); tdata = elf_tdata (abfd); phdr = tdata->phdr; count = tdata->program_header_size / bed->s->sizeof_phdr; htab = spu_hash_table (info); if (htab->num_overlays != 0) { struct elf_segment_map *m; unsigned int o; for (i = 0, m = elf_tdata (abfd)->segment_map; m; ++i, m = m->next) if (m->count != 0 && (o = spu_elf_section_data (m->sections[0])->u.o.ovl_index) != 0) { /* Mark this as an overlay header. */ phdr[i].p_flags |= PF_OVERLAY; if (htab->ovtab != NULL && htab->ovtab->size != 0) { bfd_byte *p = htab->ovtab->contents; unsigned int off = o * 16 + 8; /* Write file_off into _ovly_table. */ bfd_put_32 (htab->ovtab->owner, phdr[i].p_offset, p + off); } } } /* Round up p_filesz and p_memsz of PT_LOAD segments to multiples of 16. This should always be possible when using the standard linker scripts, but don't create overlapping segments if someone is playing games with linker scripts. */ last = NULL; for (i = count; i-- != 0; ) if (phdr[i].p_type == PT_LOAD) { unsigned adjust; adjust = -phdr[i].p_filesz & 15; if (adjust != 0 && last != NULL && phdr[i].p_offset + phdr[i].p_filesz > last->p_offset - adjust) break; adjust = -phdr[i].p_memsz & 15; if (adjust != 0 && last != NULL && phdr[i].p_filesz != 0 && phdr[i].p_vaddr + phdr[i].p_memsz > last->p_vaddr - adjust && phdr[i].p_vaddr + phdr[i].p_memsz <= last->p_vaddr) break; if (phdr[i].p_filesz != 0) last = &phdr[i]; } if (i == (unsigned int) -1) for (i = count; i-- != 0; ) if (phdr[i].p_type == PT_LOAD) { unsigned adjust; adjust = -phdr[i].p_filesz & 15; phdr[i].p_filesz += adjust; adjust = -phdr[i].p_memsz & 15; phdr[i].p_memsz += adjust; } return TRUE; } #define TARGET_BIG_SYM bfd_elf32_spu_vec #define TARGET_BIG_NAME "elf32-spu" #define ELF_ARCH bfd_arch_spu #define ELF_MACHINE_CODE EM_SPU /* This matches the alignment need for DMA. */ #define ELF_MAXPAGESIZE 0x80 #define elf_backend_rela_normal 1 #define elf_backend_can_gc_sections 1 #define bfd_elf32_bfd_reloc_type_lookup spu_elf_reloc_type_lookup #define bfd_elf32_bfd_reloc_name_lookup spu_elf_reloc_name_lookup #define elf_info_to_howto spu_elf_info_to_howto #define elf_backend_count_relocs spu_elf_count_relocs #define elf_backend_relocate_section spu_elf_relocate_section #define elf_backend_symbol_processing spu_elf_backend_symbol_processing #define elf_backend_link_output_symbol_hook spu_elf_output_symbol_hook #define elf_backend_object_p spu_elf_object_p #define bfd_elf32_new_section_hook spu_elf_new_section_hook #define bfd_elf32_bfd_link_hash_table_create spu_elf_link_hash_table_create #define elf_backend_additional_program_headers spu_elf_additional_program_headers #define elf_backend_modify_segment_map spu_elf_modify_segment_map #define elf_backend_modify_program_headers spu_elf_modify_program_headers #define elf_backend_post_process_headers spu_elf_post_process_headers #define elf_backend_fake_sections spu_elf_fake_sections #define elf_backend_special_sections spu_elf_special_sections #define bfd_elf32_bfd_final_link spu_elf_final_link #include "elf32-target.h"