/* 32-bit ELF support for ARM Copyright (C) 1998-2016 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include #include "bfd.h" #include "bfd_stdint.h" #include "libiberty.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf-nacl.h" #include "elf-vxworks.h" #include "elf/arm.h" /* Return the relocation section associated with NAME. HTAB is the bfd's elf32_arm_link_hash_entry. */ #define RELOC_SECTION(HTAB, NAME) \ ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME) /* Return size of a relocation entry. HTAB is the bfd's elf32_arm_link_hash_entry. */ #define RELOC_SIZE(HTAB) \ ((HTAB)->use_rel \ ? sizeof (Elf32_External_Rel) \ : sizeof (Elf32_External_Rela)) /* Return function to swap relocations in. HTAB is the bfd's elf32_arm_link_hash_entry. */ #define SWAP_RELOC_IN(HTAB) \ ((HTAB)->use_rel \ ? bfd_elf32_swap_reloc_in \ : bfd_elf32_swap_reloca_in) /* Return function to swap relocations out. HTAB is the bfd's elf32_arm_link_hash_entry. */ #define SWAP_RELOC_OUT(HTAB) \ ((HTAB)->use_rel \ ? bfd_elf32_swap_reloc_out \ : bfd_elf32_swap_reloca_out) #define elf_info_to_howto 0 #define elf_info_to_howto_rel elf32_arm_info_to_howto #define ARM_ELF_ABI_VERSION 0 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM /* The Adjusted Place, as defined by AAELF. */ #define Pa(X) ((X) & 0xfffffffc) static bfd_boolean elf32_arm_write_section (bfd *output_bfd, struct bfd_link_info *link_info, asection *sec, bfd_byte *contents); /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g. R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO in that slot. */ static reloc_howto_type elf32_arm_howto_table_1[] = { /* No relocation. */ HOWTO (R_ARM_NONE, /* type */ 0, /* rightshift */ 3, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_NONE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_PC24, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_PC24", /* name */ FALSE, /* partial_inplace */ 0x00ffffff, /* src_mask */ 0x00ffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* 32 bit absolute */ HOWTO (R_ARM_ABS32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ABS32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* standard 32bit pc-relative reloc */ HOWTO (R_ARM_REL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_REL32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */ HOWTO (R_ARM_LDR_PC_G0, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_PC_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* 16 bit absolute */ HOWTO (R_ARM_ABS16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ABS16", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* 12 bit absolute */ HOWTO (R_ARM_ABS12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ABS12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_ABS5, /* type */ 6, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 5, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_ABS5", /* name */ FALSE, /* partial_inplace */ 0x000007e0, /* src_mask */ 0x000007e0, /* dst_mask */ FALSE), /* pcrel_offset */ /* 8 bit absolute */ HOWTO (R_ARM_ABS8, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ABS8", /* name */ FALSE, /* partial_inplace */ 0x000000ff, /* src_mask */ 0x000000ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_SBREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_SBREL32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_CALL, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_CALL", /* name */ FALSE, /* partial_inplace */ 0x07ff2fff, /* src_mask */ 0x07ff2fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_PC8, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_PC8", /* name */ FALSE, /* partial_inplace */ 0x000000ff, /* src_mask */ 0x000000ff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_BREL_ADJ, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_BREL_ADJ", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_DESC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_DESC", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_SWI8, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_SWI8", /* name */ FALSE, /* partial_inplace */ 0x00000000, /* src_mask */ 0x00000000, /* dst_mask */ FALSE), /* pcrel_offset */ /* BLX instruction for the ARM. */ HOWTO (R_ARM_XPC25, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_XPC25", /* name */ FALSE, /* partial_inplace */ 0x00ffffff, /* src_mask */ 0x00ffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* BLX instruction for the Thumb. */ HOWTO (R_ARM_THM_XPC22, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_XPC22", /* name */ FALSE, /* partial_inplace */ 0x07ff2fff, /* src_mask */ 0x07ff2fff, /* dst_mask */ TRUE), /* pcrel_offset */ /* Dynamic TLS relocations. */ HOWTO (R_ARM_TLS_DTPMOD32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_DTPMOD32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_DTPOFF32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_DTPOFF32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_TPOFF32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_TPOFF32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Relocs used in ARM Linux */ HOWTO (R_ARM_COPY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_COPY", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_GLOB_DAT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GLOB_DAT", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_JUMP_SLOT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_JUMP_SLOT", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_RELATIVE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_RELATIVE", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_GOTOFF32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOTOFF32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_GOTPC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOTPC", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_GOT32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOT32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_PLT32, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_PLT32", /* name */ FALSE, /* partial_inplace */ 0x00ffffff, /* src_mask */ 0x00ffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_CALL, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_CALL", /* name */ FALSE, /* partial_inplace */ 0x00ffffff, /* src_mask */ 0x00ffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_JUMP24, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_JUMP24", /* name */ FALSE, /* partial_inplace */ 0x00ffffff, /* src_mask */ 0x00ffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_JUMP24, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_JUMP24", /* name */ FALSE, /* partial_inplace */ 0x07ff2fff, /* src_mask */ 0x07ff2fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_BASE_ABS, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_BASE_ABS", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PCREL7_0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PCREL_7_0", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PCREL15_8, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ TRUE, /* pc_relative */ 8, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PCREL_15_8",/* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PCREL23_15, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ TRUE, /* pc_relative */ 16, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PCREL_23_15",/* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDR_SBREL_11_0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_SBREL_11_0",/* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SBREL_19_12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ FALSE, /* pc_relative */ 12, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SBREL_19_12",/* name */ FALSE, /* partial_inplace */ 0x000ff000, /* src_mask */ 0x000ff000, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SBREL_27_20, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ FALSE, /* pc_relative */ 20, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SBREL_27_20",/* name */ FALSE, /* partial_inplace */ 0x0ff00000, /* src_mask */ 0x0ff00000, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TARGET1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TARGET1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_ROSEGREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ROSEGREL32", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_V4BX, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_V4BX", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TARGET2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TARGET2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_PREL31, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 31, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_PREL31", /* name */ FALSE, /* partial_inplace */ 0x7fffffff, /* src_mask */ 0x7fffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_MOVW_ABS_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVW_ABS_NC", /* name */ FALSE, /* partial_inplace */ 0x000f0fff, /* src_mask */ 0x000f0fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_MOVT_ABS, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVT_ABS", /* name */ FALSE, /* partial_inplace */ 0x000f0fff, /* src_mask */ 0x000f0fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_MOVW_PREL_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVW_PREL_NC", /* name */ FALSE, /* partial_inplace */ 0x000f0fff, /* src_mask */ 0x000f0fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_MOVT_PREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVT_PREL", /* name */ FALSE, /* partial_inplace */ 0x000f0fff, /* src_mask */ 0x000f0fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVW_ABS_NC",/* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVT_ABS, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVT_ABS", /* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVW_PREL_NC",/* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVT_PREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVT_PREL", /* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_JUMP19, /* type */ 1, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 19, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_JUMP19", /* name */ FALSE, /* partial_inplace */ 0x043f2fff, /* src_mask */ 0x043f2fff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_JUMP6, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 6, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_unsigned,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_JUMP6", /* name */ FALSE, /* partial_inplace */ 0x02f8, /* src_mask */ 0x02f8, /* dst_mask */ TRUE), /* pcrel_offset */ /* These are declared as 13-bit signed relocations because we can address -4095 .. 4095(base) by altering ADDW to SUBW or vice versa. */ HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 13, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_ALU_PREL_11_0",/* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_PC12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 13, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_PC12", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ABS32_NOI, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ABS32_NOI", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_REL32_NOI, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_REL32_NOI", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ /* Group relocations. */ HOWTO (R_ARM_ALU_PC_G0_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PC_G0_NC", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PC_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PC_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PC_G1_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PC_G1_NC", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PC_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PC_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_PC_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_PC_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDR_PC_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_PC_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDR_PC_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_PC_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDRS_PC_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDRS_PC_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDRS_PC_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDRS_PC_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDRS_PC_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDRS_PC_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDC_PC_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDC_PC_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDC_PC_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDC_PC_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDC_PC_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDC_PC_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SB_G0_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SB_G0_NC", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SB_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SB_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SB_G1_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SB_G1_NC", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SB_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SB_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_ALU_SB_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_ALU_SB_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDR_SB_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_SB_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDR_SB_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_SB_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDR_SB_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDR_SB_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDRS_SB_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDRS_SB_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDRS_SB_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDRS_SB_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDRS_SB_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDRS_SB_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDC_SB_G0, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDC_SB_G0", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDC_SB_G1, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDC_SB_G1", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_LDC_SB_G2, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_LDC_SB_G2", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ /* End of group relocations. */ HOWTO (R_ARM_MOVW_BREL_NC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVW_BREL_NC", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_MOVT_BREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVT_BREL", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_MOVW_BREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_MOVW_BREL", /* name */ FALSE, /* partial_inplace */ 0x0000ffff, /* src_mask */ 0x0000ffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVW_BREL_NC",/* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVT_BREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVT_BREL", /* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_MOVW_BREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_MOVW_BREL", /* name */ FALSE, /* partial_inplace */ 0x040f70ff, /* src_mask */ 0x040f70ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_GOTDESC, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ NULL, /* special_function */ "R_ARM_TLS_GOTDESC", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_CALL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_CALL", /* name */ FALSE, /* partial_inplace */ 0x00ffffff, /* src_mask */ 0x00ffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_DESCSEQ, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_DESCSEQ", /* name */ FALSE, /* partial_inplace */ 0x00000000, /* src_mask */ 0x00000000, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_TLS_CALL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 24, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_TLS_CALL", /* name */ FALSE, /* partial_inplace */ 0x07ff07ff, /* src_mask */ 0x07ff07ff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_PLT32_ABS, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_PLT32_ABS", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_GOT_ABS, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOT_ABS", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_GOT_PREL, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOT_PREL", /* name */ FALSE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_GOT_BREL12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOT_BREL12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_GOTOFF12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_GOTOFF12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */ /* GNU extension to record C++ vtable member usage */ HOWTO (R_ARM_GNU_VTENTRY, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ _bfd_elf_rel_vtable_reloc_fn, /* special_function */ "R_ARM_GNU_VTENTRY", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ /* GNU extension to record C++ vtable hierarchy */ HOWTO (R_ARM_GNU_VTINHERIT, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ NULL, /* special_function */ "R_ARM_GNU_VTINHERIT", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_THM_JUMP11, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 11, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_JUMP11", /* name */ FALSE, /* partial_inplace */ 0x000007ff, /* src_mask */ 0x000007ff, /* dst_mask */ TRUE), /* pcrel_offset */ HOWTO (R_ARM_THM_JUMP8, /* type */ 1, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ TRUE, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_JUMP8", /* name */ FALSE, /* partial_inplace */ 0x000000ff, /* src_mask */ 0x000000ff, /* dst_mask */ TRUE), /* pcrel_offset */ /* TLS relocations */ HOWTO (R_ARM_TLS_GD32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ NULL, /* special_function */ "R_ARM_TLS_GD32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_LDM32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_LDM32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_LDO32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_LDO32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_IE32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ NULL, /* special_function */ "R_ARM_TLS_IE32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_LE32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ NULL, /* special_function */ "R_ARM_TLS_LE32", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_LDO12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_LDO12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_LE12, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_LE12", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_TLS_IE12GP, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 12, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_TLS_IE12GP", /* name */ FALSE, /* partial_inplace */ 0x00000fff, /* src_mask */ 0x00000fff, /* dst_mask */ FALSE), /* pcrel_offset */ /* 112-127 private relocations. */ EMPTY_HOWTO (112), EMPTY_HOWTO (113), EMPTY_HOWTO (114), EMPTY_HOWTO (115), EMPTY_HOWTO (116), EMPTY_HOWTO (117), EMPTY_HOWTO (118), EMPTY_HOWTO (119), EMPTY_HOWTO (120), EMPTY_HOWTO (121), EMPTY_HOWTO (122), EMPTY_HOWTO (123), EMPTY_HOWTO (124), EMPTY_HOWTO (125), EMPTY_HOWTO (126), EMPTY_HOWTO (127), /* R_ARM_ME_TOO, obsolete. */ EMPTY_HOWTO (128), HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_THM_TLS_DESCSEQ",/* name */ FALSE, /* partial_inplace */ 0x00000000, /* src_mask */ 0x00000000, /* dst_mask */ FALSE), /* pcrel_offset */ EMPTY_HOWTO (130), EMPTY_HOWTO (131), HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */ 0, /* rightshift. */ 1, /* size (0 = byte, 1 = short, 2 = long). */ 16, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_bitfield,/* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_ARM_THM_ALU_ABS_G0_NC",/* name. */ FALSE, /* partial_inplace. */ 0x00000000, /* src_mask. */ 0x00000000, /* dst_mask. */ FALSE), /* pcrel_offset. */ HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */ 0, /* rightshift. */ 1, /* size (0 = byte, 1 = short, 2 = long). */ 16, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_bitfield,/* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_ARM_THM_ALU_ABS_G1_NC",/* name. */ FALSE, /* partial_inplace. */ 0x00000000, /* src_mask. */ 0x00000000, /* dst_mask. */ FALSE), /* pcrel_offset. */ HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */ 0, /* rightshift. */ 1, /* size (0 = byte, 1 = short, 2 = long). */ 16, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_bitfield,/* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_ARM_THM_ALU_ABS_G2_NC",/* name. */ FALSE, /* partial_inplace. */ 0x00000000, /* src_mask. */ 0x00000000, /* dst_mask. */ FALSE), /* pcrel_offset. */ HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */ 0, /* rightshift. */ 1, /* size (0 = byte, 1 = short, 2 = long). */ 16, /* bitsize. */ FALSE, /* pc_relative. */ 0, /* bitpos. */ complain_overflow_bitfield,/* complain_on_overflow. */ bfd_elf_generic_reloc, /* special_function. */ "R_ARM_THM_ALU_ABS_G3_NC",/* name. */ FALSE, /* partial_inplace. */ 0x00000000, /* src_mask. */ 0x00000000, /* dst_mask. */ FALSE), /* pcrel_offset. */ }; /* 160 onwards: */ static reloc_howto_type elf32_arm_howto_table_2[1] = { HOWTO (R_ARM_IRELATIVE, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_IRELATIVE", /* name */ TRUE, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ FALSE) /* pcrel_offset */ }; /* 249-255 extended, currently unused, relocations: */ static reloc_howto_type elf32_arm_howto_table_3[4] = { HOWTO (R_ARM_RREL32, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_RREL32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_RABS32, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_RABS32", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_RPC24, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_RPC24", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE), /* pcrel_offset */ HOWTO (R_ARM_RBASE, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 0, /* bitsize */ FALSE, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont,/* complain_on_overflow */ bfd_elf_generic_reloc, /* special_function */ "R_ARM_RBASE", /* name */ FALSE, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ FALSE) /* pcrel_offset */ }; static reloc_howto_type * elf32_arm_howto_from_type (unsigned int r_type) { if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1)) return &elf32_arm_howto_table_1[r_type]; if (r_type == R_ARM_IRELATIVE) return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE]; if (r_type >= R_ARM_RREL32 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3)) return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32]; return NULL; } static void elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc, Elf_Internal_Rela * elf_reloc) { unsigned int r_type; r_type = ELF32_R_TYPE (elf_reloc->r_info); bfd_reloc->howto = elf32_arm_howto_from_type (r_type); } struct elf32_arm_reloc_map { bfd_reloc_code_real_type bfd_reloc_val; unsigned char elf_reloc_val; }; /* All entries in this list must also be present in elf32_arm_howto_table. */ static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] = { {BFD_RELOC_NONE, R_ARM_NONE}, {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24}, {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL}, {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24}, {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25}, {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22}, {BFD_RELOC_32, R_ARM_ABS32}, {BFD_RELOC_32_PCREL, R_ARM_REL32}, {BFD_RELOC_8, R_ARM_ABS8}, {BFD_RELOC_16, R_ARM_ABS16}, {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12}, {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5}, {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24}, {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL}, {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11}, {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19}, {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8}, {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6}, {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT}, {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT}, {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE}, {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32}, {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC}, {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL}, {BFD_RELOC_ARM_GOT32, R_ARM_GOT32}, {BFD_RELOC_ARM_PLT32, R_ARM_PLT32}, {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1}, {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32}, {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32}, {BFD_RELOC_ARM_PREL31, R_ARM_PREL31}, {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2}, {BFD_RELOC_ARM_PLT32, R_ARM_PLT32}, {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC}, {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL}, {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL}, {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ}, {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ}, {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC}, {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32}, {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32}, {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32}, {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32}, {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32}, {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32}, {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32}, {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32}, {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE}, {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT}, {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY}, {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC}, {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS}, {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC}, {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL}, {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC}, {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS}, {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC}, {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL}, {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC}, {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0}, {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC}, {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1}, {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2}, {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0}, {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1}, {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2}, {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0}, {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1}, {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2}, {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0}, {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1}, {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2}, {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC}, {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0}, {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC}, {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1}, {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2}, {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0}, {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1}, {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2}, {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0}, {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1}, {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2}, {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0}, {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1}, {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2}, {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}, {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC}, {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC}, {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC}, {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC} }; static reloc_howto_type * elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { unsigned int i; for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++) if (elf32_arm_reloc_map[i].bfd_reloc_val == code) return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val); return NULL; } static reloc_howto_type * elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++) if (elf32_arm_howto_table_1[i].name != NULL && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0) return &elf32_arm_howto_table_1[i]; for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++) if (elf32_arm_howto_table_2[i].name != NULL && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0) return &elf32_arm_howto_table_2[i]; for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++) if (elf32_arm_howto_table_3[i].name != NULL && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0) return &elf32_arm_howto_table_3[i]; return NULL; } /* Support for core dump NOTE sections. */ static bfd_boolean elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) { int offset; size_t size; switch (note->descsz) { default: return FALSE; case 148: /* Linux/ARM 32-bit. */ /* pr_cursig */ elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); /* pr_pid */ elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); /* pr_reg */ offset = 72; size = 72; break; } /* Make a ".reg/999" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", size, note->descpos + offset); } static bfd_boolean elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) { switch (note->descsz) { default: return FALSE; case 124: /* Linux/ARM elf_prpsinfo. */ elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 12); elf_tdata (abfd)->core->program = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); elf_tdata (abfd)->core->command = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); } /* Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ { char *command = elf_tdata (abfd)->core->command; int n = strlen (command); if (0 < n && command[n - 1] == ' ') command[n - 1] = '\0'; } return TRUE; } static char * elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type, ...) { switch (note_type) { default: return NULL; case NT_PRPSINFO: { char data[124]; va_list ap; va_start (ap, note_type); memset (data, 0, sizeof (data)); strncpy (data + 28, va_arg (ap, const char *), 16); strncpy (data + 44, va_arg (ap, const char *), 80); va_end (ap); return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, data, sizeof (data)); } case NT_PRSTATUS: { char data[148]; va_list ap; long pid; int cursig; const void *greg; va_start (ap, note_type); memset (data, 0, sizeof (data)); pid = va_arg (ap, long); bfd_put_32 (abfd, pid, data + 24); cursig = va_arg (ap, int); bfd_put_16 (abfd, cursig, data + 12); greg = va_arg (ap, const void *); memcpy (data + 72, greg, 72); va_end (ap); return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type, data, sizeof (data)); } } } #define TARGET_LITTLE_SYM arm_elf32_le_vec #define TARGET_LITTLE_NAME "elf32-littlearm" #define TARGET_BIG_SYM arm_elf32_be_vec #define TARGET_BIG_NAME "elf32-bigarm" #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo #define elf_backend_write_core_note elf32_arm_nabi_write_core_note typedef unsigned long int insn32; typedef unsigned short int insn16; /* In lieu of proper flags, assume all EABIv4 or later objects are interworkable. */ #define INTERWORK_FLAG(abfd) \ (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \ || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \ || ((abfd)->flags & BFD_LINKER_CREATED)) /* The linker script knows the section names for placement. The entry_names are used to do simple name mangling on the stubs. Given a function name, and its type, the stub can be found. The name can be changed. The only requirement is the %s be present. */ #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t" #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb" #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7" #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm" #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer" #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x" #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer" #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x" #define ARM_BX_GLUE_SECTION_NAME ".v4_bx" #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d" #define STUB_ENTRY_NAME "__%s_veneer" /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" static const unsigned long tls_trampoline [] = { 0xe08e0000, /* add r0, lr, r0 */ 0xe5901004, /* ldr r1, [r0,#4] */ 0xe12fff11, /* bx r1 */ }; static const unsigned long dl_tlsdesc_lazy_trampoline [] = { 0xe52d2004, /* push {r2} */ 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */ 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */ 0xe79f2002, /* 1: ldr r2, [pc, r2] */ 0xe081100f, /* 2: add r1, pc */ 0xe12fff12, /* bx r2 */ 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8 + dl_tlsdesc_lazy_resolver(GOT) */ 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */ }; #ifdef FOUR_WORD_PLT /* The first entry in a procedure linkage table looks like this. It is set up so that any shared library function that is called before the relocation has been set up calls the dynamic linker first. */ static const bfd_vma elf32_arm_plt0_entry [] = { 0xe52de004, /* str lr, [sp, #-4]! */ 0xe59fe010, /* ldr lr, [pc, #16] */ 0xe08fe00e, /* add lr, pc, lr */ 0xe5bef008, /* ldr pc, [lr, #8]! */ }; /* Subsequent entries in a procedure linkage table look like this. */ static const bfd_vma elf32_arm_plt_entry [] = { 0xe28fc600, /* add ip, pc, #NN */ 0xe28cca00, /* add ip, ip, #NN */ 0xe5bcf000, /* ldr pc, [ip, #NN]! */ 0x00000000, /* unused */ }; #else /* not FOUR_WORD_PLT */ /* The first entry in a procedure linkage table looks like this. It is set up so that any shared library function that is called before the relocation has been set up calls the dynamic linker first. */ static const bfd_vma elf32_arm_plt0_entry [] = { 0xe52de004, /* str lr, [sp, #-4]! */ 0xe59fe004, /* ldr lr, [pc, #4] */ 0xe08fe00e, /* add lr, pc, lr */ 0xe5bef008, /* ldr pc, [lr, #8]! */ 0x00000000, /* &GOT[0] - . */ }; /* By default subsequent entries in a procedure linkage table look like this. Offsets that don't fit into 28 bits will cause link error. */ static const bfd_vma elf32_arm_plt_entry_short [] = { 0xe28fc600, /* add ip, pc, #0xNN00000 */ 0xe28cca00, /* add ip, ip, #0xNN000 */ 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */ }; /* When explicitly asked, we'll use this "long" entry format which can cope with arbitrary displacements. */ static const bfd_vma elf32_arm_plt_entry_long [] = { 0xe28fc200, /* add ip, pc, #0xN0000000 */ 0xe28cc600, /* add ip, ip, #0xNN00000 */ 0xe28cca00, /* add ip, ip, #0xNN000 */ 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */ }; static bfd_boolean elf32_arm_use_long_plt_entry = FALSE; #endif /* not FOUR_WORD_PLT */ /* The first entry in a procedure linkage table looks like this. It is set up so that any shared library function that is called before the relocation has been set up calls the dynamic linker first. */ static const bfd_vma elf32_thumb2_plt0_entry [] = { /* NOTE: As this is a mixture of 16-bit and 32-bit instructions, an instruction maybe encoded to one or two array elements. */ 0xf8dfb500, /* push {lr} */ 0x44fee008, /* ldr.w lr, [pc, #8] */ /* add lr, pc */ 0xff08f85e, /* ldr.w pc, [lr, #8]! */ 0x00000000, /* &GOT[0] - . */ }; /* Subsequent entries in a procedure linkage table for thumb only target look like this. */ static const bfd_vma elf32_thumb2_plt_entry [] = { /* NOTE: As this is a mixture of 16-bit and 32-bit instructions, an instruction maybe encoded to one or two array elements. */ 0x0c00f240, /* movw ip, #0xNNNN */ 0x0c00f2c0, /* movt ip, #0xNNNN */ 0xf8dc44fc, /* add ip, pc */ 0xbf00f000 /* ldr.w pc, [ip] */ /* nop */ }; /* The format of the first entry in the procedure linkage table for a VxWorks executable. */ static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] = { 0xe52dc008, /* str ip,[sp,#-8]! */ 0xe59fc000, /* ldr ip,[pc] */ 0xe59cf008, /* ldr pc,[ip,#8] */ 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */ }; /* The format of subsequent entries in a VxWorks executable. */ static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] = { 0xe59fc000, /* ldr ip,[pc] */ 0xe59cf000, /* ldr pc,[ip] */ 0x00000000, /* .long @got */ 0xe59fc000, /* ldr ip,[pc] */ 0xea000000, /* b _PLT */ 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */ }; /* The format of entries in a VxWorks shared library. */ static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] = { 0xe59fc000, /* ldr ip,[pc] */ 0xe79cf009, /* ldr pc,[ip,r9] */ 0x00000000, /* .long @got */ 0xe59fc000, /* ldr ip,[pc] */ 0xe599f008, /* ldr pc,[r9,#8] */ 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */ }; /* An initial stub used if the PLT entry is referenced from Thumb code. */ #define PLT_THUMB_STUB_SIZE 4 static const bfd_vma elf32_arm_plt_thumb_stub [] = { 0x4778, /* bx pc */ 0x46c0 /* nop */ }; /* The entries in a PLT when using a DLL-based target with multiple address spaces. */ static const bfd_vma elf32_arm_symbian_plt_entry [] = { 0xe51ff004, /* ldr pc, [pc, #-4] */ 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */ }; /* The first entry in a procedure linkage table looks like this. It is set up so that any shared library function that is called before the relocation has been set up calls the dynamic linker first. */ static const bfd_vma elf32_arm_nacl_plt0_entry [] = { /* First bundle: */ 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */ 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */ 0xe08cc00f, /* add ip, ip, pc */ 0xe52dc008, /* str ip, [sp, #-8]! */ /* Second bundle: */ 0xe3ccc103, /* bic ip, ip, #0xc0000000 */ 0xe59cc000, /* ldr ip, [ip] */ 0xe3ccc13f, /* bic ip, ip, #0xc000000f */ 0xe12fff1c, /* bx ip */ /* Third bundle: */ 0xe320f000, /* nop */ 0xe320f000, /* nop */ 0xe320f000, /* nop */ /* .Lplt_tail: */ 0xe50dc004, /* str ip, [sp, #-4] */ /* Fourth bundle: */ 0xe3ccc103, /* bic ip, ip, #0xc0000000 */ 0xe59cc000, /* ldr ip, [ip] */ 0xe3ccc13f, /* bic ip, ip, #0xc000000f */ 0xe12fff1c, /* bx ip */ }; #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4) /* Subsequent entries in a procedure linkage table look like this. */ static const bfd_vma elf32_arm_nacl_plt_entry [] = { 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */ 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */ 0xe08cc00f, /* add ip, ip, pc */ 0xea000000, /* b .Lplt_tail */ }; #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8) #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8) #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4) #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4) #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4) #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4) #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4) #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4) enum stub_insn_type { THUMB16_TYPE = 1, THUMB32_TYPE, ARM_TYPE, DATA_TYPE }; #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0} /* A bit of a hack. A Thumb conditional branch, in which the proper condition is inserted in arm_build_one_stub(). */ #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1} #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0} #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)} #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0} #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)} #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)} typedef struct { bfd_vma data; enum stub_insn_type type; unsigned int r_type; int reloc_addend; } insn_sequence; /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx to reach the stub if necessary. */ static const insn_sequence elf32_arm_stub_long_branch_any_any[] = { ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */ DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ }; /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not available. */ static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] = { ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ ARM_INSN (0xe12fff1c), /* bx ip */ DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ }; /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */ static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] = { THUMB16_INSN (0xb401), /* push {r0} */ THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */ THUMB16_INSN (0x4684), /* mov ip, r0 */ THUMB16_INSN (0xbc01), /* pop {r0} */ THUMB16_INSN (0x4760), /* bx ip */ THUMB16_INSN (0xbf00), /* nop */ DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ }; /* V4T Thumb -> Thumb long branch stub. Using the stack is not allowed. */ static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] = { THUMB16_INSN (0x4778), /* bx pc */ THUMB16_INSN (0x46c0), /* nop */ ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ ARM_INSN (0xe12fff1c), /* bx ip */ DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ }; /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not available. */ static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] = { THUMB16_INSN (0x4778), /* bx pc */ THUMB16_INSN (0x46c0), /* nop */ ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */ DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ }; /* V4T Thumb -> ARM short branch stub. Shorter variant of the above one, when the destination is close enough. */ static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] = { THUMB16_INSN (0x4778), /* bx pc */ THUMB16_INSN (0x46c0), /* nop */ ARM_REL_INSN (0xea000000, -8), /* b (X-8) */ }; /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use blx to reach the stub if necessary. */ static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] = { ARM_INSN (0xe59fc000), /* ldr ip, [pc] */ ARM_INSN (0xe08ff00c), /* add pc, pc, ip */ DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */ }; /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use blx to reach the stub if necessary. We can not add into pc; it is not guaranteed to mode switch (different in ARMv6 and ARMv7). */ static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] = { ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ ARM_INSN (0xe12fff1c), /* bx ip */ DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ }; /* V4T ARM -> ARM long branch stub, PIC. */ static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] = { ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ ARM_INSN (0xe12fff1c), /* bx ip */ DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ }; /* V4T Thumb -> ARM long branch stub, PIC. */ static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] = { THUMB16_INSN (0x4778), /* bx pc */ THUMB16_INSN (0x46c0), /* nop */ ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ ARM_INSN (0xe08cf00f), /* add pc, ip, pc */ DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */ }; /* Thumb -> Thumb long branch stub, PIC. Used on M-profile architectures. */ static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] = { THUMB16_INSN (0xb401), /* push {r0} */ THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */ THUMB16_INSN (0x46fc), /* mov ip, pc */ THUMB16_INSN (0x4484), /* add ip, r0 */ THUMB16_INSN (0xbc01), /* pop {r0} */ THUMB16_INSN (0x4760), /* bx ip */ DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */ }; /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not allowed. */ static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] = { THUMB16_INSN (0x4778), /* bx pc */ THUMB16_INSN (0x46c0), /* nop */ ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ ARM_INSN (0xe12fff1c), /* bx ip */ DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ }; /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a long PIC stub. We can use r1 as a scratch -- and cannot use ip. */ static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] = { ARM_INSN (0xe59f1000), /* ldr r1, [pc] */ ARM_INSN (0xe08ff001), /* add pc, pc, r1 */ DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */ }; /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a long PIC stub. We can use r1 as a scratch -- and cannot use ip. */ static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] = { THUMB16_INSN (0x4778), /* bx pc */ THUMB16_INSN (0x46c0), /* nop */ ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */ ARM_INSN (0xe081f00f), /* add pc, r1, pc */ DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */ }; /* NaCl ARM -> ARM long branch stub. */ static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] = { ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */ ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */ ARM_INSN (0xe12fff1c), /* bx ip */ ARM_INSN (0xe320f000), /* nop */ ARM_INSN (0xe125be70), /* bkpt 0x5be0 */ DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ }; /* NaCl ARM -> ARM long branch stub, PIC. */ static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] = { ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */ ARM_INSN (0xe08cc00f), /* add ip, ip, pc */ ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */ ARM_INSN (0xe12fff1c), /* bx ip */ ARM_INSN (0xe125be70), /* bkpt 0x5be0 */ DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */ DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ }; /* Cortex-A8 erratum-workaround stubs. */ /* Stub used for conditional branches (which may be beyond +/-1MB away, so we can't use a conditional branch to reach this stub). */ static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] = { THUMB16_BCOND_INSN (0xd001), /* b.n true. */ THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */ THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */ }; /* Stub used for b.w and bl.w instructions. */ static const insn_sequence elf32_arm_stub_a8_veneer_b[] = { THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */ }; static const insn_sequence elf32_arm_stub_a8_veneer_bl[] = { THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */ }; /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w instruction (which switches to ARM mode) to point to this stub. Jump to the real destination using an ARM-mode branch. */ static const insn_sequence elf32_arm_stub_a8_veneer_blx[] = { ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */ }; /* For each section group there can be a specially created linker section to hold the stubs for that group. The name of the stub section is based upon the name of another section within that group with the suffix below applied. PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to create what appeared to be a linker stub section when it actually contained user code/data. For example, consider this fragment: const char * stubborn_problems[] = { "np" }; If this is compiled with "-fPIC -fdata-sections" then gcc produces a section called: .data.rel.local.stubborn_problems This then causes problems in arm32_arm_build_stubs() as it triggers: // Ignore non-stub sections. if (!strstr (stub_sec->name, STUB_SUFFIX)) continue; And so the section would be ignored instead of being processed. Hence the change in definition of STUB_SUFFIX to a name that cannot be a valid C identifier. */ #define STUB_SUFFIX ".__stub" /* One entry per long/short branch stub defined above. */ #define DEF_STUBS \ DEF_STUB(long_branch_any_any) \ DEF_STUB(long_branch_v4t_arm_thumb) \ DEF_STUB(long_branch_thumb_only) \ DEF_STUB(long_branch_v4t_thumb_thumb) \ DEF_STUB(long_branch_v4t_thumb_arm) \ DEF_STUB(short_branch_v4t_thumb_arm) \ DEF_STUB(long_branch_any_arm_pic) \ DEF_STUB(long_branch_any_thumb_pic) \ DEF_STUB(long_branch_v4t_thumb_thumb_pic) \ DEF_STUB(long_branch_v4t_arm_thumb_pic) \ DEF_STUB(long_branch_v4t_thumb_arm_pic) \ DEF_STUB(long_branch_thumb_only_pic) \ DEF_STUB(long_branch_any_tls_pic) \ DEF_STUB(long_branch_v4t_thumb_tls_pic) \ DEF_STUB(long_branch_arm_nacl) \ DEF_STUB(long_branch_arm_nacl_pic) \ DEF_STUB(a8_veneer_b_cond) \ DEF_STUB(a8_veneer_b) \ DEF_STUB(a8_veneer_bl) \ DEF_STUB(a8_veneer_blx) #define DEF_STUB(x) arm_stub_##x, enum elf32_arm_stub_type { arm_stub_none, DEF_STUBS /* Note the first a8_veneer type. */ arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond }; #undef DEF_STUB typedef struct { const insn_sequence* template_sequence; int template_size; } stub_def; #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)}, static const stub_def stub_definitions[] = { {NULL, 0}, DEF_STUBS }; struct elf32_arm_stub_hash_entry { /* Base hash table entry structure. */ struct bfd_hash_entry root; /* The stub section. */ asection *stub_sec; /* Offset within stub_sec of the beginning of this stub. */ bfd_vma stub_offset; /* Given the symbol's value and its section we can determine its final value when building the stubs (so the stub knows where to jump). */ bfd_vma target_value; asection *target_section; /* Offset to apply to relocation referencing target_value. */ bfd_vma target_addend; /* The instruction which caused this stub to be generated (only valid for Cortex-A8 erratum workaround stubs at present). */ unsigned long orig_insn; /* The stub type. */ enum elf32_arm_stub_type stub_type; /* Its encoding size in bytes. */ int stub_size; /* Its template. */ const insn_sequence *stub_template; /* The size of the template (number of entries). */ int stub_template_size; /* The symbol table entry, if any, that this was derived from. */ struct elf32_arm_link_hash_entry *h; /* Type of branch. */ enum arm_st_branch_type branch_type; /* Where this stub is being called from, or, in the case of combined stub sections, the first input section in the group. */ asection *id_sec; /* The name for the local symbol at the start of this stub. The stub name in the hash table has to be unique; this does not, so it can be friendlier. */ char *output_name; }; /* Used to build a map of a section. This is required for mixed-endian code/data. */ typedef struct elf32_elf_section_map { bfd_vma vma; char type; } elf32_arm_section_map; /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */ typedef enum { VFP11_ERRATUM_BRANCH_TO_ARM_VENEER, VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER, VFP11_ERRATUM_ARM_VENEER, VFP11_ERRATUM_THUMB_VENEER } elf32_vfp11_erratum_type; typedef struct elf32_vfp11_erratum_list { struct elf32_vfp11_erratum_list *next; bfd_vma vma; union { struct { struct elf32_vfp11_erratum_list *veneer; unsigned int vfp_insn; } b; struct { struct elf32_vfp11_erratum_list *branch; unsigned int id; } v; } u; elf32_vfp11_erratum_type type; } elf32_vfp11_erratum_list; /* Information about a STM32L4XX erratum veneer, or a branch to such a veneer. */ typedef enum { STM32L4XX_ERRATUM_BRANCH_TO_VENEER, STM32L4XX_ERRATUM_VENEER } elf32_stm32l4xx_erratum_type; typedef struct elf32_stm32l4xx_erratum_list { struct elf32_stm32l4xx_erratum_list *next; bfd_vma vma; union { struct { struct elf32_stm32l4xx_erratum_list *veneer; unsigned int insn; } b; struct { struct elf32_stm32l4xx_erratum_list *branch; unsigned int id; } v; } u; elf32_stm32l4xx_erratum_type type; } elf32_stm32l4xx_erratum_list; typedef enum { DELETE_EXIDX_ENTRY, INSERT_EXIDX_CANTUNWIND_AT_END } arm_unwind_edit_type; /* A (sorted) list of edits to apply to an unwind table. */ typedef struct arm_unwind_table_edit { arm_unwind_edit_type type; /* Note: we sometimes want to insert an unwind entry corresponding to a section different from the one we're currently writing out, so record the (text) section this edit relates to here. */ asection *linked_section; unsigned int index; struct arm_unwind_table_edit *next; } arm_unwind_table_edit; typedef struct _arm_elf_section_data { /* Information about mapping symbols. */ struct bfd_elf_section_data elf; unsigned int mapcount; unsigned int mapsize; elf32_arm_section_map *map; /* Information about CPU errata. */ unsigned int erratumcount; elf32_vfp11_erratum_list *erratumlist; unsigned int stm32l4xx_erratumcount; elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist; unsigned int additional_reloc_count; /* Information about unwind tables. */ union { /* Unwind info attached to a text section. */ struct { asection *arm_exidx_sec; } text; /* Unwind info attached to an .ARM.exidx section. */ struct { arm_unwind_table_edit *unwind_edit_list; arm_unwind_table_edit *unwind_edit_tail; } exidx; } u; } _arm_elf_section_data; #define elf32_arm_section_data(sec) \ ((_arm_elf_section_data *) elf_section_data (sec)) /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum. These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs), so may be created multiple times: we use an array of these entries whilst relaxing which we can refresh easily, then create stubs for each potentially erratum-triggering instruction once we've settled on a solution. */ struct a8_erratum_fix { bfd *input_bfd; asection *section; bfd_vma offset; bfd_vma addend; unsigned long orig_insn; char *stub_name; enum elf32_arm_stub_type stub_type; enum arm_st_branch_type branch_type; }; /* A table of relocs applied to branches which might trigger Cortex-A8 erratum. */ struct a8_erratum_reloc { bfd_vma from; bfd_vma destination; struct elf32_arm_link_hash_entry *hash; const char *sym_name; unsigned int r_type; enum arm_st_branch_type branch_type; bfd_boolean non_a8_stub; }; /* The size of the thread control block. */ #define TCB_SIZE 8 /* ARM-specific information about a PLT entry, over and above the usual gotplt_union. */ struct arm_plt_info { /* We reference count Thumb references to a PLT entry separately, so that we can emit the Thumb trampoline only if needed. */ bfd_signed_vma thumb_refcount; /* Some references from Thumb code may be eliminated by BL->BLX conversion, so record them separately. */ bfd_signed_vma maybe_thumb_refcount; /* How many of the recorded PLT accesses were from non-call relocations. This information is useful when deciding whether anything takes the address of an STT_GNU_IFUNC PLT. A value of 0 means that all non-call references to the function should resolve directly to the real runtime target. */ unsigned int noncall_refcount; /* Since PLT entries have variable size if the Thumb prologue is used, we need to record the index into .got.plt instead of recomputing it from the PLT offset. */ bfd_signed_vma got_offset; }; /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */ struct arm_local_iplt_info { /* The information that is usually found in the generic ELF part of the hash table entry. */ union gotplt_union root; /* The information that is usually found in the ARM-specific part of the hash table entry. */ struct arm_plt_info arm; /* A list of all potential dynamic relocations against this symbol. */ struct elf_dyn_relocs *dyn_relocs; }; struct elf_arm_obj_tdata { struct elf_obj_tdata root; /* tls_type for each local got entry. */ char *local_got_tls_type; /* GOTPLT entries for TLS descriptors. */ bfd_vma *local_tlsdesc_gotent; /* Information for local symbols that need entries in .iplt. */ struct arm_local_iplt_info **local_iplt; /* Zero to warn when linking objects with incompatible enum sizes. */ int no_enum_size_warning; /* Zero to warn when linking objects with incompatible wchar_t sizes. */ int no_wchar_size_warning; }; #define elf_arm_tdata(bfd) \ ((struct elf_arm_obj_tdata *) (bfd)->tdata.any) #define elf32_arm_local_got_tls_type(bfd) \ (elf_arm_tdata (bfd)->local_got_tls_type) #define elf32_arm_local_tlsdesc_gotent(bfd) \ (elf_arm_tdata (bfd)->local_tlsdesc_gotent) #define elf32_arm_local_iplt(bfd) \ (elf_arm_tdata (bfd)->local_iplt) #define is_arm_elf(bfd) \ (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ && elf_tdata (bfd) != NULL \ && elf_object_id (bfd) == ARM_ELF_DATA) static bfd_boolean elf32_arm_mkobject (bfd *abfd) { return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata), ARM_ELF_DATA); } #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent)) /* Arm ELF linker hash entry. */ struct elf32_arm_link_hash_entry { struct elf_link_hash_entry root; /* Track dynamic relocs copied for this symbol. */ struct elf_dyn_relocs *dyn_relocs; /* ARM-specific PLT information. */ struct arm_plt_info plt; #define GOT_UNKNOWN 0 #define GOT_NORMAL 1 #define GOT_TLS_GD 2 #define GOT_TLS_IE 4 #define GOT_TLS_GDESC 8 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC)) unsigned int tls_type : 8; /* True if the symbol's PLT entry is in .iplt rather than .plt. */ unsigned int is_iplt : 1; unsigned int unused : 23; /* Offset of the GOTPLT entry reserved for the TLS descriptor, starting at the end of the jump table. */ bfd_vma tlsdesc_got; /* The symbol marking the real symbol location for exported thumb symbols with Arm stubs. */ struct elf_link_hash_entry *export_glue; /* A pointer to the most recently used stub hash entry against this symbol. */ struct elf32_arm_stub_hash_entry *stub_cache; }; /* Traverse an arm ELF linker hash table. */ #define elf32_arm_link_hash_traverse(table, func, info) \ (elf_link_hash_traverse \ (&(table)->root, \ (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ (info))) /* Get the ARM elf linker hash table from a link_info structure. */ #define elf32_arm_hash_table(info) \ (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \ == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL) #define arm_stub_hash_lookup(table, string, create, copy) \ ((struct elf32_arm_stub_hash_entry *) \ bfd_hash_lookup ((table), (string), (create), (copy))) /* Array to keep track of which stub sections have been created, and information on stub grouping. */ struct map_stub { /* This is the section to which stubs in the group will be attached. */ asection *link_sec; /* The stub section. */ asection *stub_sec; }; #define elf32_arm_compute_jump_table_size(htab) \ ((htab)->next_tls_desc_index * 4) /* ARM ELF linker hash table. */ struct elf32_arm_link_hash_table { /* The main hash table. */ struct elf_link_hash_table root; /* The size in bytes of the section containing the Thumb-to-ARM glue. */ bfd_size_type thumb_glue_size; /* The size in bytes of the section containing the ARM-to-Thumb glue. */ bfd_size_type arm_glue_size; /* The size in bytes of section containing the ARMv4 BX veneers. */ bfd_size_type bx_glue_size; /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when veneer has been populated. */ bfd_vma bx_glue_offset[15]; /* The size in bytes of the section containing glue for VFP11 erratum veneers. */ bfd_size_type vfp11_erratum_glue_size; /* The size in bytes of the section containing glue for STM32L4XX erratum veneers. */ bfd_size_type stm32l4xx_erratum_glue_size; /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and elf32_arm_write_section(). */ struct a8_erratum_fix *a8_erratum_fixes; unsigned int num_a8_erratum_fixes; /* An arbitrary input BFD chosen to hold the glue sections. */ bfd * bfd_of_glue_owner; /* Nonzero to output a BE8 image. */ int byteswap_code; /* Zero if R_ARM_TARGET1 means R_ARM_ABS32. Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */ int target1_is_rel; /* The relocation to use for R_ARM_TARGET2 relocations. */ int target2_reloc; /* 0 = Ignore R_ARM_V4BX. 1 = Convert BX to MOV PC. 2 = Generate v4 interworing stubs. */ int fix_v4bx; /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */ int fix_cortex_a8; /* Whether we should fix the ARM1176 BLX immediate issue. */ int fix_arm1176; /* Nonzero if the ARM/Thumb BLX instructions are available for use. */ int use_blx; /* What sort of code sequences we should look for which may trigger the VFP11 denorm erratum. */ bfd_arm_vfp11_fix vfp11_fix; /* Global counter for the number of fixes we have emitted. */ int num_vfp11_fixes; /* What sort of code sequences we should look for which may trigger the STM32L4XX erratum. */ bfd_arm_stm32l4xx_fix stm32l4xx_fix; /* Global counter for the number of fixes we have emitted. */ int num_stm32l4xx_fixes; /* Nonzero to force PIC branch veneers. */ int pic_veneer; /* The number of bytes in the initial entry in the PLT. */ bfd_size_type plt_header_size; /* The number of bytes in the subsequent PLT etries. */ bfd_size_type plt_entry_size; /* True if the target system is VxWorks. */ int vxworks_p; /* True if the target system is Symbian OS. */ int symbian_p; /* True if the target system is Native Client. */ int nacl_p; /* True if the target uses REL relocations. */ int use_rel; /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */ bfd_vma next_tls_desc_index; /* How many R_ARM_TLS_DESC relocations were generated so far. */ bfd_vma num_tls_desc; /* Short-cuts to get to dynamic linker sections. */ asection *sdynbss; asection *srelbss; /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */ asection *srelplt2; /* The offset into splt of the PLT entry for the TLS descriptor resolver. Special values are 0, if not necessary (or not found to be necessary yet), and -1 if needed but not determined yet. */ bfd_vma dt_tlsdesc_plt; /* The offset into sgot of the GOT entry used by the PLT entry above. */ bfd_vma dt_tlsdesc_got; /* Offset in .plt section of tls_arm_trampoline. */ bfd_vma tls_trampoline; /* Data for R_ARM_TLS_LDM32 relocations. */ union { bfd_signed_vma refcount; bfd_vma offset; } tls_ldm_got; /* Small local sym cache. */ struct sym_cache sym_cache; /* For convenience in allocate_dynrelocs. */ bfd * obfd; /* The amount of space used by the reserved portion of the sgotplt section, plus whatever space is used by the jump slots. */ bfd_vma sgotplt_jump_table_size; /* The stub hash table. */ struct bfd_hash_table stub_hash_table; /* Linker stub bfd. */ bfd *stub_bfd; /* Linker call-backs. */ asection * (*add_stub_section) (const char *, asection *, unsigned int); void (*layout_sections_again) (void); /* Array to keep track of which stub sections have been created, and information on stub grouping. */ struct map_stub *stub_group; /* Number of elements in stub_group. */ unsigned int top_id; /* Assorted information used by elf32_arm_size_stubs. */ unsigned int bfd_count; unsigned int top_index; asection **input_list; }; static inline int ctz (unsigned int mask) { #if GCC_VERSION >= 3004 return __builtin_ctz (mask); #else unsigned int i; for (i = 0; i < 8 * sizeof (mask); i++) { if (mask & 0x1) break; mask = (mask >> 1); } return i; #endif } static inline int popcount (unsigned int mask) { #if GCC_VERSION >= 3004 return __builtin_popcount (mask); #else unsigned int i, sum = 0; for (i = 0; i < 8 * sizeof (mask); i++) { if (mask & 0x1) sum++; mask = (mask >> 1); } return sum; #endif } /* Create an entry in an ARM ELF linker hash table. */ static struct bfd_hash_entry * elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry, struct bfd_hash_table * table, const char * string) { struct elf32_arm_link_hash_entry * ret = (struct elf32_arm_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == NULL) ret = (struct elf32_arm_link_hash_entry *) bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry)); if (ret == NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = ((struct elf32_arm_link_hash_entry *) _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != NULL) { ret->dyn_relocs = NULL; ret->tls_type = GOT_UNKNOWN; ret->tlsdesc_got = (bfd_vma) -1; ret->plt.thumb_refcount = 0; ret->plt.maybe_thumb_refcount = 0; ret->plt.noncall_refcount = 0; ret->plt.got_offset = -1; ret->is_iplt = FALSE; ret->export_glue = NULL; ret->stub_cache = NULL; } return (struct bfd_hash_entry *) ret; } /* Ensure that we have allocated bookkeeping structures for ABFD's local symbols. */ static bfd_boolean elf32_arm_allocate_local_sym_info (bfd *abfd) { if (elf_local_got_refcounts (abfd) == NULL) { bfd_size_type num_syms; bfd_size_type size; char *data; num_syms = elf_tdata (abfd)->symtab_hdr.sh_info; size = num_syms * (sizeof (bfd_signed_vma) + sizeof (struct arm_local_iplt_info *) + sizeof (bfd_vma) + sizeof (char)); data = bfd_zalloc (abfd, size); if (data == NULL) return FALSE; elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data; data += num_syms * sizeof (bfd_signed_vma); elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data; data += num_syms * sizeof (struct arm_local_iplt_info *); elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data; data += num_syms * sizeof (bfd_vma); elf32_arm_local_got_tls_type (abfd) = data; } return TRUE; } /* Return the .iplt information for local symbol R_SYMNDX, which belongs to input bfd ABFD. Create the information if it doesn't already exist. Return null if an allocation fails. */ static struct arm_local_iplt_info * elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx) { struct arm_local_iplt_info **ptr; if (!elf32_arm_allocate_local_sym_info (abfd)) return NULL; BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info); ptr = &elf32_arm_local_iplt (abfd)[r_symndx]; if (*ptr == NULL) *ptr = bfd_zalloc (abfd, sizeof (**ptr)); return *ptr; } /* Try to obtain PLT information for the symbol with index R_SYMNDX in ABFD's symbol table. If the symbol is global, H points to its hash table entry, otherwise H is null. Return true if the symbol does have PLT information. When returning true, point *ROOT_PLT at the target-independent reference count/offset union and *ARM_PLT at the ARM-specific information. */ static bfd_boolean elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h, unsigned long r_symndx, union gotplt_union **root_plt, struct arm_plt_info **arm_plt) { struct arm_local_iplt_info *local_iplt; if (h != NULL) { *root_plt = &h->root.plt; *arm_plt = &h->plt; return TRUE; } if (elf32_arm_local_iplt (abfd) == NULL) return FALSE; local_iplt = elf32_arm_local_iplt (abfd)[r_symndx]; if (local_iplt == NULL) return FALSE; *root_plt = &local_iplt->root; *arm_plt = &local_iplt->arm; return TRUE; } /* Return true if the PLT described by ARM_PLT requires a Thumb stub before it. */ static bfd_boolean elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info, struct arm_plt_info *arm_plt) { struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); return (arm_plt->thumb_refcount != 0 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)); } /* Return a pointer to the head of the dynamic reloc list that should be used for local symbol ISYM, which is symbol number R_SYMNDX in ABFD's symbol table. Return null if an error occurs. */ static struct elf_dyn_relocs ** elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx, Elf_Internal_Sym *isym) { if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) { struct arm_local_iplt_info *local_iplt; local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx); if (local_iplt == NULL) return NULL; return &local_iplt->dyn_relocs; } else { /* Track dynamic relocs needed for local syms too. We really need local syms available to do this easily. Oh well. */ asection *s; void *vpp; s = bfd_section_from_elf_index (abfd, isym->st_shndx); if (s == NULL) abort (); vpp = &elf_section_data (s)->local_dynrel; return (struct elf_dyn_relocs **) vpp; } } /* Initialize an entry in the stub hash table. */ static struct bfd_hash_entry * stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = (struct bfd_hash_entry *) bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = bfd_hash_newfunc (entry, table, string); if (entry != NULL) { struct elf32_arm_stub_hash_entry *eh; /* Initialize the local fields. */ eh = (struct elf32_arm_stub_hash_entry *) entry; eh->stub_sec = NULL; eh->stub_offset = 0; eh->target_value = 0; eh->target_section = NULL; eh->target_addend = 0; eh->orig_insn = 0; eh->stub_type = arm_stub_none; eh->stub_size = 0; eh->stub_template = NULL; eh->stub_template_size = 0; eh->h = NULL; eh->id_sec = NULL; eh->output_name = NULL; } return entry; } /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static bfd_boolean create_got_section (bfd *dynobj, struct bfd_link_info *info) { struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); if (htab == NULL) return FALSE; /* BPABI objects never have a GOT, or associated sections. */ if (htab->symbian_p) return TRUE; if (! _bfd_elf_create_got_section (dynobj, info)) return FALSE; return TRUE; } /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */ static bfd_boolean create_ifunc_sections (struct bfd_link_info *info) { struct elf32_arm_link_hash_table *htab; const struct elf_backend_data *bed; bfd *dynobj; asection *s; flagword flags; htab = elf32_arm_hash_table (info); dynobj = htab->root.dynobj; bed = get_elf_backend_data (dynobj); flags = bed->dynamic_sec_flags; if (htab->root.iplt == NULL) { s = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags | SEC_READONLY | SEC_CODE); if (s == NULL || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment)) return FALSE; htab->root.iplt = s; } if (htab->root.irelplt == NULL) { s = bfd_make_section_anyway_with_flags (dynobj, RELOC_SECTION (htab, ".iplt"), flags | SEC_READONLY); if (s == NULL || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align)) return FALSE; htab->root.irelplt = s; } if (htab->root.igotplt == NULL) { s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags); if (s == NULL || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align)) return FALSE; htab->root.igotplt = s; } return TRUE; } /* Determine if we're dealing with a Thumb only architecture. */ static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals) { int arch; int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch_profile); if (profile) return profile == 'M'; arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M || arch == TAG_CPU_ARCH_V7E_M || arch == TAG_CPU_ARCH_V8M_BASE || arch == TAG_CPU_ARCH_V8M_MAIN) return TRUE; return FALSE; } /* Determine if we're dealing with a Thumb-2 object. */ static bfd_boolean using_thumb2 (struct elf32_arm_link_hash_table *globals) { int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7; } /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static bfd_boolean elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) { struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); if (htab == NULL) return FALSE; if (!htab->root.sgot && !create_got_section (dynobj, info)) return FALSE; if (!_bfd_elf_create_dynamic_sections (dynobj, info)) return FALSE; htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss"); if (!bfd_link_pic (info)) htab->srelbss = bfd_get_linker_section (dynobj, RELOC_SECTION (htab, ".bss")); if (htab->vxworks_p) { if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2)) return FALSE; if (bfd_link_pic (info)) { htab->plt_header_size = 0; htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry); } else { htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry); htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry); } if (elf_elfheader (dynobj)) elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32; } else { /* PR ld/16017 Test for thumb only architectures. Note - we cannot just call using_thumb_only() as the attributes in the output bfd have not been initialised at this point, so instead we use the input bfd. */ bfd * saved_obfd = htab->obfd; htab->obfd = dynobj; if (using_thumb_only (htab)) { htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry); htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry); } htab->obfd = saved_obfd; } if (!htab->root.splt || !htab->root.srelplt || !htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss)) abort (); return TRUE; } /* Copy the extra info we tack onto an elf_link_hash_entry. */ static void elf32_arm_copy_indirect_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *dir, struct elf_link_hash_entry *ind) { struct elf32_arm_link_hash_entry *edir, *eind; edir = (struct elf32_arm_link_hash_entry *) dir; eind = (struct elf32_arm_link_hash_entry *) ind; if (eind->dyn_relocs != NULL) { if (edir->dyn_relocs != NULL) { struct elf_dyn_relocs **pp; struct elf_dyn_relocs *p; /* Add reloc counts against the indirect sym to the direct sym list. Merge any entries against the same section. */ for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) { struct elf_dyn_relocs *q; for (q = edir->dyn_relocs; q != NULL; q = q->next) if (q->sec == p->sec) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->dyn_relocs; } edir->dyn_relocs = eind->dyn_relocs; eind->dyn_relocs = NULL; } if (ind->root.type == bfd_link_hash_indirect) { /* Copy over PLT info. */ edir->plt.thumb_refcount += eind->plt.thumb_refcount; eind->plt.thumb_refcount = 0; edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount; eind->plt.maybe_thumb_refcount = 0; edir->plt.noncall_refcount += eind->plt.noncall_refcount; eind->plt.noncall_refcount = 0; /* We should only allocate a function to .iplt once the final symbol information is known. */ BFD_ASSERT (!eind->is_iplt); if (dir->got.refcount <= 0) { edir->tls_type = eind->tls_type; eind->tls_type = GOT_UNKNOWN; } } _bfd_elf_link_hash_copy_indirect (info, dir, ind); } /* Destroy an ARM elf linker hash table. */ static void elf32_arm_link_hash_table_free (bfd *obfd) { struct elf32_arm_link_hash_table *ret = (struct elf32_arm_link_hash_table *) obfd->link.hash; bfd_hash_table_free (&ret->stub_hash_table); _bfd_elf_link_hash_table_free (obfd); } /* Create an ARM elf linker hash table. */ static struct bfd_link_hash_table * elf32_arm_link_hash_table_create (bfd *abfd) { struct elf32_arm_link_hash_table *ret; bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table); ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt); if (ret == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (& ret->root, abfd, elf32_arm_link_hash_newfunc, sizeof (struct elf32_arm_link_hash_entry), ARM_ELF_DATA)) { free (ret); return NULL; } ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE; #ifdef FOUR_WORD_PLT ret->plt_header_size = 16; ret->plt_entry_size = 16; #else ret->plt_header_size = 20; ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12; #endif ret->use_rel = 1; ret->obfd = abfd; if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc, sizeof (struct elf32_arm_stub_hash_entry))) { _bfd_elf_link_hash_table_free (abfd); return NULL; } ret->root.root.hash_table_free = elf32_arm_link_hash_table_free; return &ret->root.root; } /* Determine what kind of NOPs are available. */ static bfd_boolean arch_has_arm_nop (struct elf32_arm_link_hash_table *globals) { const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); return arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V6K || arch == TAG_CPU_ARCH_V7 || arch == TAG_CPU_ARCH_V7E_M; } static bfd_boolean arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals) { const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7 || arch == TAG_CPU_ARCH_V7E_M); } static bfd_boolean arm_stub_is_thumb (enum elf32_arm_stub_type stub_type) { switch (stub_type) { case arm_stub_long_branch_thumb_only: case arm_stub_long_branch_v4t_thumb_arm: case arm_stub_short_branch_v4t_thumb_arm: case arm_stub_long_branch_v4t_thumb_arm_pic: case arm_stub_long_branch_v4t_thumb_tls_pic: case arm_stub_long_branch_thumb_only_pic: return TRUE; case arm_stub_none: BFD_FAIL (); return FALSE; break; default: return FALSE; } } /* Determine the type of stub needed, if any, for a call. */ static enum elf32_arm_stub_type arm_type_of_stub (struct bfd_link_info *info, asection *input_sec, const Elf_Internal_Rela *rel, unsigned char st_type, enum arm_st_branch_type *actual_branch_type, struct elf32_arm_link_hash_entry *hash, bfd_vma destination, asection *sym_sec, bfd *input_bfd, const char *name) { bfd_vma location; bfd_signed_vma branch_offset; unsigned int r_type; struct elf32_arm_link_hash_table * globals; int thumb2; int thumb_only; enum elf32_arm_stub_type stub_type = arm_stub_none; int use_plt = 0; enum arm_st_branch_type branch_type = *actual_branch_type; union gotplt_union *root_plt; struct arm_plt_info *arm_plt; if (branch_type == ST_BRANCH_LONG) return stub_type; globals = elf32_arm_hash_table (info); if (globals == NULL) return stub_type; thumb_only = using_thumb_only (globals); thumb2 = using_thumb2 (globals); /* Determine where the call point is. */ location = (input_sec->output_offset + input_sec->output_section->vma + rel->r_offset); r_type = ELF32_R_TYPE (rel->r_info); /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we are considering a function call relocation. */ if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24 || r_type == R_ARM_THM_JUMP19) && branch_type == ST_BRANCH_TO_ARM) branch_type = ST_BRANCH_TO_THUMB; /* For TLS call relocs, it is the caller's responsibility to provide the address of the appropriate trampoline. */ if (r_type != R_ARM_TLS_CALL && r_type != R_ARM_THM_TLS_CALL && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info), &root_plt, &arm_plt) && root_plt->offset != (bfd_vma) -1) { asection *splt; if (hash == NULL || hash->is_iplt) splt = globals->root.iplt; else splt = globals->root.splt; if (splt != NULL) { use_plt = 1; /* Note when dealing with PLT entries: the main PLT stub is in ARM mode, so if the branch is in Thumb mode, another Thumb->ARM stub will be inserted later just before the ARM PLT stub. We don't take this extra distance into account here, because if a long branch stub is needed, we'll add a Thumb->Arm one and branch directly to the ARM PLT entry because it avoids spreading offset corrections in several places. */ destination = (splt->output_section->vma + splt->output_offset + root_plt->offset); st_type = STT_FUNC; branch_type = ST_BRANCH_TO_ARM; } } /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */ BFD_ASSERT (st_type != STT_GNU_IFUNC); branch_offset = (bfd_signed_vma)(destination - location); if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19) { /* Handle cases where: - this call goes too far (different Thumb/Thumb2 max distance) - it's a Thumb->Arm call and blx is not available, or it's a Thumb->Arm branch (not bl). A stub is needed in this case, but only if this call is not through a PLT entry. Indeed, PLT stubs handle mode switching already. */ if ((!thumb2 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET))) || (thumb2 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET))) || (thumb2 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET)) && (r_type == R_ARM_THM_JUMP19)) || (branch_type == ST_BRANCH_TO_ARM && (((r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx) || (r_type == R_ARM_THM_JUMP24) || (r_type == R_ARM_THM_JUMP19)) && !use_plt)) { if (branch_type == ST_BRANCH_TO_THUMB) { /* Thumb to thumb. */ if (!thumb_only) { stub_type = (bfd_link_pic (info) | globals->pic_veneer) /* PIC stubs. */ ? ((globals->use_blx && (r_type == R_ARM_THM_CALL)) /* V5T and above. Stub starts with ARM code, so we must be able to switch mode before reaching it, which is only possible for 'bl' (ie R_ARM_THM_CALL relocation). */ ? arm_stub_long_branch_any_thumb_pic /* On V4T, use Thumb code only. */ : arm_stub_long_branch_v4t_thumb_thumb_pic) /* non-PIC stubs. */ : ((globals->use_blx && (r_type == R_ARM_THM_CALL)) /* V5T and above. */ ? arm_stub_long_branch_any_any /* V4T. */ : arm_stub_long_branch_v4t_thumb_thumb); } else { stub_type = (bfd_link_pic (info) | globals->pic_veneer) /* PIC stub. */ ? arm_stub_long_branch_thumb_only_pic /* non-PIC stub. */ : arm_stub_long_branch_thumb_only; } } else { /* Thumb to arm. */ if (sym_sec != NULL && sym_sec->owner != NULL && !INTERWORK_FLAG (sym_sec->owner)) { (*_bfd_error_handler) (_("%B(%s): warning: interworking not enabled.\n" " first occurrence: %B: Thumb call to ARM"), sym_sec->owner, input_bfd, name); } stub_type = (bfd_link_pic (info) | globals->pic_veneer) /* PIC stubs. */ ? (r_type == R_ARM_THM_TLS_CALL /* TLS PIC stubs. */ ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic : arm_stub_long_branch_v4t_thumb_tls_pic) : ((globals->use_blx && r_type == R_ARM_THM_CALL) /* V5T PIC and above. */ ? arm_stub_long_branch_any_arm_pic /* V4T PIC stub. */ : arm_stub_long_branch_v4t_thumb_arm_pic)) /* non-PIC stubs. */ : ((globals->use_blx && r_type == R_ARM_THM_CALL) /* V5T and above. */ ? arm_stub_long_branch_any_any /* V4T. */ : arm_stub_long_branch_v4t_thumb_arm); /* Handle v4t short branches. */ if ((stub_type == arm_stub_long_branch_v4t_thumb_arm) && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET) && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET)) stub_type = arm_stub_short_branch_v4t_thumb_arm; } } } else if (r_type == R_ARM_CALL || r_type == R_ARM_JUMP24 || r_type == R_ARM_PLT32 || r_type == R_ARM_TLS_CALL) { if (branch_type == ST_BRANCH_TO_THUMB) { /* Arm to thumb. */ if (sym_sec != NULL && sym_sec->owner != NULL && !INTERWORK_FLAG (sym_sec->owner)) { (*_bfd_error_handler) (_("%B(%s): warning: interworking not enabled.\n" " first occurrence: %B: ARM call to Thumb"), sym_sec->owner, input_bfd, name); } /* We have an extra 2-bytes reach because of the mode change (bit 24 (H) of BLX encoding). */ if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2) || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET) || (r_type == R_ARM_CALL && !globals->use_blx) || (r_type == R_ARM_JUMP24) || (r_type == R_ARM_PLT32)) { stub_type = (bfd_link_pic (info) | globals->pic_veneer) /* PIC stubs. */ ? ((globals->use_blx) /* V5T and above. */ ? arm_stub_long_branch_any_thumb_pic /* V4T stub. */ : arm_stub_long_branch_v4t_arm_thumb_pic) /* non-PIC stubs. */ : ((globals->use_blx) /* V5T and above. */ ? arm_stub_long_branch_any_any /* V4T. */ : arm_stub_long_branch_v4t_arm_thumb); } } else { /* Arm to arm. */ if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)) { stub_type = (bfd_link_pic (info) | globals->pic_veneer) /* PIC stubs. */ ? (r_type == R_ARM_TLS_CALL /* TLS PIC Stub. */ ? arm_stub_long_branch_any_tls_pic : (globals->nacl_p ? arm_stub_long_branch_arm_nacl_pic : arm_stub_long_branch_any_arm_pic)) /* non-PIC stubs. */ : (globals->nacl_p ? arm_stub_long_branch_arm_nacl : arm_stub_long_branch_any_any); } } } /* If a stub is needed, record the actual destination type. */ if (stub_type != arm_stub_none) *actual_branch_type = branch_type; return stub_type; } /* Build a name for an entry in the stub hash table. */ static char * elf32_arm_stub_name (const asection *input_section, const asection *sym_sec, const struct elf32_arm_link_hash_entry *hash, const Elf_Internal_Rela *rel, enum elf32_arm_stub_type stub_type) { char *stub_name; bfd_size_type len; if (hash) { len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1; stub_name = (char *) bfd_malloc (len); if (stub_name != NULL) sprintf (stub_name, "%08x_%s+%x_%d", input_section->id & 0xffffffff, hash->root.root.root.string, (int) rel->r_addend & 0xffffffff, (int) stub_type); } else { len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1; stub_name = (char *) bfd_malloc (len); if (stub_name != NULL) sprintf (stub_name, "%08x_%x:%x+%x_%d", input_section->id & 0xffffffff, sym_sec->id & 0xffffffff, ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff, (int) rel->r_addend & 0xffffffff, (int) stub_type); } return stub_name; } /* Look up an entry in the stub hash. Stub entries are cached because creating the stub name takes a bit of time. */ static struct elf32_arm_stub_hash_entry * elf32_arm_get_stub_entry (const asection *input_section, const asection *sym_sec, struct elf_link_hash_entry *hash, const Elf_Internal_Rela *rel, struct elf32_arm_link_hash_table *htab, enum elf32_arm_stub_type stub_type) { struct elf32_arm_stub_hash_entry *stub_entry; struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash; const asection *id_sec; if ((input_section->flags & SEC_CODE) == 0) return NULL; /* If this input section is part of a group of sections sharing one stub section, then use the id of the first section in the group. Stub names need to include a section id, as there may well be more than one stub used to reach say, printf, and we need to distinguish between them. */ id_sec = htab->stub_group[input_section->id].link_sec; if (h != NULL && h->stub_cache != NULL && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec && h->stub_cache->stub_type == stub_type) { stub_entry = h->stub_cache; } else { char *stub_name; stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type); if (stub_name == NULL) return NULL; stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE, FALSE); if (h != NULL) h->stub_cache = stub_entry; free (stub_name); } return stub_entry; } /* Find or create a stub section. Returns a pointer to the stub section, and the section to which the stub section will be attached (in *LINK_SEC_P). LINK_SEC_P may be NULL. */ static asection * elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section, struct elf32_arm_link_hash_table *htab) { asection *link_sec; asection *stub_sec; link_sec = htab->stub_group[section->id].link_sec; BFD_ASSERT (link_sec != NULL); stub_sec = htab->stub_group[section->id].stub_sec; if (stub_sec == NULL) { stub_sec = htab->stub_group[link_sec->id].stub_sec; if (stub_sec == NULL) { size_t namelen; bfd_size_type len; char *s_name; namelen = strlen (link_sec->name); len = namelen + sizeof (STUB_SUFFIX); s_name = (char *) bfd_alloc (htab->stub_bfd, len); if (s_name == NULL) return NULL; memcpy (s_name, link_sec->name, namelen); memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); stub_sec = (*htab->add_stub_section) (s_name, link_sec, htab->nacl_p ? 4 : 3); if (stub_sec == NULL) return NULL; htab->stub_group[link_sec->id].stub_sec = stub_sec; } htab->stub_group[section->id].stub_sec = stub_sec; } if (link_sec_p) *link_sec_p = link_sec; return stub_sec; } /* Add a new stub entry to the stub hash. Not all fields of the new stub entry are initialised. */ static struct elf32_arm_stub_hash_entry * elf32_arm_add_stub (const char *stub_name, asection *section, struct elf32_arm_link_hash_table *htab) { asection *link_sec; asection *stub_sec; struct elf32_arm_stub_hash_entry *stub_entry; stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab); if (stub_sec == NULL) return NULL; /* Enter this entry into the linker stub hash table. */ stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, TRUE, FALSE); if (stub_entry == NULL) { (*_bfd_error_handler) (_("%s: cannot create stub entry %s"), section->owner, stub_name); return NULL; } stub_entry->stub_sec = stub_sec; stub_entry->stub_offset = 0; stub_entry->id_sec = link_sec; return stub_entry; } /* Store an Arm insn into an output section not processed by elf32_arm_write_section. */ static void put_arm_insn (struct elf32_arm_link_hash_table * htab, bfd * output_bfd, bfd_vma val, void * ptr) { if (htab->byteswap_code != bfd_little_endian (output_bfd)) bfd_putl32 (val, ptr); else bfd_putb32 (val, ptr); } /* Store a 16-bit Thumb insn into an output section not processed by elf32_arm_write_section. */ static void put_thumb_insn (struct elf32_arm_link_hash_table * htab, bfd * output_bfd, bfd_vma val, void * ptr) { if (htab->byteswap_code != bfd_little_endian (output_bfd)) bfd_putl16 (val, ptr); else bfd_putb16 (val, ptr); } /* Store a Thumb2 insn into an output section not processed by elf32_arm_write_section. */ static void put_thumb2_insn (struct elf32_arm_link_hash_table * htab, bfd * output_bfd, bfd_vma val, bfd_byte * ptr) { /* T2 instructions are 16-bit streamed. */ if (htab->byteswap_code != bfd_little_endian (output_bfd)) { bfd_putl16 ((val >> 16) & 0xffff, ptr); bfd_putl16 ((val & 0xffff), ptr + 2); } else { bfd_putb16 ((val >> 16) & 0xffff, ptr); bfd_putb16 ((val & 0xffff), ptr + 2); } } /* If it's possible to change R_TYPE to a more efficient access model, return the new reloc type. */ static unsigned elf32_arm_tls_transition (struct bfd_link_info *info, int r_type, struct elf_link_hash_entry *h) { int is_local = (h == NULL); if (bfd_link_pic (info) || (h && h->root.type == bfd_link_hash_undefweak)) return r_type; /* We do not support relaxations for Old TLS models. */ switch (r_type) { case R_ARM_TLS_GOTDESC: case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL: case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ: return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32; } return r_type; } static bfd_reloc_status_type elf32_arm_final_link_relocate (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *, const char *, unsigned char, enum arm_st_branch_type, struct elf_link_hash_entry *, bfd_boolean *, char **); static unsigned int arm_stub_required_alignment (enum elf32_arm_stub_type stub_type) { switch (stub_type) { case arm_stub_a8_veneer_b_cond: case arm_stub_a8_veneer_b: case arm_stub_a8_veneer_bl: return 2; case arm_stub_long_branch_any_any: case arm_stub_long_branch_v4t_arm_thumb: case arm_stub_long_branch_thumb_only: case arm_stub_long_branch_v4t_thumb_thumb: case arm_stub_long_branch_v4t_thumb_arm: case arm_stub_short_branch_v4t_thumb_arm: case arm_stub_long_branch_any_arm_pic: case arm_stub_long_branch_any_thumb_pic: case arm_stub_long_branch_v4t_thumb_thumb_pic: case arm_stub_long_branch_v4t_arm_thumb_pic: case arm_stub_long_branch_v4t_thumb_arm_pic: case arm_stub_long_branch_thumb_only_pic: case arm_stub_long_branch_any_tls_pic: case arm_stub_long_branch_v4t_thumb_tls_pic: case arm_stub_a8_veneer_blx: return 4; case arm_stub_long_branch_arm_nacl: case arm_stub_long_branch_arm_nacl_pic: return 16; default: abort (); /* Should be unreachable. */ } } static bfd_boolean arm_build_one_stub (struct bfd_hash_entry *gen_entry, void * in_arg) { #define MAXRELOCS 3 struct elf32_arm_stub_hash_entry *stub_entry; struct elf32_arm_link_hash_table *globals; struct bfd_link_info *info; asection *stub_sec; bfd *stub_bfd; bfd_byte *loc; bfd_vma sym_value; int template_size; int size; const insn_sequence *template_sequence; int i; int stub_reloc_idx[MAXRELOCS] = {-1, -1}; int stub_reloc_offset[MAXRELOCS] = {0, 0}; int nrelocs = 0; /* Massage our args to the form they really have. */ stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; info = (struct bfd_link_info *) in_arg; globals = elf32_arm_hash_table (info); if (globals == NULL) return FALSE; stub_sec = stub_entry->stub_sec; if ((globals->fix_cortex_a8 < 0) != (arm_stub_required_alignment (stub_entry->stub_type) == 2)) /* We have to do less-strictly-aligned fixes last. */ return TRUE; /* Make a note of the offset within the stubs for this entry. */ stub_entry->stub_offset = stub_sec->size; loc = stub_sec->contents + stub_entry->stub_offset; stub_bfd = stub_sec->owner; /* This is the address of the stub destination. */ sym_value = (stub_entry->target_value + stub_entry->target_section->output_offset + stub_entry->target_section->output_section->vma); template_sequence = stub_entry->stub_template; template_size = stub_entry->stub_template_size; size = 0; for (i = 0; i < template_size; i++) { switch (template_sequence[i].type) { case THUMB16_TYPE: { bfd_vma data = (bfd_vma) template_sequence[i].data; if (template_sequence[i].reloc_addend != 0) { /* We've borrowed the reloc_addend field to mean we should insert a condition code into this (Thumb-1 branch) instruction. See THUMB16_BCOND_INSN. */ BFD_ASSERT ((data & 0xff00) == 0xd000); data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8; } bfd_put_16 (stub_bfd, data, loc + size); size += 2; } break; case THUMB32_TYPE: bfd_put_16 (stub_bfd, (template_sequence[i].data >> 16) & 0xffff, loc + size); bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff, loc + size + 2); if (template_sequence[i].r_type != R_ARM_NONE) { stub_reloc_idx[nrelocs] = i; stub_reloc_offset[nrelocs++] = size; } size += 4; break; case ARM_TYPE: bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size); /* Handle cases where the target is encoded within the instruction. */ if (template_sequence[i].r_type == R_ARM_JUMP24) { stub_reloc_idx[nrelocs] = i; stub_reloc_offset[nrelocs++] = size; } size += 4; break; case DATA_TYPE: bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size); stub_reloc_idx[nrelocs] = i; stub_reloc_offset[nrelocs++] = size; size += 4; break; default: BFD_FAIL (); return FALSE; } } stub_sec->size += size; /* Stub size has already been computed in arm_size_one_stub. Check consistency. */ BFD_ASSERT (size == stub_entry->stub_size); /* Destination is Thumb. Force bit 0 to 1 to reflect this. */ if (stub_entry->branch_type == ST_BRANCH_TO_THUMB) sym_value |= 1; /* Assume there is at least one and at most MAXRELOCS entries to relocate in each stub. */ BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS); for (i = 0; i < nrelocs; i++) if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22) { Elf_Internal_Rela rel; bfd_boolean unresolved_reloc; char *error_message; enum arm_st_branch_type branch_type = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM); bfd_vma points_to = sym_value + stub_entry->target_addend; rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i]; rel.r_info = ELF32_R_INFO (0, template_sequence[stub_reloc_idx[i]].r_type); rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend; if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0) /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[] template should refer back to the instruction after the original branch. */ points_to = sym_value; /* There may be unintended consequences if this is not true. */ BFD_ASSERT (stub_entry->h == NULL); /* Note: _bfd_final_link_relocate doesn't handle these relocations properly. We should probably use this function unconditionally, rather than only for certain relocations listed in the enclosing conditional, for the sake of consistency. */ elf32_arm_final_link_relocate (elf32_arm_howto_from_type (template_sequence[stub_reloc_idx[i]].r_type), stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel, points_to, info, stub_entry->target_section, "", STT_FUNC, branch_type, (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc, &error_message); } else { Elf_Internal_Rela rel; bfd_boolean unresolved_reloc; char *error_message; bfd_vma points_to = sym_value + stub_entry->target_addend + template_sequence[stub_reloc_idx[i]].reloc_addend; rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i]; rel.r_info = ELF32_R_INFO (0, template_sequence[stub_reloc_idx[i]].r_type); rel.r_addend = 0; elf32_arm_final_link_relocate (elf32_arm_howto_from_type (template_sequence[stub_reloc_idx[i]].r_type), stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel, points_to, info, stub_entry->target_section, "", STT_FUNC, stub_entry->branch_type, (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc, &error_message); } return TRUE; #undef MAXRELOCS } /* Calculate the template, template size and instruction size for a stub. Return value is the instruction size. */ static unsigned int find_stub_size_and_template (enum elf32_arm_stub_type stub_type, const insn_sequence **stub_template, int *stub_template_size) { const insn_sequence *template_sequence = NULL; int template_size = 0, i; unsigned int size; template_sequence = stub_definitions[stub_type].template_sequence; if (stub_template) *stub_template = template_sequence; template_size = stub_definitions[stub_type].template_size; if (stub_template_size) *stub_template_size = template_size; size = 0; for (i = 0; i < template_size; i++) { switch (template_sequence[i].type) { case THUMB16_TYPE: size += 2; break; case ARM_TYPE: case THUMB32_TYPE: case DATA_TYPE: size += 4; break; default: BFD_FAIL (); return 0; } } return size; } /* As above, but don't actually build the stub. Just bump offset so we know stub section sizes. */ static bfd_boolean arm_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg ATTRIBUTE_UNUSED) { struct elf32_arm_stub_hash_entry *stub_entry; const insn_sequence *template_sequence; int template_size, size; /* Massage our args to the form they really have. */ stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; BFD_ASSERT((stub_entry->stub_type > arm_stub_none) && stub_entry->stub_type < ARRAY_SIZE(stub_definitions)); size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence, &template_size); stub_entry->stub_size = size; stub_entry->stub_template = template_sequence; stub_entry->stub_template_size = template_size; size = (size + 7) & ~7; stub_entry->stub_sec->size += size; return TRUE; } /* External entry points for sizing and building linker stubs. */ /* Set up various things so that we can make a list of input sections for each output section included in the link. Returns -1 on error, 0 when no stubs will be needed, and 1 on success. */ int elf32_arm_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) { bfd *input_bfd; unsigned int bfd_count; unsigned int top_id, top_index; asection *section; asection **input_list, **list; bfd_size_type amt; struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); if (htab == NULL) return 0; if (! is_elf_hash_table (htab)) return 0; /* Count the number of input BFDs and find the top input section id. */ for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; input_bfd != NULL; input_bfd = input_bfd->link.next) { bfd_count += 1; for (section = input_bfd->sections; section != NULL; section = section->next) { if (top_id < section->id) top_id = section->id; } } htab->bfd_count = bfd_count; amt = sizeof (struct map_stub) * (top_id + 1); htab->stub_group = (struct map_stub *) bfd_zmalloc (amt); if (htab->stub_group == NULL) return -1; htab->top_id = top_id; /* We can't use output_bfd->section_count here to find the top output section index as some sections may have been removed, and _bfd_strip_section_from_output doesn't renumber the indices. */ for (section = output_bfd->sections, top_index = 0; section != NULL; section = section->next) { if (top_index < section->index) top_index = section->index; } htab->top_index = top_index; amt = sizeof (asection *) * (top_index + 1); input_list = (asection **) bfd_malloc (amt); htab->input_list = input_list; if (input_list == NULL) return -1; /* For sections we aren't interested in, mark their entries with a value we can check later. */ list = input_list + top_index; do *list = bfd_abs_section_ptr; while (list-- != input_list); for (section = output_bfd->sections; section != NULL; section = section->next) { if ((section->flags & SEC_CODE) != 0) input_list[section->index] = NULL; } return 1; } /* The linker repeatedly calls this function for each input section, in the order that input sections are linked into output sections. Build lists of input sections to determine groupings between which we may insert linker stubs. */ void elf32_arm_next_input_section (struct bfd_link_info *info, asection *isec) { struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); if (htab == NULL) return; if (isec->output_section->index <= htab->top_index) { asection **list = htab->input_list + isec->output_section->index; if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0) { /* Steal the link_sec pointer for our list. */ #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) /* This happens to make the list in reverse order, which we reverse later. */ PREV_SEC (isec) = *list; *list = isec; } } } /* See whether we can group stub sections together. Grouping stub sections may result in fewer stubs. More importantly, we need to put all .init* and .fini* stubs at the end of the .init or .fini output sections respectively, because glibc splits the _init and _fini functions into multiple parts. Putting a stub in the middle of a function is not a good idea. */ static void group_sections (struct elf32_arm_link_hash_table *htab, bfd_size_type stub_group_size, bfd_boolean stubs_always_after_branch) { asection **list = htab->input_list; do { asection *tail = *list; asection *head; if (tail == bfd_abs_section_ptr) continue; /* Reverse the list: we must avoid placing stubs at the beginning of the section because the beginning of the text section may be required for an interrupt vector in bare metal code. */ #define NEXT_SEC PREV_SEC head = NULL; while (tail != NULL) { /* Pop from tail. */ asection *item = tail; tail = PREV_SEC (item); /* Push on head. */ NEXT_SEC (item) = head; head = item; } while (head != NULL) { asection *curr; asection *next; bfd_vma stub_group_start = head->output_offset; bfd_vma end_of_next; curr = head; while (NEXT_SEC (curr) != NULL) { next = NEXT_SEC (curr); end_of_next = next->output_offset + next->size; if (end_of_next - stub_group_start >= stub_group_size) /* End of NEXT is too far from start, so stop. */ break; /* Add NEXT to the group. */ curr = next; } /* OK, the size from the start to the start of CURR is less than stub_group_size and thus can be handled by one stub section. (Or the head section is itself larger than stub_group_size, in which case we may be toast.) We should really be keeping track of the total size of stubs added here, as stubs contribute to the final output section size. */ do { next = NEXT_SEC (head); /* Set up this stub group. */ htab->stub_group[head->id].link_sec = curr; } while (head != curr && (head = next) != NULL); /* But wait, there's more! Input sections up to stub_group_size bytes after the stub section can be handled by it too. */ if (!stubs_always_after_branch) { stub_group_start = curr->output_offset + curr->size; while (next != NULL) { end_of_next = next->output_offset + next->size; if (end_of_next - stub_group_start >= stub_group_size) /* End of NEXT is too far from stubs, so stop. */ break; /* Add NEXT to the stub group. */ head = next; next = NEXT_SEC (head); htab->stub_group[head->id].link_sec = curr; } } head = next; } } while (list++ != htab->input_list + htab->top_index); free (htab->input_list); #undef PREV_SEC #undef NEXT_SEC } /* Comparison function for sorting/searching relocations relating to Cortex-A8 erratum fix. */ static int a8_reloc_compare (const void *a, const void *b) { const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a; const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b; if (ra->from < rb->from) return -1; else if (ra->from > rb->from) return 1; else return 0; } static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *, const char *, char **); /* Helper function to scan code for sequences which might trigger the Cortex-A8 branch/TLB erratum. Fill in the table described by A8_FIXES_P, NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false otherwise. */ static bfd_boolean cortex_a8_erratum_scan (bfd *input_bfd, struct bfd_link_info *info, struct a8_erratum_fix **a8_fixes_p, unsigned int *num_a8_fixes_p, unsigned int *a8_fix_table_size_p, struct a8_erratum_reloc *a8_relocs, unsigned int num_a8_relocs, unsigned prev_num_a8_fixes, bfd_boolean *stub_changed_p) { asection *section; struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); struct a8_erratum_fix *a8_fixes = *a8_fixes_p; unsigned int num_a8_fixes = *num_a8_fixes_p; unsigned int a8_fix_table_size = *a8_fix_table_size_p; if (htab == NULL) return FALSE; for (section = input_bfd->sections; section != NULL; section = section->next) { bfd_byte *contents = NULL; struct _arm_elf_section_data *sec_data; unsigned int span; bfd_vma base_vma; if (elf_section_type (section) != SHT_PROGBITS || (elf_section_flags (section) & SHF_EXECINSTR) == 0 || (section->flags & SEC_EXCLUDE) != 0 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) || (section->output_section == bfd_abs_section_ptr)) continue; base_vma = section->output_section->vma + section->output_offset; if (elf_section_data (section)->this_hdr.contents != NULL) contents = elf_section_data (section)->this_hdr.contents; else if (! bfd_malloc_and_get_section (input_bfd, section, &contents)) return TRUE; sec_data = elf32_arm_section_data (section); for (span = 0; span < sec_data->mapcount; span++) { unsigned int span_start = sec_data->map[span].vma; unsigned int span_end = (span == sec_data->mapcount - 1) ? section->size : sec_data->map[span + 1].vma; unsigned int i; char span_type = sec_data->map[span].type; bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE; if (span_type != 't') continue; /* Span is entirely within a single 4KB region: skip scanning. */ if (((base_vma + span_start) & ~0xfff) == ((base_vma + span_end) & ~0xfff)) continue; /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where: * The opcode is BLX.W, BL.W, B.W, Bcc.W * The branch target is in the same 4KB region as the first half of the branch. * The instruction before the branch is a 32-bit length non-branch instruction. */ for (i = span_start; i < span_end;) { unsigned int insn = bfd_getl16 (&contents[i]); bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE; bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch; if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000) insn_32bit = TRUE; if (insn_32bit) { /* Load the rest of the insn (in manual-friendly order). */ insn = (insn << 16) | bfd_getl16 (&contents[i + 2]); /* Encoding T4: B.W. */ is_b = (insn & 0xf800d000) == 0xf0009000; /* Encoding T1: BL.W. */ is_bl = (insn & 0xf800d000) == 0xf000d000; /* Encoding T2: BLX.W. */ is_blx = (insn & 0xf800d000) == 0xf000c000; /* Encoding T3: B.W (not permitted in IT block). */ is_bcc = (insn & 0xf800d000) == 0xf0008000 && (insn & 0x07f00000) != 0x03800000; } is_32bit_branch = is_b || is_bl || is_blx || is_bcc; if (((base_vma + i) & 0xfff) == 0xffe && insn_32bit && is_32bit_branch && last_was_32bit && ! last_was_branch) { bfd_signed_vma offset = 0; bfd_boolean force_target_arm = FALSE; bfd_boolean force_target_thumb = FALSE; bfd_vma target; enum elf32_arm_stub_type stub_type = arm_stub_none; struct a8_erratum_reloc key, *found; bfd_boolean use_plt = FALSE; key.from = base_vma + i; found = (struct a8_erratum_reloc *) bsearch (&key, a8_relocs, num_a8_relocs, sizeof (struct a8_erratum_reloc), &a8_reloc_compare); if (found) { char *error_message = NULL; struct elf_link_hash_entry *entry; /* We don't care about the error returned from this function, only if there is glue or not. */ entry = find_thumb_glue (info, found->sym_name, &error_message); if (entry) found->non_a8_stub = TRUE; /* Keep a simpler condition, for the sake of clarity. */ if (htab->root.splt != NULL && found->hash != NULL && found->hash->root.plt.offset != (bfd_vma) -1) use_plt = TRUE; if (found->r_type == R_ARM_THM_CALL) { if (found->branch_type == ST_BRANCH_TO_ARM || use_plt) force_target_arm = TRUE; else force_target_thumb = TRUE; } } /* Check if we have an offending branch instruction. */ if (found && found->non_a8_stub) /* We've already made a stub for this instruction, e.g. it's a long branch or a Thumb->ARM stub. Assume that stub will suffice to work around the A8 erratum (see setting of always_after_branch above). */ ; else if (is_bcc) { offset = (insn & 0x7ff) << 1; offset |= (insn & 0x3f0000) >> 4; offset |= (insn & 0x2000) ? 0x40000 : 0; offset |= (insn & 0x800) ? 0x80000 : 0; offset |= (insn & 0x4000000) ? 0x100000 : 0; if (offset & 0x100000) offset |= ~ ((bfd_signed_vma) 0xfffff); stub_type = arm_stub_a8_veneer_b_cond; } else if (is_b || is_bl || is_blx) { int s = (insn & 0x4000000) != 0; int j1 = (insn & 0x2000) != 0; int j2 = (insn & 0x800) != 0; int i1 = !(j1 ^ s); int i2 = !(j2 ^ s); offset = (insn & 0x7ff) << 1; offset |= (insn & 0x3ff0000) >> 4; offset |= i2 << 22; offset |= i1 << 23; offset |= s << 24; if (offset & 0x1000000) offset |= ~ ((bfd_signed_vma) 0xffffff); if (is_blx) offset &= ~ ((bfd_signed_vma) 3); stub_type = is_blx ? arm_stub_a8_veneer_blx : is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b; } if (stub_type != arm_stub_none) { bfd_vma pc_for_insn = base_vma + i + 4; /* The original instruction is a BL, but the target is an ARM instruction. If we were not making a stub, the BL would have been converted to a BLX. Use the BLX stub instead in that case. */ if (htab->use_blx && force_target_arm && stub_type == arm_stub_a8_veneer_bl) { stub_type = arm_stub_a8_veneer_blx; is_blx = TRUE; is_bl = FALSE; } /* Conversely, if the original instruction was BLX but the target is Thumb mode, use the BL stub. */ else if (force_target_thumb && stub_type == arm_stub_a8_veneer_blx) { stub_type = arm_stub_a8_veneer_bl; is_blx = FALSE; is_bl = TRUE; } if (is_blx) pc_for_insn &= ~ ((bfd_vma) 3); /* If we found a relocation, use the proper destination, not the offset in the (unrelocated) instruction. Note this is always done if we switched the stub type above. */ if (found) offset = (bfd_signed_vma) (found->destination - pc_for_insn); /* If the stub will use a Thumb-mode branch to a PLT target, redirect it to the preceding Thumb entry point. */ if (stub_type != arm_stub_a8_veneer_blx && use_plt) offset -= PLT_THUMB_STUB_SIZE; target = pc_for_insn + offset; /* The BLX stub is ARM-mode code. Adjust the offset to take the different PC value (+8 instead of +4) into account. */ if (stub_type == arm_stub_a8_veneer_blx) offset += 4; if (((base_vma + i) & ~0xfff) == (target & ~0xfff)) { char *stub_name = NULL; if (num_a8_fixes == a8_fix_table_size) { a8_fix_table_size *= 2; a8_fixes = (struct a8_erratum_fix *) bfd_realloc (a8_fixes, sizeof (struct a8_erratum_fix) * a8_fix_table_size); } if (num_a8_fixes < prev_num_a8_fixes) { /* If we're doing a subsequent scan, check if we've found the same fix as before, and try and reuse the stub name. */ stub_name = a8_fixes[num_a8_fixes].stub_name; if ((a8_fixes[num_a8_fixes].section != section) || (a8_fixes[num_a8_fixes].offset != i)) { free (stub_name); stub_name = NULL; *stub_changed_p = TRUE; } } if (!stub_name) { stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1); if (stub_name != NULL) sprintf (stub_name, "%x:%x", section->id, i); } a8_fixes[num_a8_fixes].input_bfd = input_bfd; a8_fixes[num_a8_fixes].section = section; a8_fixes[num_a8_fixes].offset = i; a8_fixes[num_a8_fixes].addend = offset; a8_fixes[num_a8_fixes].orig_insn = insn; a8_fixes[num_a8_fixes].stub_name = stub_name; a8_fixes[num_a8_fixes].stub_type = stub_type; a8_fixes[num_a8_fixes].branch_type = is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB; num_a8_fixes++; } } } i += insn_32bit ? 4 : 2; last_was_32bit = insn_32bit; last_was_branch = is_32bit_branch; } } if (elf_section_data (section)->this_hdr.contents == NULL) free (contents); } *a8_fixes_p = a8_fixes; *num_a8_fixes_p = num_a8_fixes; *a8_fix_table_size_p = a8_fix_table_size; return FALSE; } /* Determine and set the size of the stub section for a final link. The basic idea here is to examine all the relocations looking for PC-relative calls to a target that is unreachable with a "bl" instruction. */ bfd_boolean elf32_arm_size_stubs (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info, bfd_signed_vma group_size, asection * (*add_stub_section) (const char *, asection *, unsigned int), void (*layout_sections_again) (void)) { bfd_size_type stub_group_size; bfd_boolean stubs_always_after_branch; struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); struct a8_erratum_fix *a8_fixes = NULL; unsigned int num_a8_fixes = 0, a8_fix_table_size = 10; struct a8_erratum_reloc *a8_relocs = NULL; unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i; if (htab == NULL) return FALSE; if (htab->fix_cortex_a8) { a8_fixes = (struct a8_erratum_fix *) bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size); a8_relocs = (struct a8_erratum_reloc *) bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size); } /* Propagate mach to stub bfd, because it may not have been finalized when we created stub_bfd. */ bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd), bfd_get_mach (output_bfd)); /* Stash our params away. */ htab->stub_bfd = stub_bfd; htab->add_stub_section = add_stub_section; htab->layout_sections_again = layout_sections_again; stubs_always_after_branch = group_size < 0; /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page as the first half of a 32-bit branch straddling two 4K pages. This is a crude way of enforcing that. */ if (htab->fix_cortex_a8) stubs_always_after_branch = 1; if (group_size < 0) stub_group_size = -group_size; else stub_group_size = group_size; if (stub_group_size == 1) { /* Default values. */ /* Thumb branch range is +-4MB has to be used as the default maximum size (a given section can contain both ARM and Thumb code, so the worst case has to be taken into account). This value is 24K less than that, which allows for 2025 12-byte stubs. If we exceed that, then we will fail to link. The user will have to relink with an explicit group size option. */ stub_group_size = 4170000; } group_sections (htab, stub_group_size, stubs_always_after_branch); /* If we're applying the cortex A8 fix, we need to determine the program header size now, because we cannot change it later -- that could alter section placements. Notice the A8 erratum fix ends up requiring the section addresses to remain unchanged modulo the page size. That's something we cannot represent inside BFD, and we don't want to force the section alignment to be the page size. */ if (htab->fix_cortex_a8) (*htab->layout_sections_again) (); while (1) { bfd *input_bfd; unsigned int bfd_indx; asection *stub_sec; bfd_boolean stub_changed = FALSE; unsigned prev_num_a8_fixes = num_a8_fixes; num_a8_fixes = 0; for (input_bfd = info->input_bfds, bfd_indx = 0; input_bfd != NULL; input_bfd = input_bfd->link.next, bfd_indx++) { Elf_Internal_Shdr *symtab_hdr; asection *section; Elf_Internal_Sym *local_syms = NULL; if (!is_arm_elf (input_bfd)) continue; num_a8_relocs = 0; /* We'll need the symbol table in a second. */ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; if (symtab_hdr->sh_info == 0) continue; /* Walk over each section attached to the input bfd. */ for (section = input_bfd->sections; section != NULL; section = section->next) { Elf_Internal_Rela *internal_relocs, *irelaend, *irela; /* If there aren't any relocs, then there's nothing more to do. */ if ((section->flags & SEC_RELOC) == 0 || section->reloc_count == 0 || (section->flags & SEC_CODE) == 0) continue; /* If this section is a link-once section that will be discarded, then don't create any stubs. */ if (section->output_section == NULL || section->output_section->owner != output_bfd) continue; /* Get the relocs. */ internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL, info->keep_memory); if (internal_relocs == NULL) goto error_ret_free_local; /* Now examine each relocation. */ irela = internal_relocs; irelaend = irela + section->reloc_count; for (; irela < irelaend; irela++) { unsigned int r_type, r_indx; enum elf32_arm_stub_type stub_type; struct elf32_arm_stub_hash_entry *stub_entry; asection *sym_sec; bfd_vma sym_value; bfd_vma destination; struct elf32_arm_link_hash_entry *hash; const char *sym_name; char *stub_name; const asection *id_sec; unsigned char st_type; enum arm_st_branch_type branch_type; bfd_boolean created_stub = FALSE; r_type = ELF32_R_TYPE (irela->r_info); r_indx = ELF32_R_SYM (irela->r_info); if (r_type >= (unsigned int) R_ARM_max) { bfd_set_error (bfd_error_bad_value); error_ret_free_internal: if (elf_section_data (section)->relocs == NULL) free (internal_relocs); /* Fall through. */ error_ret_free_local: if (local_syms != NULL && (symtab_hdr->contents != (unsigned char *) local_syms)) free (local_syms); return FALSE; } hash = NULL; if (r_indx >= symtab_hdr->sh_info) hash = elf32_arm_hash_entry (elf_sym_hashes (input_bfd) [r_indx - symtab_hdr->sh_info]); /* Only look for stubs on branch instructions, or non-relaxed TLSCALL */ if ((r_type != (unsigned int) R_ARM_CALL) && (r_type != (unsigned int) R_ARM_THM_CALL) && (r_type != (unsigned int) R_ARM_JUMP24) && (r_type != (unsigned int) R_ARM_THM_JUMP19) && (r_type != (unsigned int) R_ARM_THM_XPC22) && (r_type != (unsigned int) R_ARM_THM_JUMP24) && (r_type != (unsigned int) R_ARM_PLT32) && !((r_type == (unsigned int) R_ARM_TLS_CALL || r_type == (unsigned int) R_ARM_THM_TLS_CALL) && r_type == elf32_arm_tls_transition (info, r_type, &hash->root) && ((hash ? hash->tls_type : (elf32_arm_local_got_tls_type (input_bfd)[r_indx])) & GOT_TLS_GDESC) != 0)) continue; /* Now determine the call target, its name, value, section. */ sym_sec = NULL; sym_value = 0; destination = 0; sym_name = NULL; if (r_type == (unsigned int) R_ARM_TLS_CALL || r_type == (unsigned int) R_ARM_THM_TLS_CALL) { /* A non-relaxed TLS call. The target is the plt-resident trampoline and nothing to do with the symbol. */ BFD_ASSERT (htab->tls_trampoline > 0); sym_sec = htab->root.splt; sym_value = htab->tls_trampoline; hash = 0; st_type = STT_FUNC; branch_type = ST_BRANCH_TO_ARM; } else if (!hash) { /* It's a local symbol. */ Elf_Internal_Sym *sym; if (local_syms == NULL) { local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; if (local_syms == NULL) local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (local_syms == NULL) goto error_ret_free_internal; } sym = local_syms + r_indx; if (sym->st_shndx == SHN_UNDEF) sym_sec = bfd_und_section_ptr; else if (sym->st_shndx == SHN_ABS) sym_sec = bfd_abs_section_ptr; else if (sym->st_shndx == SHN_COMMON) sym_sec = bfd_com_section_ptr; else sym_sec = bfd_section_from_elf_index (input_bfd, sym->st_shndx); if (!sym_sec) /* This is an undefined symbol. It can never be resolved. */ continue; if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) sym_value = sym->st_value; destination = (sym_value + irela->r_addend + sym_sec->output_offset + sym_sec->output_section->vma); st_type = ELF_ST_TYPE (sym->st_info); branch_type = ARM_SYM_BRANCH_TYPE (sym); sym_name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); } else { /* It's an external symbol. */ while (hash->root.root.type == bfd_link_hash_indirect || hash->root.root.type == bfd_link_hash_warning) hash = ((struct elf32_arm_link_hash_entry *) hash->root.root.u.i.link); if (hash->root.root.type == bfd_link_hash_defined || hash->root.root.type == bfd_link_hash_defweak) { sym_sec = hash->root.root.u.def.section; sym_value = hash->root.root.u.def.value; struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); /* For a destination in a shared library, use the PLT stub as target address to decide whether a branch stub is needed. */ if (globals != NULL && globals->root.splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1) { sym_sec = globals->root.splt; sym_value = hash->root.plt.offset; if (sym_sec->output_section != NULL) destination = (sym_value + sym_sec->output_offset + sym_sec->output_section->vma); } else if (sym_sec->output_section != NULL) destination = (sym_value + irela->r_addend + sym_sec->output_offset + sym_sec->output_section->vma); } else if ((hash->root.root.type == bfd_link_hash_undefined) || (hash->root.root.type == bfd_link_hash_undefweak)) { /* For a shared library, use the PLT stub as target address to decide whether a long branch stub is needed. For absolute code, they cannot be handled. */ struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); if (globals != NULL && globals->root.splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1) { sym_sec = globals->root.splt; sym_value = hash->root.plt.offset; if (sym_sec->output_section != NULL) destination = (sym_value + sym_sec->output_offset + sym_sec->output_section->vma); } else continue; } else { bfd_set_error (bfd_error_bad_value); goto error_ret_free_internal; } st_type = hash->root.type; branch_type = hash->root.target_internal; sym_name = hash->root.root.root.string; } do { /* Determine what (if any) linker stub is needed. */ stub_type = arm_type_of_stub (info, section, irela, st_type, &branch_type, hash, destination, sym_sec, input_bfd, sym_name); if (stub_type == arm_stub_none) break; /* Support for grouping stub sections. */ id_sec = htab->stub_group[section->id].link_sec; /* Get the name of this stub. */ stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela, stub_type); if (!stub_name) goto error_ret_free_internal; /* We've either created a stub for this reloc already, or we are about to. */ created_stub = TRUE; stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE, FALSE); if (stub_entry != NULL) { /* The proper stub has already been created. */ free (stub_name); stub_entry->target_value = sym_value; break; } stub_entry = elf32_arm_add_stub (stub_name, section, htab); if (stub_entry == NULL) { free (stub_name); goto error_ret_free_internal; } stub_entry->target_value = sym_value; stub_entry->target_section = sym_sec; stub_entry->stub_type = stub_type; stub_entry->h = hash; stub_entry->branch_type = branch_type; if (sym_name == NULL) sym_name = "unnamed"; stub_entry->output_name = (char *) bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME) + strlen (sym_name)); if (stub_entry->output_name == NULL) { free (stub_name); goto error_ret_free_internal; } /* For historical reasons, use the existing names for ARM-to-Thumb and Thumb-to-ARM stubs. */ if ((r_type == (unsigned int) R_ARM_THM_CALL || r_type == (unsigned int) R_ARM_THM_JUMP24 || r_type == (unsigned int) R_ARM_THM_JUMP19) && branch_type == ST_BRANCH_TO_ARM) sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name); else if ((r_type == (unsigned int) R_ARM_CALL || r_type == (unsigned int) R_ARM_JUMP24) && branch_type == ST_BRANCH_TO_THUMB) sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name); else sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name); stub_changed = TRUE; } while (0); /* Look for relocations which might trigger Cortex-A8 erratum. */ if (htab->fix_cortex_a8 && (r_type == (unsigned int) R_ARM_THM_JUMP24 || r_type == (unsigned int) R_ARM_THM_JUMP19 || r_type == (unsigned int) R_ARM_THM_CALL || r_type == (unsigned int) R_ARM_THM_XPC22)) { bfd_vma from = section->output_section->vma + section->output_offset + irela->r_offset; if ((from & 0xfff) == 0xffe) { /* Found a candidate. Note we haven't checked the destination is within 4K here: if we do so (and don't create an entry in a8_relocs) we can't tell that a branch should have been relocated when scanning later. */ if (num_a8_relocs == a8_reloc_table_size) { a8_reloc_table_size *= 2; a8_relocs = (struct a8_erratum_reloc *) bfd_realloc (a8_relocs, sizeof (struct a8_erratum_reloc) * a8_reloc_table_size); } a8_relocs[num_a8_relocs].from = from; a8_relocs[num_a8_relocs].destination = destination; a8_relocs[num_a8_relocs].r_type = r_type; a8_relocs[num_a8_relocs].branch_type = branch_type; a8_relocs[num_a8_relocs].sym_name = sym_name; a8_relocs[num_a8_relocs].non_a8_stub = created_stub; a8_relocs[num_a8_relocs].hash = hash; num_a8_relocs++; } } } /* We're done with the internal relocs, free them. */ if (elf_section_data (section)->relocs == NULL) free (internal_relocs); } if (htab->fix_cortex_a8) { /* Sort relocs which might apply to Cortex-A8 erratum. */ qsort (a8_relocs, num_a8_relocs, sizeof (struct a8_erratum_reloc), &a8_reloc_compare); /* Scan for branches which might trigger Cortex-A8 erratum. */ if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes, &num_a8_fixes, &a8_fix_table_size, a8_relocs, num_a8_relocs, prev_num_a8_fixes, &stub_changed) != 0) goto error_ret_free_local; } } if (prev_num_a8_fixes != num_a8_fixes) stub_changed = TRUE; if (!stub_changed) break; /* OK, we've added some stubs. Find out the new size of the stub sections. */ for (stub_sec = htab->stub_bfd->sections; stub_sec != NULL; stub_sec = stub_sec->next) { /* Ignore non-stub sections. */ if (!strstr (stub_sec->name, STUB_SUFFIX)) continue; stub_sec->size = 0; } bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab); /* Add Cortex-A8 erratum veneers to stub section sizes too. */ if (htab->fix_cortex_a8) for (i = 0; i < num_a8_fixes; i++) { stub_sec = elf32_arm_create_or_find_stub_sec (NULL, a8_fixes[i].section, htab); if (stub_sec == NULL) goto error_ret_free_local; stub_sec->size += find_stub_size_and_template (a8_fixes[i].stub_type, NULL, NULL); } /* Ask the linker to do its stuff. */ (*htab->layout_sections_again) (); } /* Add stubs for Cortex-A8 erratum fixes now. */ if (htab->fix_cortex_a8) { for (i = 0; i < num_a8_fixes; i++) { struct elf32_arm_stub_hash_entry *stub_entry; char *stub_name = a8_fixes[i].stub_name; asection *section = a8_fixes[i].section; unsigned int section_id = a8_fixes[i].section->id; asection *link_sec = htab->stub_group[section_id].link_sec; asection *stub_sec = htab->stub_group[section_id].stub_sec; const insn_sequence *template_sequence; int template_size, size = 0; stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, TRUE, FALSE); if (stub_entry == NULL) { (*_bfd_error_handler) (_("%s: cannot create stub entry %s"), section->owner, stub_name); return FALSE; } stub_entry->stub_sec = stub_sec; stub_entry->stub_offset = 0; stub_entry->id_sec = link_sec; stub_entry->stub_type = a8_fixes[i].stub_type; stub_entry->target_section = a8_fixes[i].section; stub_entry->target_value = a8_fixes[i].offset; stub_entry->target_addend = a8_fixes[i].addend; stub_entry->orig_insn = a8_fixes[i].orig_insn; stub_entry->branch_type = a8_fixes[i].branch_type; size = find_stub_size_and_template (a8_fixes[i].stub_type, &template_sequence, &template_size); stub_entry->stub_size = size; stub_entry->stub_template = template_sequence; stub_entry->stub_template_size = template_size; } /* Stash the Cortex-A8 erratum fix array for use later in elf32_arm_write_section(). */ htab->a8_erratum_fixes = a8_fixes; htab->num_a8_erratum_fixes = num_a8_fixes; } else { htab->a8_erratum_fixes = NULL; htab->num_a8_erratum_fixes = 0; } return TRUE; } /* Build all the stubs associated with the current output file. The stubs are kept in a hash table attached to the main linker hash table. We also set up the .plt entries for statically linked PIC functions here. This function is called via arm_elf_finish in the linker. */ bfd_boolean elf32_arm_build_stubs (struct bfd_link_info *info) { asection *stub_sec; struct bfd_hash_table *table; struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); if (htab == NULL) return FALSE; for (stub_sec = htab->stub_bfd->sections; stub_sec != NULL; stub_sec = stub_sec->next) { bfd_size_type size; /* Ignore non-stub sections. */ if (!strstr (stub_sec->name, STUB_SUFFIX)) continue; /* Allocate memory to hold the linker stubs. */ size = stub_sec->size; stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); if (stub_sec->contents == NULL && size != 0) return FALSE; stub_sec->size = 0; } /* Build the stubs as directed by the stub hash table. */ table = &htab->stub_hash_table; bfd_hash_traverse (table, arm_build_one_stub, info); if (htab->fix_cortex_a8) { /* Place the cortex a8 stubs last. */ htab->fix_cortex_a8 = -1; bfd_hash_traverse (table, arm_build_one_stub, info); } return TRUE; } /* Locate the Thumb encoded calling stub for NAME. */ static struct elf_link_hash_entry * find_thumb_glue (struct bfd_link_info *link_info, const char *name, char **error_message) { char *tmp_name; struct elf_link_hash_entry *hash; struct elf32_arm_link_hash_table *hash_table; /* We need a pointer to the armelf specific hash table. */ hash_table = elf32_arm_hash_table (link_info); if (hash_table == NULL) return NULL; tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1); BFD_ASSERT (tmp_name); sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name); hash = elf_link_hash_lookup (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); if (hash == NULL && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"), tmp_name, name) == -1) *error_message = (char *) bfd_errmsg (bfd_error_system_call); free (tmp_name); return hash; } /* Locate the ARM encoded calling stub for NAME. */ static struct elf_link_hash_entry * find_arm_glue (struct bfd_link_info *link_info, const char *name, char **error_message) { char *tmp_name; struct elf_link_hash_entry *myh; struct elf32_arm_link_hash_table *hash_table; /* We need a pointer to the elfarm specific hash table. */ hash_table = elf32_arm_hash_table (link_info); if (hash_table == NULL) return NULL; tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1); BFD_ASSERT (tmp_name); sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name); myh = elf_link_hash_lookup (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); if (myh == NULL && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"), tmp_name, name) == -1) *error_message = (char *) bfd_errmsg (bfd_error_system_call); free (tmp_name); return myh; } /* ARM->Thumb glue (static images): .arm __func_from_arm: ldr r12, __func_addr bx r12 __func_addr: .word func @ behave as if you saw a ARM_32 reloc. (v5t static images) .arm __func_from_arm: ldr pc, __func_addr __func_addr: .word func @ behave as if you saw a ARM_32 reloc. (relocatable images) .arm __func_from_arm: ldr r12, __func_offset add r12, r12, pc bx r12 __func_offset: .word func - . */ #define ARM2THUMB_STATIC_GLUE_SIZE 12 static const insn32 a2t1_ldr_insn = 0xe59fc000; static const insn32 a2t2_bx_r12_insn = 0xe12fff1c; static const insn32 a2t3_func_addr_insn = 0x00000001; #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8 static const insn32 a2t1v5_ldr_insn = 0xe51ff004; static const insn32 a2t2v5_func_addr_insn = 0x00000001; #define ARM2THUMB_PIC_GLUE_SIZE 16 static const insn32 a2t1p_ldr_insn = 0xe59fc004; static const insn32 a2t2p_add_pc_insn = 0xe08cc00f; static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c; /* Thumb->ARM: Thumb->(non-interworking aware) ARM .thumb .thumb .align 2 .align 2 __func_from_thumb: __func_from_thumb: bx pc push {r6, lr} nop ldr r6, __func_addr .arm mov lr, pc b func bx r6 .arm ;; back_to_thumb ldmia r13! {r6, lr} bx lr __func_addr: .word func */ #define THUMB2ARM_GLUE_SIZE 8 static const insn16 t2a1_bx_pc_insn = 0x4778; static const insn16 t2a2_noop_insn = 0x46c0; static const insn32 t2a3_b_insn = 0xea000000; #define VFP11_ERRATUM_VENEER_SIZE 8 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24 #define ARM_BX_VENEER_SIZE 12 static const insn32 armbx1_tst_insn = 0xe3100001; static const insn32 armbx2_moveq_insn = 0x01a0f000; static const insn32 armbx3_bx_insn = 0xe12fff10; #ifndef ELFARM_NABI_C_INCLUDED static void arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name) { asection * s; bfd_byte * contents; if (size == 0) { /* Do not include empty glue sections in the output. */ if (abfd != NULL) { s = bfd_get_linker_section (abfd, name); if (s != NULL) s->flags |= SEC_EXCLUDE; } return; } BFD_ASSERT (abfd != NULL); s = bfd_get_linker_section (abfd, name); BFD_ASSERT (s != NULL); contents = (bfd_byte *) bfd_alloc (abfd, size); BFD_ASSERT (s->size == size); s->contents = contents; } bfd_boolean bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info) { struct elf32_arm_link_hash_table * globals; globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); arm_allocate_glue_section_space (globals->bfd_of_glue_owner, globals->arm_glue_size, ARM2THUMB_GLUE_SECTION_NAME); arm_allocate_glue_section_space (globals->bfd_of_glue_owner, globals->thumb_glue_size, THUMB2ARM_GLUE_SECTION_NAME); arm_allocate_glue_section_space (globals->bfd_of_glue_owner, globals->vfp11_erratum_glue_size, VFP11_ERRATUM_VENEER_SECTION_NAME); arm_allocate_glue_section_space (globals->bfd_of_glue_owner, globals->stm32l4xx_erratum_glue_size, STM32L4XX_ERRATUM_VENEER_SECTION_NAME); arm_allocate_glue_section_space (globals->bfd_of_glue_owner, globals->bx_glue_size, ARM_BX_GLUE_SECTION_NAME); return TRUE; } /* Allocate space and symbols for calling a Thumb function from Arm mode. returns the symbol identifying the stub. */ static struct elf_link_hash_entry * record_arm_to_thumb_glue (struct bfd_link_info * link_info, struct elf_link_hash_entry * h) { const char * name = h->root.root.string; asection * s; char * tmp_name; struct elf_link_hash_entry * myh; struct bfd_link_hash_entry * bh; struct elf32_arm_link_hash_table * globals; bfd_vma val; bfd_size_type size; globals = elf32_arm_hash_table (link_info); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); s = bfd_get_linker_section (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1); BFD_ASSERT (tmp_name); sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name); myh = elf_link_hash_lookup (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); if (myh != NULL) { /* We've already seen this guy. */ free (tmp_name); return myh; } /* The only trick here is using hash_table->arm_glue_size as the value. Even though the section isn't allocated yet, this is where we will be putting it. The +1 on the value marks that the stub has not been output yet - not that it is a Thumb function. */ bh = NULL; val = globals->arm_glue_size + 1; _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, tmp_name, BSF_GLOBAL, s, val, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); myh->forced_local = 1; free (tmp_name); if (bfd_link_pic (link_info) || globals->root.is_relocatable_executable || globals->pic_veneer) size = ARM2THUMB_PIC_GLUE_SIZE; else if (globals->use_blx) size = ARM2THUMB_V5_STATIC_GLUE_SIZE; else size = ARM2THUMB_STATIC_GLUE_SIZE; s->size += size; globals->arm_glue_size += size; return myh; } /* Allocate space for ARMv4 BX veneers. */ static void record_arm_bx_glue (struct bfd_link_info * link_info, int reg) { asection * s; struct elf32_arm_link_hash_table *globals; char *tmp_name; struct elf_link_hash_entry *myh; struct bfd_link_hash_entry *bh; bfd_vma val; /* BX PC does not need a veneer. */ if (reg == 15) return; globals = elf32_arm_hash_table (link_info); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); /* Check if this veneer has already been allocated. */ if (globals->bx_glue_offset[reg]) return; s = bfd_get_linker_section (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); /* Add symbol for veneer. */ tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1); BFD_ASSERT (tmp_name); sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg); myh = elf_link_hash_lookup (&(globals)->root, tmp_name, FALSE, FALSE, FALSE); BFD_ASSERT (myh == NULL); bh = NULL; val = globals->bx_glue_size; _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); myh->forced_local = 1; s->size += ARM_BX_VENEER_SIZE; globals->bx_glue_offset[reg] = globals->bx_glue_size | 2; globals->bx_glue_size += ARM_BX_VENEER_SIZE; } /* Add an entry to the code/data map for section SEC. */ static void elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma) { struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); unsigned int newidx; if (sec_data->map == NULL) { sec_data->map = (elf32_arm_section_map *) bfd_malloc (sizeof (elf32_arm_section_map)); sec_data->mapcount = 0; sec_data->mapsize = 1; } newidx = sec_data->mapcount++; if (sec_data->mapcount > sec_data->mapsize) { sec_data->mapsize *= 2; sec_data->map = (elf32_arm_section_map *) bfd_realloc_or_free (sec_data->map, sec_data->mapsize * sizeof (elf32_arm_section_map)); } if (sec_data->map) { sec_data->map[newidx].vma = vma; sec_data->map[newidx].type = type; } } /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode veneers are handled for now. */ static bfd_vma record_vfp11_erratum_veneer (struct bfd_link_info *link_info, elf32_vfp11_erratum_list *branch, bfd *branch_bfd, asection *branch_sec, unsigned int offset) { asection *s; struct elf32_arm_link_hash_table *hash_table; char *tmp_name; struct elf_link_hash_entry *myh; struct bfd_link_hash_entry *bh; bfd_vma val; struct _arm_elf_section_data *sec_data; elf32_vfp11_erratum_list *newerr; hash_table = elf32_arm_hash_table (link_info); BFD_ASSERT (hash_table != NULL); BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL); s = bfd_get_linker_section (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME); sec_data = elf32_arm_section_data (s); BFD_ASSERT (s != NULL); tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10); BFD_ASSERT (tmp_name); sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME, hash_table->num_vfp11_fixes); myh = elf_link_hash_lookup (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); BFD_ASSERT (myh == NULL); bh = NULL; val = hash_table->vfp11_erratum_glue_size; _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); myh->forced_local = 1; /* Link veneer back to calling location. */ sec_data->erratumcount += 1; newerr = (elf32_vfp11_erratum_list *) bfd_zmalloc (sizeof (elf32_vfp11_erratum_list)); newerr->type = VFP11_ERRATUM_ARM_VENEER; newerr->vma = -1; newerr->u.v.branch = branch; newerr->u.v.id = hash_table->num_vfp11_fixes; branch->u.b.veneer = newerr; newerr->next = sec_data->erratumlist; sec_data->erratumlist = newerr; /* A symbol for the return from the veneer. */ sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r", hash_table->num_vfp11_fixes); myh = elf_link_hash_lookup (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); if (myh != NULL) abort (); bh = NULL; val = offset + 4; _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL, branch_sec, val, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); myh->forced_local = 1; free (tmp_name); /* Generate a mapping symbol for the veneer section, and explicitly add an entry for that symbol to the code/data map for the section. */ if (hash_table->vfp11_erratum_glue_size == 0) { bh = NULL; /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it ever requires this erratum fix. */ _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, "$a", BSF_LOCAL, s, 0, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); myh->forced_local = 1; /* The elf32_arm_init_maps function only cares about symbols from input BFDs. We must make a note of this generated mapping symbol ourselves so that code byteswapping works properly in elf32_arm_write_section. */ elf32_arm_section_map_add (s, 'a', 0); } s->size += VFP11_ERRATUM_VENEER_SIZE; hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE; hash_table->num_vfp11_fixes++; /* The offset of the veneer. */ return val; } /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode veneers need to be handled because used only in Cortex-M. */ static bfd_vma record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info, elf32_stm32l4xx_erratum_list *branch, bfd *branch_bfd, asection *branch_sec, unsigned int offset, bfd_size_type veneer_size) { asection *s; struct elf32_arm_link_hash_table *hash_table; char *tmp_name; struct elf_link_hash_entry *myh; struct bfd_link_hash_entry *bh; bfd_vma val; struct _arm_elf_section_data *sec_data; elf32_stm32l4xx_erratum_list *newerr; hash_table = elf32_arm_hash_table (link_info); BFD_ASSERT (hash_table != NULL); BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL); s = bfd_get_linker_section (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME); BFD_ASSERT (s != NULL); sec_data = elf32_arm_section_data (s); tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10); BFD_ASSERT (tmp_name); sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME, hash_table->num_stm32l4xx_fixes); myh = elf_link_hash_lookup (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); BFD_ASSERT (myh == NULL); bh = NULL; val = hash_table->stm32l4xx_erratum_glue_size; _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); myh->forced_local = 1; /* Link veneer back to calling location. */ sec_data->stm32l4xx_erratumcount += 1; newerr = (elf32_stm32l4xx_erratum_list *) bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list)); newerr->type = STM32L4XX_ERRATUM_VENEER; newerr->vma = -1; newerr->u.v.branch = branch; newerr->u.v.id = hash_table->num_stm32l4xx_fixes; branch->u.b.veneer = newerr; newerr->next = sec_data->stm32l4xx_erratumlist; sec_data->stm32l4xx_erratumlist = newerr; /* A symbol for the return from the veneer. */ sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r", hash_table->num_stm32l4xx_fixes); myh = elf_link_hash_lookup (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); if (myh != NULL) abort (); bh = NULL; val = offset + 4; _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL, branch_sec, val, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); myh->forced_local = 1; free (tmp_name); /* Generate a mapping symbol for the veneer section, and explicitly add an entry for that symbol to the code/data map for the section. */ if (hash_table->stm32l4xx_erratum_glue_size == 0) { bh = NULL; /* Creates a THUMB symbol since there is no other choice. */ _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, "$t", BSF_LOCAL, s, 0, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); myh->forced_local = 1; /* The elf32_arm_init_maps function only cares about symbols from input BFDs. We must make a note of this generated mapping symbol ourselves so that code byteswapping works properly in elf32_arm_write_section. */ elf32_arm_section_map_add (s, 't', 0); } s->size += veneer_size; hash_table->stm32l4xx_erratum_glue_size += veneer_size; hash_table->num_stm32l4xx_fixes++; /* The offset of the veneer. */ return val; } #define ARM_GLUE_SECTION_FLAGS \ (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \ | SEC_READONLY | SEC_LINKER_CREATED) /* Create a fake section for use by the ARM backend of the linker. */ static bfd_boolean arm_make_glue_section (bfd * abfd, const char * name) { asection * sec; sec = bfd_get_linker_section (abfd, name); if (sec != NULL) /* Already made. */ return TRUE; sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS); if (sec == NULL || !bfd_set_section_alignment (abfd, sec, 2)) return FALSE; /* Set the gc mark to prevent the section from being removed by garbage collection, despite the fact that no relocs refer to this section. */ sec->gc_mark = 1; return TRUE; } /* Set size of .plt entries. This function is called from the linker scripts in ld/emultempl/{armelf}.em. */ void bfd_elf32_arm_use_long_plt (void) { elf32_arm_use_long_plt_entry = TRUE; } /* Add the glue sections to ABFD. This function is called from the linker scripts in ld/emultempl/{armelf}.em. */ bfd_boolean bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd, struct bfd_link_info *info) { struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); bfd_boolean dostm32l4xx = globals && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE; bfd_boolean addglue; /* If we are only performing a partial link do not bother adding the glue. */ if (bfd_link_relocatable (info)) return TRUE; addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME) && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME) && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME) && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME); if (!dostm32l4xx) return addglue; return addglue && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME); } /* Select a BFD to be used to hold the sections used by the glue code. This function is called from the linker scripts in ld/emultempl/ {armelf/pe}.em. */ bfd_boolean bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info) { struct elf32_arm_link_hash_table *globals; /* If we are only performing a partial link do not bother getting a bfd to hold the glue. */ if (bfd_link_relocatable (info)) return TRUE; /* Make sure we don't attach the glue sections to a dynamic object. */ BFD_ASSERT (!(abfd->flags & DYNAMIC)); globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); if (globals->bfd_of_glue_owner != NULL) return TRUE; /* Save the bfd for later use. */ globals->bfd_of_glue_owner = abfd; return TRUE; } static void check_use_blx (struct elf32_arm_link_hash_table *globals) { int cpu_arch; cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); if (globals->fix_arm1176) { if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K) globals->use_blx = 1; } else { if (cpu_arch > TAG_CPU_ARCH_V4T) globals->use_blx = 1; } } bfd_boolean bfd_elf32_arm_process_before_allocation (bfd *abfd, struct bfd_link_info *link_info) { Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Rela *internal_relocs = NULL; Elf_Internal_Rela *irel, *irelend; bfd_byte *contents = NULL; asection *sec; struct elf32_arm_link_hash_table *globals; /* If we are only performing a partial link do not bother to construct any glue. */ if (bfd_link_relocatable (link_info)) return TRUE; /* Here we have a bfd that is to be included on the link. We have a hook to do reloc rummaging, before section sizes are nailed down. */ globals = elf32_arm_hash_table (link_info); BFD_ASSERT (globals != NULL); check_use_blx (globals); if (globals->byteswap_code && !bfd_big_endian (abfd)) { _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."), abfd); return FALSE; } /* PR 5398: If we have not decided to include any loadable sections in the output then we will not have a glue owner bfd. This is OK, it just means that there is nothing else for us to do here. */ if (globals->bfd_of_glue_owner == NULL) return TRUE; /* Rummage around all the relocs and map the glue vectors. */ sec = abfd->sections; if (sec == NULL) return TRUE; for (; sec != NULL; sec = sec->next) { if (sec->reloc_count == 0) continue; if ((sec->flags & SEC_EXCLUDE) != 0) continue; symtab_hdr = & elf_symtab_hdr (abfd); /* Load the relocs. */ internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE); if (internal_relocs == NULL) goto error_return; irelend = internal_relocs + sec->reloc_count; for (irel = internal_relocs; irel < irelend; irel++) { long r_type; unsigned long r_index; struct elf_link_hash_entry *h; r_type = ELF32_R_TYPE (irel->r_info); r_index = ELF32_R_SYM (irel->r_info); /* These are the only relocation types we care about. */ if ( r_type != R_ARM_PC24 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2)) continue; /* Get the section contents if we haven't done so already. */ if (contents == NULL) { /* Get cached copy if it exists. */ if (elf_section_data (sec)->this_hdr.contents != NULL) contents = elf_section_data (sec)->this_hdr.contents; else { /* Go get them off disk. */ if (! bfd_malloc_and_get_section (abfd, sec, &contents)) goto error_return; } } if (r_type == R_ARM_V4BX) { int reg; reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf; record_arm_bx_glue (link_info, reg); continue; } /* If the relocation is not against a symbol it cannot concern us. */ h = NULL; /* We don't care about local symbols. */ if (r_index < symtab_hdr->sh_info) continue; /* This is an external symbol. */ r_index -= symtab_hdr->sh_info; h = (struct elf_link_hash_entry *) elf_sym_hashes (abfd)[r_index]; /* If the relocation is against a static symbol it must be within the current section and so cannot be a cross ARM/Thumb relocation. */ if (h == NULL) continue; /* If the call will go through a PLT entry then we do not need glue. */ if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1) continue; switch (r_type) { case R_ARM_PC24: /* This one is a call from arm code. We need to look up the target of the call. If it is a thumb target, we insert glue. */ if (h->target_internal == ST_BRANCH_TO_THUMB) record_arm_to_thumb_glue (link_info, h); break; default: abort (); } } if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); contents = NULL; if (internal_relocs != NULL && elf_section_data (sec)->relocs != internal_relocs) free (internal_relocs); internal_relocs = NULL; } return TRUE; error_return: if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); if (internal_relocs != NULL && elf_section_data (sec)->relocs != internal_relocs) free (internal_relocs); return FALSE; } #endif /* Initialise maps of ARM/Thumb/data for input BFDs. */ void bfd_elf32_arm_init_maps (bfd *abfd) { Elf_Internal_Sym *isymbuf; Elf_Internal_Shdr *hdr; unsigned int i, localsyms; /* PR 7093: Make sure that we are dealing with an arm elf binary. */ if (! is_arm_elf (abfd)) return; if ((abfd->flags & DYNAMIC) != 0) return; hdr = & elf_symtab_hdr (abfd); localsyms = hdr->sh_info; /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field should contain the number of local symbols, which should come before any global symbols. Mapping symbols are always local. */ isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL); /* No internal symbols read? Skip this BFD. */ if (isymbuf == NULL) return; for (i = 0; i < localsyms; i++) { Elf_Internal_Sym *isym = &isymbuf[i]; asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx); const char *name; if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL) { name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, isym->st_name); if (bfd_is_arm_special_symbol_name (name, BFD_ARM_SPECIAL_SYM_TYPE_MAP)) elf32_arm_section_map_add (sec, name[1], isym->st_value); } } } /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly say what they wanted. */ void bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info) { struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); if (globals == NULL) return; if (globals->fix_cortex_a8 == -1) { /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */ if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7 && (out_attr[Tag_CPU_arch_profile].i == 'A' || out_attr[Tag_CPU_arch_profile].i == 0)) globals->fix_cortex_a8 = 1; else globals->fix_cortex_a8 = 0; } } void bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info) { struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); if (globals == NULL) return; /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */ if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7) { switch (globals->vfp11_fix) { case BFD_ARM_VFP11_FIX_DEFAULT: case BFD_ARM_VFP11_FIX_NONE: globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; break; default: /* Give a warning, but do as the user requests anyway. */ (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum " "workaround is not necessary for target architecture"), obfd); } } else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT) /* For earlier architectures, we might need the workaround, but do not enable it by default. If users is running with broken hardware, they must enable the erratum fix explicitly. */ globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; } void bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info) { struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); if (globals == NULL) return; /* We assume only Cortex-M4 may require the fix. */ if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M || out_attr[Tag_CPU_arch_profile].i != 'M') { if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE) /* Give a warning, but do as the user requests anyway. */ (*_bfd_error_handler) (_("%B: warning: selected STM32L4XX erratum " "workaround is not necessary for target architecture"), obfd); } } enum bfd_arm_vfp11_pipe { VFP11_FMAC, VFP11_LS, VFP11_DS, VFP11_BAD }; /* Return a VFP register number. This is encoded as RX:X for single-precision registers, or X:RX for double-precision registers, where RX is the group of four bits in the instruction encoding and X is the single extension bit. RX and X fields are specified using their lowest (starting) bit. The return value is: 0...31: single-precision registers s0...s31 32...63: double-precision registers d0...d31. Although X should be zero for VFP11 (encoding d0...d15 only), we might encounter VFP3 instructions, so we allow the full range for DP registers. */ static unsigned int bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx, unsigned int x) { if (is_double) return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32; else return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1); } /* Set bits in *WMASK according to a register number REG as encoded by bfd_arm_vfp11_regno(). Ignore d16-d31. */ static void bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg) { if (reg < 32) *wmask |= 1 << reg; else if (reg < 48) *wmask |= 3 << ((reg - 32) * 2); } /* Return TRUE if WMASK overwrites anything in REGS. */ static bfd_boolean bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs) { int i; for (i = 0; i < numregs; i++) { unsigned int reg = regs[i]; if (reg < 32 && (wmask & (1 << reg)) != 0) return TRUE; reg -= 32; if (reg >= 16) continue; if ((wmask & (3 << (reg * 2))) != 0) return TRUE; } return FALSE; } /* In this function, we're interested in two things: finding input registers for VFP data-processing instructions, and finding the set of registers which arbitrary VFP instructions may write to. We use a 32-bit unsigned int to hold the written set, so FLDM etc. are easy to deal with (we're only interested in 32 SP registers or 16 dp registers, due to the VFP version implemented by the chip in question). DP registers are marked by setting both SP registers in the write mask). */ static enum bfd_arm_vfp11_pipe bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs, int *numregs) { enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD; bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0; if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */ { unsigned int pqrs; unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22); unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5); pqrs = ((insn & 0x00800000) >> 20) | ((insn & 0x00300000) >> 19) | ((insn & 0x00000040) >> 6); switch (pqrs) { case 0: /* fmac[sd]. */ case 1: /* fnmac[sd]. */ case 2: /* fmsc[sd]. */ case 3: /* fnmsc[sd]. */ vpipe = VFP11_FMAC; bfd_arm_vfp11_write_mask (destmask, fd); regs[0] = fd; regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */ regs[2] = fm; *numregs = 3; break; case 4: /* fmul[sd]. */ case 5: /* fnmul[sd]. */ case 6: /* fadd[sd]. */ case 7: /* fsub[sd]. */ vpipe = VFP11_FMAC; goto vfp_binop; case 8: /* fdiv[sd]. */ vpipe = VFP11_DS; vfp_binop: bfd_arm_vfp11_write_mask (destmask, fd); regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */ regs[1] = fm; *numregs = 2; break; case 15: /* extended opcode. */ { unsigned int extn = ((insn >> 15) & 0x1e) | ((insn >> 7) & 1); switch (extn) { case 0: /* fcpy[sd]. */ case 1: /* fabs[sd]. */ case 2: /* fneg[sd]. */ case 8: /* fcmp[sd]. */ case 9: /* fcmpe[sd]. */ case 10: /* fcmpz[sd]. */ case 11: /* fcmpez[sd]. */ case 16: /* fuito[sd]. */ case 17: /* fsito[sd]. */ case 24: /* ftoui[sd]. */ case 25: /* ftouiz[sd]. */ case 26: /* ftosi[sd]. */ case 27: /* ftosiz[sd]. */ /* These instructions will not bounce due to underflow. */ *numregs = 0; vpipe = VFP11_FMAC; break; case 3: /* fsqrt[sd]. */ /* fsqrt cannot underflow, but it can (perhaps) overwrite registers to cause the erratum in previous instructions. */ bfd_arm_vfp11_write_mask (destmask, fd); vpipe = VFP11_DS; break; case 15: /* fcvt{ds,sd}. */ { int rnum = 0; bfd_arm_vfp11_write_mask (destmask, fd); /* Only FCVTSD can underflow. */ if ((insn & 0x100) != 0) regs[rnum++] = fm; *numregs = rnum; vpipe = VFP11_FMAC; } break; default: return VFP11_BAD; } } break; default: return VFP11_BAD; } } /* Two-register transfer. */ else if ((insn & 0x0fe00ed0) == 0x0c400a10) { unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5); if ((insn & 0x100000) == 0) { if (is_double) bfd_arm_vfp11_write_mask (destmask, fm); else { bfd_arm_vfp11_write_mask (destmask, fm); bfd_arm_vfp11_write_mask (destmask, fm + 1); } } vpipe = VFP11_LS; } else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */ { int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22); unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1); switch (puw) { case 0: /* Two-reg transfer. We should catch these above. */ abort (); case 2: /* fldm[sdx]. */ case 3: case 5: { unsigned int i, offset = insn & 0xff; if (is_double) offset >>= 1; for (i = fd; i < fd + offset; i++) bfd_arm_vfp11_write_mask (destmask, i); } break; case 4: /* fld[sd]. */ case 6: bfd_arm_vfp11_write_mask (destmask, fd); break; default: return VFP11_BAD; } vpipe = VFP11_LS; } /* Single-register transfer. Note L==0. */ else if ((insn & 0x0f100e10) == 0x0e000a10) { unsigned int opcode = (insn >> 21) & 7; unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7); switch (opcode) { case 0: /* fmsr/fmdlr. */ case 1: /* fmdhr. */ /* Mark fmdhr and fmdlr as writing to the whole of the DP destination register. I don't know if this is exactly right, but it is the conservative choice. */ bfd_arm_vfp11_write_mask (destmask, fn); break; case 7: /* fmxr. */ break; } vpipe = VFP11_LS; } return vpipe; } static int elf32_arm_compare_mapping (const void * a, const void * b); /* Look for potentially-troublesome code sequences which might trigger the VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet (available from ARM) for details of the erratum. A short version is described in ld.texinfo. */ bfd_boolean bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info) { asection *sec; bfd_byte *contents = NULL; int state = 0; int regs[3], numregs = 0; struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR); if (globals == NULL) return FALSE; /* We use a simple FSM to match troublesome VFP11 instruction sequences. The states transition as follows: 0 -> 1 (vector) or 0 -> 2 (scalar) A VFP FMAC-pipeline instruction has been seen. Fill regs[0]..regs[numregs-1] with its input operands. Remember this instruction in 'first_fmac'. 1 -> 2 Any instruction, except for a VFP instruction which overwrites regs[*]. 1 -> 3 [ -> 0 ] or 2 -> 3 [ -> 0 ] A VFP instruction has been seen which overwrites any of regs[*]. We must make a veneer! Reset state to 0 before examining next instruction. 2 -> 0 If we fail to match anything in state 2, reset to state 0 and reset the instruction pointer to the instruction after 'first_fmac'. If the VFP11 vector mode is in use, there must be at least two unrelated instructions between anti-dependent VFP11 instructions to properly avoid triggering the erratum, hence the use of the extra state 1. */ /* If we are only performing a partial link do not bother to construct any glue. */ if (bfd_link_relocatable (link_info)) return TRUE; /* Skip if this bfd does not correspond to an ELF image. */ if (! is_arm_elf (abfd)) return TRUE; /* We should have chosen a fix type by the time we get here. */ BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT); if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE) return TRUE; /* Skip this BFD if it corresponds to an executable or dynamic object. */ if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) return TRUE; for (sec = abfd->sections; sec != NULL; sec = sec->next) { unsigned int i, span, first_fmac = 0, veneer_of_insn = 0; struct _arm_elf_section_data *sec_data; /* If we don't have executable progbits, we're not interested in this section. Also skip if section is to be excluded. */ if (elf_section_type (sec) != SHT_PROGBITS || (elf_section_flags (sec) & SHF_EXECINSTR) == 0 || (sec->flags & SEC_EXCLUDE) != 0 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS || sec->output_section == bfd_abs_section_ptr || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0) continue; sec_data = elf32_arm_section_data (sec); if (sec_data->mapcount == 0) continue; if (elf_section_data (sec)->this_hdr.contents != NULL) contents = elf_section_data (sec)->this_hdr.contents; else if (! bfd_malloc_and_get_section (abfd, sec, &contents)) goto error_return; qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map), elf32_arm_compare_mapping); for (span = 0; span < sec_data->mapcount; span++) { unsigned int span_start = sec_data->map[span].vma; unsigned int span_end = (span == sec_data->mapcount - 1) ? sec->size : sec_data->map[span + 1].vma; char span_type = sec_data->map[span].type; /* FIXME: Only ARM mode is supported at present. We may need to support Thumb-2 mode also at some point. */ if (span_type != 'a') continue; for (i = span_start; i < span_end;) { unsigned int next_i = i + 4; unsigned int insn = bfd_big_endian (abfd) ? (contents[i] << 24) | (contents[i + 1] << 16) | (contents[i + 2] << 8) | contents[i + 3] : (contents[i + 3] << 24) | (contents[i + 2] << 16) | (contents[i + 1] << 8) | contents[i]; unsigned int writemask = 0; enum bfd_arm_vfp11_pipe vpipe; switch (state) { case 0: vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs, &numregs); /* I'm assuming the VFP11 erratum can trigger with denorm operands on either the FMAC or the DS pipeline. This might lead to slightly overenthusiastic veneer insertion. */ if (vpipe == VFP11_FMAC || vpipe == VFP11_DS) { state = use_vector ? 1 : 2; first_fmac = i; veneer_of_insn = insn; } break; case 1: { int other_regs[3], other_numregs; vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, other_regs, &other_numregs); if (vpipe != VFP11_BAD && bfd_arm_vfp11_antidependency (writemask, regs, numregs)) state = 3; else state = 2; } break; case 2: { int other_regs[3], other_numregs; vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, other_regs, &other_numregs); if (vpipe != VFP11_BAD && bfd_arm_vfp11_antidependency (writemask, regs, numregs)) state = 3; else { state = 0; next_i = first_fmac + 4; } } break; case 3: abort (); /* Should be unreachable. */ } if (state == 3) { elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *) bfd_zmalloc (sizeof (elf32_vfp11_erratum_list)); elf32_arm_section_data (sec)->erratumcount += 1; newerr->u.b.vfp_insn = veneer_of_insn; switch (span_type) { case 'a': newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER; break; default: abort (); } record_vfp11_erratum_veneer (link_info, newerr, abfd, sec, first_fmac); newerr->vma = -1; newerr->next = sec_data->erratumlist; sec_data->erratumlist = newerr; state = 0; } i = next_i; } } if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); contents = NULL; } return TRUE; error_return: if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); return FALSE; } /* Find virtual-memory addresses for VFP11 erratum veneers and return locations after sections have been laid out, using specially-named symbols. */ void bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd, struct bfd_link_info *link_info) { asection *sec; struct elf32_arm_link_hash_table *globals; char *tmp_name; if (bfd_link_relocatable (link_info)) return; /* Skip if this bfd does not correspond to an ELF image. */ if (! is_arm_elf (abfd)) return; globals = elf32_arm_hash_table (link_info); if (globals == NULL) return; tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10); for (sec = abfd->sections; sec != NULL; sec = sec->next) { struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); elf32_vfp11_erratum_list *errnode = sec_data->erratumlist; for (; errnode != NULL; errnode = errnode->next) { struct elf_link_hash_entry *myh; bfd_vma vma; switch (errnode->type) { case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER: case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER: /* Find veneer symbol. */ sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME, errnode->u.b.veneer->u.v.id); myh = elf_link_hash_lookup (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); if (myh == NULL) (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer " "`%s'"), abfd, tmp_name); vma = myh->root.u.def.section->output_section->vma + myh->root.u.def.section->output_offset + myh->root.u.def.value; errnode->u.b.veneer->vma = vma; break; case VFP11_ERRATUM_ARM_VENEER: case VFP11_ERRATUM_THUMB_VENEER: /* Find return location. */ sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r", errnode->u.v.id); myh = elf_link_hash_lookup (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); if (myh == NULL) (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer " "`%s'"), abfd, tmp_name); vma = myh->root.u.def.section->output_section->vma + myh->root.u.def.section->output_offset + myh->root.u.def.value; errnode->u.v.branch->vma = vma; break; default: abort (); } } } free (tmp_name); } /* Find virtual-memory addresses for STM32L4XX erratum veneers and return locations after sections have been laid out, using specially-named symbols. */ void bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd, struct bfd_link_info *link_info) { asection *sec; struct elf32_arm_link_hash_table *globals; char *tmp_name; if (bfd_link_relocatable (link_info)) return; /* Skip if this bfd does not correspond to an ELF image. */ if (! is_arm_elf (abfd)) return; globals = elf32_arm_hash_table (link_info); if (globals == NULL) return; tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10); for (sec = abfd->sections; sec != NULL; sec = sec->next) { struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist; for (; errnode != NULL; errnode = errnode->next) { struct elf_link_hash_entry *myh; bfd_vma vma; switch (errnode->type) { case STM32L4XX_ERRATUM_BRANCH_TO_VENEER: /* Find veneer symbol. */ sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME, errnode->u.b.veneer->u.v.id); myh = elf_link_hash_lookup (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); if (myh == NULL) (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer " "`%s'"), abfd, tmp_name); vma = myh->root.u.def.section->output_section->vma + myh->root.u.def.section->output_offset + myh->root.u.def.value; errnode->u.b.veneer->vma = vma; break; case STM32L4XX_ERRATUM_VENEER: /* Find return location. */ sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r", errnode->u.v.id); myh = elf_link_hash_lookup (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); if (myh == NULL) (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer " "`%s'"), abfd, tmp_name); vma = myh->root.u.def.section->output_section->vma + myh->root.u.def.section->output_offset + myh->root.u.def.value; errnode->u.v.branch->vma = vma; break; default: abort (); } } } free (tmp_name); } static inline bfd_boolean is_thumb2_ldmia (const insn32 insn) { /* Encoding T2: LDM.W {!}, 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */ return (insn & 0xffd02000) == 0xe8900000; } static inline bfd_boolean is_thumb2_ldmdb (const insn32 insn) { /* Encoding T1: LDMDB {!}, 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */ return (insn & 0xffd02000) == 0xe9100000; } static inline bfd_boolean is_thumb2_vldm (const insn32 insn) { /* A6.5 Extension register load or store instruction A7.7.229 We look only for the 32-bit registers case since the DP (64-bit registers) are not supported for STM32L4XX Encoding T2 VLDM{mode} {!}, is consecutive 32-bit registers 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii if P==0 && U==1 && W==1 && Rn=1101 VPOP if PUW=010 || PUW=011 || PUW=101 VLDM. */ return ((insn & 0xfe100f00) == 0xec100a00) && /* (IA without !). */ (((((insn << 7) >> 28) & 0xd) == 0x4) /* (IA with !), includes VPOP (when reg number is SP). */ || ((((insn << 7) >> 28) & 0xd) == 0x5) /* (DB with !). */ || ((((insn << 7) >> 28) & 0xd) == 0x9)); } /* STM STM32L4XX erratum : This function assumes that it receives an LDM or VLDM opcode and: - computes the number and the mode of memory accesses - decides if the replacement should be done: . replaces only if > 8-word accesses . or (testing purposes only) replaces all accesses. */ static bfd_boolean stm32l4xx_need_create_replacing_stub (const insn32 insn, bfd_arm_stm32l4xx_fix stm32l4xx_fix) { int nb_regs = 0; /* The field encoding the register list is the same for both LDMIA and LDMDB encodings. */ if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn)) nb_regs = popcount (insn & 0x0000ffff); else if (is_thumb2_vldm (insn)) nb_regs = (insn & 0xff); /* DEFAULT mode accounts for the real bug condition situation, ALL mode inserts stubs for each LDM/VLDM instruction (testing). */ return (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_regs > 8 : (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE; } /* Look for potentially-troublesome code sequences which might trigger the STM STM32L4XX erratum. */ bfd_boolean bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd, struct bfd_link_info *link_info) { asection *sec; bfd_byte *contents = NULL; struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); if (globals == NULL) return FALSE; /* If we are only performing a partial link do not bother to construct any glue. */ if (bfd_link_relocatable (link_info)) return TRUE; /* Skip if this bfd does not correspond to an ELF image. */ if (! is_arm_elf (abfd)) return TRUE; if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE) return TRUE; /* Skip this BFD if it corresponds to an executable or dynamic object. */ if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) return TRUE; for (sec = abfd->sections; sec != NULL; sec = sec->next) { unsigned int i, span; struct _arm_elf_section_data *sec_data; /* If we don't have executable progbits, we're not interested in this section. Also skip if section is to be excluded. */ if (elf_section_type (sec) != SHT_PROGBITS || (elf_section_flags (sec) & SHF_EXECINSTR) == 0 || (sec->flags & SEC_EXCLUDE) != 0 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS || sec->output_section == bfd_abs_section_ptr || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0) continue; sec_data = elf32_arm_section_data (sec); if (sec_data->mapcount == 0) continue; if (elf_section_data (sec)->this_hdr.contents != NULL) contents = elf_section_data (sec)->this_hdr.contents; else if (! bfd_malloc_and_get_section (abfd, sec, &contents)) goto error_return; qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map), elf32_arm_compare_mapping); for (span = 0; span < sec_data->mapcount; span++) { unsigned int span_start = sec_data->map[span].vma; unsigned int span_end = (span == sec_data->mapcount - 1) ? sec->size : sec_data->map[span + 1].vma; char span_type = sec_data->map[span].type; int itblock_current_pos = 0; /* Only Thumb2 mode need be supported with this CM4 specific code, we should not encounter any arm mode eg span_type != 'a'. */ if (span_type != 't') continue; for (i = span_start; i < span_end;) { unsigned int insn = bfd_get_16 (abfd, &contents[i]); bfd_boolean insn_32bit = FALSE; bfd_boolean is_ldm = FALSE; bfd_boolean is_vldm = FALSE; bfd_boolean is_not_last_in_it_block = FALSE; /* The first 16-bits of all 32-bit thumb2 instructions start with opcode[15..13]=0b111 and the encoded op1 can be anything except opcode[12..11]!=0b00. See 32-bit Thumb instruction encoding. */ if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000) insn_32bit = TRUE; /* Compute the predicate that tells if the instruction is concerned by the IT block - Creates an error if there is a ldm that is not last in the IT block thus cannot be replaced - Otherwise we can create a branch at the end of the IT block, it will be controlled naturally by IT with the proper pseudo-predicate - So the only interesting predicate is the one that tells that we are not on the last item of an IT block. */ if (itblock_current_pos != 0) is_not_last_in_it_block = !!--itblock_current_pos; if (insn_32bit) { /* Load the rest of the insn (in manual-friendly order). */ insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]); is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn); is_vldm = is_thumb2_vldm (insn); /* Veneers are created for (v)ldm depending on option flags and memory accesses conditions; but if the instruction is not the last instruction of an IT block, we cannot create a jump there, so we bail out. */ if ((is_ldm || is_vldm) && stm32l4xx_need_create_replacing_stub (insn, globals->stm32l4xx_fix)) { if (is_not_last_in_it_block) { (*_bfd_error_handler) /* Note - overlong line used here to allow for translation. */ (_("\ %B(%A+0x%lx): error: multiple load detected in non-last IT block instruction : STM32L4XX veneer cannot be generated.\n" "Use gcc option -mrestrict-it to generate only one instruction per IT block.\n"), abfd, sec, (long)i); } else { elf32_stm32l4xx_erratum_list *newerr = (elf32_stm32l4xx_erratum_list *) bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list)); elf32_arm_section_data (sec) ->stm32l4xx_erratumcount += 1; newerr->u.b.insn = insn; /* We create only thumb branches. */ newerr->type = STM32L4XX_ERRATUM_BRANCH_TO_VENEER; record_stm32l4xx_erratum_veneer (link_info, newerr, abfd, sec, i, is_ldm ? STM32L4XX_ERRATUM_LDM_VENEER_SIZE: STM32L4XX_ERRATUM_VLDM_VENEER_SIZE); newerr->vma = -1; newerr->next = sec_data->stm32l4xx_erratumlist; sec_data->stm32l4xx_erratumlist = newerr; } } } else { /* A7.7.37 IT p208 IT blocks are only encoded in T1 Encoding T1: IT{x{y{z}}} 1 0 1 1 - 1 1 1 1 - firstcond - mask if mask = '0000' then see 'related encodings' We don't deal with UNPREDICTABLE, just ignore these. There can be no nested IT blocks so an IT block is naturally a new one for which it is worth computing its size. */ bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00) && ((insn & 0x000f) != 0x0000); /* If we have a new IT block we compute its size. */ if (is_newitblock) { /* Compute the number of instructions controlled by the IT block, it will be used to decide whether we are inside an IT block or not. */ unsigned int mask = insn & 0x000f; itblock_current_pos = 4 - ctz (mask); } } i += insn_32bit ? 4 : 2; } } if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); contents = NULL; } return TRUE; error_return: if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); return FALSE; } /* Set target relocation values needed during linking. */ void bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd, struct bfd_link_info *link_info, int target1_is_rel, char * target2_type, int fix_v4bx, int use_blx, bfd_arm_vfp11_fix vfp11_fix, bfd_arm_stm32l4xx_fix stm32l4xx_fix, int no_enum_warn, int no_wchar_warn, int pic_veneer, int fix_cortex_a8, int fix_arm1176) { struct elf32_arm_link_hash_table *globals; globals = elf32_arm_hash_table (link_info); if (globals == NULL) return; globals->target1_is_rel = target1_is_rel; if (strcmp (target2_type, "rel") == 0) globals->target2_reloc = R_ARM_REL32; else if (strcmp (target2_type, "abs") == 0) globals->target2_reloc = R_ARM_ABS32; else if (strcmp (target2_type, "got-rel") == 0) globals->target2_reloc = R_ARM_GOT_PREL; else { _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."), target2_type); } globals->fix_v4bx = fix_v4bx; globals->use_blx |= use_blx; globals->vfp11_fix = vfp11_fix; globals->stm32l4xx_fix = stm32l4xx_fix; globals->pic_veneer = pic_veneer; globals->fix_cortex_a8 = fix_cortex_a8; globals->fix_arm1176 = fix_arm1176; BFD_ASSERT (is_arm_elf (output_bfd)); elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn; elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn; } /* Replace the target offset of a Thumb bl or b.w instruction. */ static void insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn) { bfd_vma upper; bfd_vma lower; int reloc_sign; BFD_ASSERT ((offset & 1) == 0); upper = bfd_get_16 (abfd, insn); lower = bfd_get_16 (abfd, insn + 2); reloc_sign = (offset < 0) ? 1 : 0; upper = (upper & ~(bfd_vma) 0x7ff) | ((offset >> 12) & 0x3ff) | (reloc_sign << 10); lower = (lower & ~(bfd_vma) 0x2fff) | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13) | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11) | ((offset >> 1) & 0x7ff); bfd_put_16 (abfd, upper, insn); bfd_put_16 (abfd, lower, insn + 2); } /* Thumb code calling an ARM function. */ static int elf32_thumb_to_arm_stub (struct bfd_link_info * info, const char * name, bfd * input_bfd, bfd * output_bfd, asection * input_section, bfd_byte * hit_data, asection * sym_sec, bfd_vma offset, bfd_signed_vma addend, bfd_vma val, char **error_message) { asection * s = 0; bfd_vma my_offset; long int ret_offset; struct elf_link_hash_entry * myh; struct elf32_arm_link_hash_table * globals; myh = find_thumb_glue (info, name, error_message); if (myh == NULL) return FALSE; globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); my_offset = myh->root.u.def.value; s = bfd_get_linker_section (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); BFD_ASSERT (s->contents != NULL); BFD_ASSERT (s->output_section != NULL); if ((my_offset & 0x01) == 0x01) { if (sym_sec != NULL && sym_sec->owner != NULL && !INTERWORK_FLAG (sym_sec->owner)) { (*_bfd_error_handler) (_("%B(%s): warning: interworking not enabled.\n" " first occurrence: %B: Thumb call to ARM"), sym_sec->owner, input_bfd, name); return FALSE; } --my_offset; myh->root.u.def.value = my_offset; put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn, s->contents + my_offset); put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn, s->contents + my_offset + 2); ret_offset = /* Address of destination of the stub. */ ((bfd_signed_vma) val) - ((bfd_signed_vma) /* Offset from the start of the current section to the start of the stubs. */ (s->output_offset /* Offset of the start of this stub from the start of the stubs. */ + my_offset /* Address of the start of the current section. */ + s->output_section->vma) /* The branch instruction is 4 bytes into the stub. */ + 4 /* ARM branches work from the pc of the instruction + 8. */ + 8); put_arm_insn (globals, output_bfd, (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF), s->contents + my_offset + 4); } BFD_ASSERT (my_offset <= globals->thumb_glue_size); /* Now go back and fix up the original BL insn to point to here. */ ret_offset = /* Address of where the stub is located. */ (s->output_section->vma + s->output_offset + my_offset) /* Address of where the BL is located. */ - (input_section->output_section->vma + input_section->output_offset + offset) /* Addend in the relocation. */ - addend /* Biassing for PC-relative addressing. */ - 8; insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma); return TRUE; } /* Populate an Arm to Thumb stub. Returns the stub symbol. */ static struct elf_link_hash_entry * elf32_arm_create_thumb_stub (struct bfd_link_info * info, const char * name, bfd * input_bfd, bfd * output_bfd, asection * sym_sec, bfd_vma val, asection * s, char ** error_message) { bfd_vma my_offset; long int ret_offset; struct elf_link_hash_entry * myh; struct elf32_arm_link_hash_table * globals; myh = find_arm_glue (info, name, error_message); if (myh == NULL) return NULL; globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); my_offset = myh->root.u.def.value; if ((my_offset & 0x01) == 0x01) { if (sym_sec != NULL && sym_sec->owner != NULL && !INTERWORK_FLAG (sym_sec->owner)) { (*_bfd_error_handler) (_("%B(%s): warning: interworking not enabled.\n" " first occurrence: %B: arm call to thumb"), sym_sec->owner, input_bfd, name); } --my_offset; myh->root.u.def.value = my_offset; if (bfd_link_pic (info) || globals->root.is_relocatable_executable || globals->pic_veneer) { /* For relocatable objects we can't use absolute addresses, so construct the address from a relative offset. */ /* TODO: If the offset is small it's probably worth constructing the address with adds. */ put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn, s->contents + my_offset); put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn, s->contents + my_offset + 4); put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn, s->contents + my_offset + 8); /* Adjust the offset by 4 for the position of the add, and 8 for the pipeline offset. */ ret_offset = (val - (s->output_offset + s->output_section->vma + my_offset + 12)) | 1; bfd_put_32 (output_bfd, ret_offset, s->contents + my_offset + 12); } else if (globals->use_blx) { put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn, s->contents + my_offset); /* It's a thumb address. Add the low order bit. */ bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn, s->contents + my_offset + 4); } else { put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn, s->contents + my_offset); put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn, s->contents + my_offset + 4); /* It's a thumb address. Add the low order bit. */ bfd_put_32 (output_bfd, val | a2t3_func_addr_insn, s->contents + my_offset + 8); my_offset += 12; } } BFD_ASSERT (my_offset <= globals->arm_glue_size); return myh; } /* Arm code calling a Thumb function. */ static int elf32_arm_to_thumb_stub (struct bfd_link_info * info, const char * name, bfd * input_bfd, bfd * output_bfd, asection * input_section, bfd_byte * hit_data, asection * sym_sec, bfd_vma offset, bfd_signed_vma addend, bfd_vma val, char **error_message) { unsigned long int tmp; bfd_vma my_offset; asection * s; long int ret_offset; struct elf_link_hash_entry * myh; struct elf32_arm_link_hash_table * globals; globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); s = bfd_get_linker_section (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); BFD_ASSERT (s->contents != NULL); BFD_ASSERT (s->output_section != NULL); myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd, sym_sec, val, s, error_message); if (!myh) return FALSE; my_offset = myh->root.u.def.value; tmp = bfd_get_32 (input_bfd, hit_data); tmp = tmp & 0xFF000000; /* Somehow these are both 4 too far, so subtract 8. */ ret_offset = (s->output_offset + my_offset + s->output_section->vma - (input_section->output_offset + input_section->output_section->vma + offset + addend) - 8); tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF); bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma); return TRUE; } /* Populate Arm stub for an exported Thumb function. */ static bfd_boolean elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf) { struct bfd_link_info * info = (struct bfd_link_info *) inf; asection * s; struct elf_link_hash_entry * myh; struct elf32_arm_link_hash_entry *eh; struct elf32_arm_link_hash_table * globals; asection *sec; bfd_vma val; char *error_message; eh = elf32_arm_hash_entry (h); /* Allocate stubs for exported Thumb functions on v4t. */ if (eh->export_glue == NULL) return TRUE; globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); s = bfd_get_linker_section (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); BFD_ASSERT (s->contents != NULL); BFD_ASSERT (s->output_section != NULL); sec = eh->export_glue->root.u.def.section; BFD_ASSERT (sec->output_section != NULL); val = eh->export_glue->root.u.def.value + sec->output_offset + sec->output_section->vma; myh = elf32_arm_create_thumb_stub (info, h->root.root.string, h->root.u.def.section->owner, globals->obfd, sec, val, s, &error_message); BFD_ASSERT (myh); return TRUE; } /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */ static bfd_vma elf32_arm_bx_glue (struct bfd_link_info * info, int reg) { bfd_byte *p; bfd_vma glue_addr; asection *s; struct elf32_arm_link_hash_table *globals; globals = elf32_arm_hash_table (info); BFD_ASSERT (globals != NULL); BFD_ASSERT (globals->bfd_of_glue_owner != NULL); s = bfd_get_linker_section (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME); BFD_ASSERT (s != NULL); BFD_ASSERT (s->contents != NULL); BFD_ASSERT (s->output_section != NULL); BFD_ASSERT (globals->bx_glue_offset[reg] & 2); glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3; if ((globals->bx_glue_offset[reg] & 1) == 0) { p = s->contents + glue_addr; bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p); bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4); bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8); globals->bx_glue_offset[reg] |= 1; } return glue_addr + s->output_section->vma + s->output_offset; } /* Generate Arm stubs for exported Thumb symbols. */ static void elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_link_info *link_info) { struct elf32_arm_link_hash_table * globals; if (link_info == NULL) /* Ignore this if we are not called by the ELF backend linker. */ return; globals = elf32_arm_hash_table (link_info); if (globals == NULL) return; /* If blx is available then exported Thumb symbols are OK and there is nothing to do. */ if (globals->use_blx) return; elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub, link_info); } /* Reserve space for COUNT dynamic relocations in relocation selection SRELOC. */ static void elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc, bfd_size_type count) { struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); BFD_ASSERT (htab->root.dynamic_sections_created); if (sreloc == NULL) abort (); sreloc->size += RELOC_SIZE (htab) * count; } /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is dynamic, the relocations should go in SRELOC, otherwise they should go in the special .rel.iplt section. */ static void elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc, bfd_size_type count) { struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); if (!htab->root.dynamic_sections_created) htab->root.irelplt->size += RELOC_SIZE (htab) * count; else { BFD_ASSERT (sreloc != NULL); sreloc->size += RELOC_SIZE (htab) * count; } } /* Add relocation REL to the end of relocation section SRELOC. */ static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info, asection *sreloc, Elf_Internal_Rela *rel) { bfd_byte *loc; struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); if (!htab->root.dynamic_sections_created && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE) sreloc = htab->root.irelplt; if (sreloc == NULL) abort (); loc = sreloc->contents; loc += sreloc->reloc_count++ * RELOC_SIZE (htab); if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size) abort (); SWAP_RELOC_OUT (htab) (output_bfd, rel, loc); } /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT. IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than to .plt. */ static void elf32_arm_allocate_plt_entry (struct bfd_link_info *info, bfd_boolean is_iplt_entry, union gotplt_union *root_plt, struct arm_plt_info *arm_plt) { struct elf32_arm_link_hash_table *htab; asection *splt; asection *sgotplt; htab = elf32_arm_hash_table (info); if (is_iplt_entry) { splt = htab->root.iplt; sgotplt = htab->root.igotplt; /* NaCl uses a special first entry in .iplt too. */ if (htab->nacl_p && splt->size == 0) splt->size += htab->plt_header_size; /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */ elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1); } else { splt = htab->root.splt; sgotplt = htab->root.sgotplt; /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */ elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); /* If this is the first .plt entry, make room for the special first entry. */ if (splt->size == 0) splt->size += htab->plt_header_size; htab->next_tls_desc_index++; } /* Allocate the PLT entry itself, including any leading Thumb stub. */ if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)) splt->size += PLT_THUMB_STUB_SIZE; root_plt->offset = splt->size; splt->size += htab->plt_entry_size; if (!htab->symbian_p) { /* We also need to make an entry in the .got.plt section, which will be placed in the .got section by the linker script. */ if (is_iplt_entry) arm_plt->got_offset = sgotplt->size; else arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc; sgotplt->size += 4; } } static bfd_vma arm_movw_immediate (bfd_vma value) { return (value & 0x00000fff) | ((value & 0x0000f000) << 4); } static bfd_vma arm_movt_immediate (bfd_vma value) { return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12); } /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1, the entry lives in .iplt and resolves to (*SYM_VALUE)(). Otherwise, DYNINDX is the index of the symbol in the dynamic symbol table and SYM_VALUE is undefined. ROOT_PLT points to the offset of the PLT entry from the start of its section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific bookkeeping information. Returns FALSE if there was a problem. */ static bfd_boolean elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info, union gotplt_union *root_plt, struct arm_plt_info *arm_plt, int dynindx, bfd_vma sym_value) { struct elf32_arm_link_hash_table *htab; asection *sgot; asection *splt; asection *srel; bfd_byte *loc; bfd_vma plt_index; Elf_Internal_Rela rel; bfd_vma plt_header_size; bfd_vma got_header_size; htab = elf32_arm_hash_table (info); /* Pick the appropriate sections and sizes. */ if (dynindx == -1) { splt = htab->root.iplt; sgot = htab->root.igotplt; srel = htab->root.irelplt; /* There are no reserved entries in .igot.plt, and no special first entry in .iplt. */ got_header_size = 0; plt_header_size = 0; } else { splt = htab->root.splt; sgot = htab->root.sgotplt; srel = htab->root.srelplt; got_header_size = get_elf_backend_data (output_bfd)->got_header_size; plt_header_size = htab->plt_header_size; } BFD_ASSERT (splt != NULL && srel != NULL); /* Fill in the entry in the procedure linkage table. */ if (htab->symbian_p) { BFD_ASSERT (dynindx >= 0); put_arm_insn (htab, output_bfd, elf32_arm_symbian_plt_entry[0], splt->contents + root_plt->offset); bfd_put_32 (output_bfd, elf32_arm_symbian_plt_entry[1], splt->contents + root_plt->offset + 4); /* Fill in the entry in the .rel.plt section. */ rel.r_offset = (splt->output_section->vma + splt->output_offset + root_plt->offset + 4); rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT); /* Get the index in the procedure linkage table which corresponds to this symbol. This is the index of this symbol in all the symbols for which we are making plt entries. The first entry in the procedure linkage table is reserved. */ plt_index = ((root_plt->offset - plt_header_size) / htab->plt_entry_size); } else { bfd_vma got_offset, got_address, plt_address; bfd_vma got_displacement, initial_got_entry; bfd_byte * ptr; BFD_ASSERT (sgot != NULL); /* Get the offset into the .(i)got.plt table of the entry that corresponds to this function. */ got_offset = (arm_plt->got_offset & -2); /* Get the index in the procedure linkage table which corresponds to this symbol. This is the index of this symbol in all the symbols for which we are making plt entries. After the reserved .got.plt entries, all symbols appear in the same order as in .plt. */ plt_index = (got_offset - got_header_size) / 4; /* Calculate the address of the GOT entry. */ got_address = (sgot->output_section->vma + sgot->output_offset + got_offset); /* ...and the address of the PLT entry. */ plt_address = (splt->output_section->vma + splt->output_offset + root_plt->offset); ptr = splt->contents + root_plt->offset; if (htab->vxworks_p && bfd_link_pic (info)) { unsigned int i; bfd_vma val; for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4) { val = elf32_arm_vxworks_shared_plt_entry[i]; if (i == 2) val |= got_address - sgot->output_section->vma; if (i == 5) val |= plt_index * RELOC_SIZE (htab); if (i == 2 || i == 5) bfd_put_32 (output_bfd, val, ptr); else put_arm_insn (htab, output_bfd, val, ptr); } } else if (htab->vxworks_p) { unsigned int i; bfd_vma val; for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4) { val = elf32_arm_vxworks_exec_plt_entry[i]; if (i == 2) val |= got_address; if (i == 4) val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2); if (i == 5) val |= plt_index * RELOC_SIZE (htab); if (i == 2 || i == 5) bfd_put_32 (output_bfd, val, ptr); else put_arm_insn (htab, output_bfd, val, ptr); } loc = (htab->srelplt2->contents + (plt_index * 2 + 1) * RELOC_SIZE (htab)); /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation referencing the GOT for this PLT entry. */ rel.r_offset = plt_address + 8; rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); rel.r_addend = got_offset; SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); loc += RELOC_SIZE (htab); /* Create the R_ARM_ABS32 relocation referencing the beginning of the PLT for this GOT entry. */ rel.r_offset = got_address; rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32); rel.r_addend = 0; SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); } else if (htab->nacl_p) { /* Calculate the displacement between the PLT slot and the common tail that's part of the special initial PLT slot. */ int32_t tail_displacement = ((splt->output_section->vma + splt->output_offset + ARM_NACL_PLT_TAIL_OFFSET) - (plt_address + htab->plt_entry_size + 4)); BFD_ASSERT ((tail_displacement & 3) == 0); tail_displacement >>= 2; BFD_ASSERT ((tail_displacement & 0xff000000) == 0 || (-tail_displacement & 0xff000000) == 0); /* Calculate the displacement between the PLT slot and the entry in the GOT. The offset accounts for the value produced by adding to pc in the penultimate instruction of the PLT stub. */ got_displacement = (got_address - (plt_address + htab->plt_entry_size)); /* NaCl does not support interworking at all. */ BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)); put_arm_insn (htab, output_bfd, elf32_arm_nacl_plt_entry[0] | arm_movw_immediate (got_displacement), ptr + 0); put_arm_insn (htab, output_bfd, elf32_arm_nacl_plt_entry[1] | arm_movt_immediate (got_displacement), ptr + 4); put_arm_insn (htab, output_bfd, elf32_arm_nacl_plt_entry[2], ptr + 8); put_arm_insn (htab, output_bfd, elf32_arm_nacl_plt_entry[3] | (tail_displacement & 0x00ffffff), ptr + 12); } else if (using_thumb_only (htab)) { /* PR ld/16017: Generate thumb only PLT entries. */ if (!using_thumb2 (htab)) { /* FIXME: We ought to be able to generate thumb-1 PLT instructions... */ _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"), output_bfd); return FALSE; } /* Calculate the displacement between the PLT slot and the entry in the GOT. The 12-byte offset accounts for the value produced by adding to pc in the 3rd instruction of the PLT stub. */ got_displacement = got_address - (plt_address + 12); /* As we are using 32 bit instructions we have to use 'put_arm_insn' instead of 'put_thumb_insn'. */ put_arm_insn (htab, output_bfd, elf32_thumb2_plt_entry[0] | ((got_displacement & 0x000000ff) << 16) | ((got_displacement & 0x00000700) << 20) | ((got_displacement & 0x00000800) >> 1) | ((got_displacement & 0x0000f000) >> 12), ptr + 0); put_arm_insn (htab, output_bfd, elf32_thumb2_plt_entry[1] | ((got_displacement & 0x00ff0000) ) | ((got_displacement & 0x07000000) << 4) | ((got_displacement & 0x08000000) >> 17) | ((got_displacement & 0xf0000000) >> 28), ptr + 4); put_arm_insn (htab, output_bfd, elf32_thumb2_plt_entry[2], ptr + 8); put_arm_insn (htab, output_bfd, elf32_thumb2_plt_entry[3], ptr + 12); } else { /* Calculate the displacement between the PLT slot and the entry in the GOT. The eight-byte offset accounts for the value produced by adding to pc in the first instruction of the PLT stub. */ got_displacement = got_address - (plt_address + 8); if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)) { put_thumb_insn (htab, output_bfd, elf32_arm_plt_thumb_stub[0], ptr - 4); put_thumb_insn (htab, output_bfd, elf32_arm_plt_thumb_stub[1], ptr - 2); } if (!elf32_arm_use_long_plt_entry) { BFD_ASSERT ((got_displacement & 0xf0000000) == 0); put_arm_insn (htab, output_bfd, elf32_arm_plt_entry_short[0] | ((got_displacement & 0x0ff00000) >> 20), ptr + 0); put_arm_insn (htab, output_bfd, elf32_arm_plt_entry_short[1] | ((got_displacement & 0x000ff000) >> 12), ptr+ 4); put_arm_insn (htab, output_bfd, elf32_arm_plt_entry_short[2] | (got_displacement & 0x00000fff), ptr + 8); #ifdef FOUR_WORD_PLT bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12); #endif } else { put_arm_insn (htab, output_bfd, elf32_arm_plt_entry_long[0] | ((got_displacement & 0xf0000000) >> 28), ptr + 0); put_arm_insn (htab, output_bfd, elf32_arm_plt_entry_long[1] | ((got_displacement & 0x0ff00000) >> 20), ptr + 4); put_arm_insn (htab, output_bfd, elf32_arm_plt_entry_long[2] | ((got_displacement & 0x000ff000) >> 12), ptr+ 8); put_arm_insn (htab, output_bfd, elf32_arm_plt_entry_long[3] | (got_displacement & 0x00000fff), ptr + 12); } } /* Fill in the entry in the .rel(a).(i)plt section. */ rel.r_offset = got_address; rel.r_addend = 0; if (dynindx == -1) { /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE. The dynamic linker or static executable then calls SYM_VALUE to determine the correct run-time value of the .igot.plt entry. */ rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); initial_got_entry = sym_value; } else { rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT); initial_got_entry = (splt->output_section->vma + splt->output_offset); } /* Fill in the entry in the global offset table. */ bfd_put_32 (output_bfd, initial_got_entry, sgot->contents + got_offset); } if (dynindx == -1) elf32_arm_add_dynreloc (output_bfd, info, srel, &rel); else { loc = srel->contents + plt_index * RELOC_SIZE (htab); SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); } return TRUE; } /* Some relocations map to different relocations depending on the target. Return the real relocation. */ static int arm_real_reloc_type (struct elf32_arm_link_hash_table * globals, int r_type) { switch (r_type) { case R_ARM_TARGET1: if (globals->target1_is_rel) return R_ARM_REL32; else return R_ARM_ABS32; case R_ARM_TARGET2: return globals->target2_reloc; default: return r_type; } } /* Return the base VMA address which should be subtracted from real addresses when resolving @dtpoff relocation. This is PT_TLS segment p_vaddr. */ static bfd_vma dtpoff_base (struct bfd_link_info *info) { /* If tls_sec is NULL, we should have signalled an error already. */ if (elf_hash_table (info)->tls_sec == NULL) return 0; return elf_hash_table (info)->tls_sec->vma; } /* Return the relocation value for @tpoff relocation if STT_TLS virtual address is ADDRESS. */ static bfd_vma tpoff (struct bfd_link_info *info, bfd_vma address) { struct elf_link_hash_table *htab = elf_hash_table (info); bfd_vma base; /* If tls_sec is NULL, we should have signalled an error already. */ if (htab->tls_sec == NULL) return 0; base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); return address - htab->tls_sec->vma + base; } /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA. VALUE is the relocation value. */ static bfd_reloc_status_type elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value) { if (value > 0xfff) return bfd_reloc_overflow; value |= bfd_get_32 (abfd, data) & 0xfffff000; bfd_put_32 (abfd, value, data); return bfd_reloc_ok; } /* Handle TLS relaxations. Relaxing is possible for symbols that use R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link. Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller is to then call final_link_relocate. Return other values in the case of error. FIXME:When --emit-relocs is in effect, we'll emit relocs describing the pre-relaxed code. It would be nice if the relocs were updated to match the optimization. */ static bfd_reloc_status_type elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals, bfd *input_bfd, asection *input_sec, bfd_byte *contents, Elf_Internal_Rela *rel, unsigned long is_local) { unsigned long insn; switch (ELF32_R_TYPE (rel->r_info)) { default: return bfd_reloc_notsupported; case R_ARM_TLS_GOTDESC: if (is_local) insn = 0; else { insn = bfd_get_32 (input_bfd, contents + rel->r_offset); if (insn & 1) insn -= 5; /* THUMB */ else insn -= 8; /* ARM */ } bfd_put_32 (input_bfd, insn, contents + rel->r_offset); return bfd_reloc_continue; case R_ARM_THM_TLS_DESCSEQ: /* Thumb insn. */ insn = bfd_get_16 (input_bfd, contents + rel->r_offset); if ((insn & 0xff78) == 0x4478) /* add rx, pc */ { if (is_local) /* nop */ bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); } else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */ { if (is_local) /* nop */ bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); else /* ldr rx,[ry] */ bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset); } else if ((insn & 0xff87) == 0x4780) /* blx rx */ { if (is_local) /* nop */ bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); else /* mov r0, rx */ bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78), contents + rel->r_offset); } else { if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800) /* It's a 32 bit instruction, fetch the rest of it for error generation. */ insn = (insn << 16) | bfd_get_16 (input_bfd, contents + rel->r_offset + 2); (*_bfd_error_handler) (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"), input_bfd, input_sec, (unsigned long)rel->r_offset, insn); return bfd_reloc_notsupported; } break; case R_ARM_TLS_DESCSEQ: /* arm insn. */ insn = bfd_get_32 (input_bfd, contents + rel->r_offset); if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */ { if (is_local) /* mov rx, ry */ bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff), contents + rel->r_offset); } else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/ { if (is_local) /* nop */ bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset); else /* ldr rx,[ry] */ bfd_put_32 (input_bfd, insn & 0xfffff000, contents + rel->r_offset); } else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */ { if (is_local) /* nop */ bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset); else /* mov r0, rx */ bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf), contents + rel->r_offset); } else { (*_bfd_error_handler) (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"), input_bfd, input_sec, (unsigned long)rel->r_offset, insn); return bfd_reloc_notsupported; } break; case R_ARM_TLS_CALL: /* GD->IE relaxation, turn the instruction into 'nop' or 'ldr r0, [pc,r0]' */ insn = is_local ? 0xe1a00000 : 0xe79f0000; bfd_put_32 (input_bfd, insn, contents + rel->r_offset); break; case R_ARM_THM_TLS_CALL: /* GD->IE relaxation. */ if (!is_local) /* add r0,pc; ldr r0, [r0] */ insn = 0x44786800; else if (arch_has_thumb2_nop (globals)) /* nop.w */ insn = 0xf3af8000; else /* nop; nop */ insn = 0xbf00bf00; bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset); bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2); break; } return bfd_reloc_ok; } /* For a given value of n, calculate the value of G_n as required to deal with group relocations. We return it in the form of an encoded constant-and-rotation, together with the final residual. If n is specified as less than zero, then final_residual is filled with the input value and no further action is performed. */ static bfd_vma calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual) { int current_n; bfd_vma g_n; bfd_vma encoded_g_n = 0; bfd_vma residual = value; /* Also known as Y_n. */ for (current_n = 0; current_n <= n; current_n++) { int shift; /* Calculate which part of the value to mask. */ if (residual == 0) shift = 0; else { int msb; /* Determine the most significant bit in the residual and align the resulting value to a 2-bit boundary. */ for (msb = 30; msb >= 0; msb -= 2) if (residual & (3 << msb)) break; /* The desired shift is now (msb - 6), or zero, whichever is the greater. */ shift = msb - 6; if (shift < 0) shift = 0; } /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */ g_n = residual & (0xff << shift); encoded_g_n = (g_n >> shift) | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8); /* Calculate the residual for the next time around. */ residual &= ~g_n; } *final_residual = residual; return encoded_g_n; } /* Given an ARM instruction, determine whether it is an ADD or a SUB. Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */ static int identify_add_or_sub (bfd_vma insn) { int opcode = insn & 0x1e00000; if (opcode == 1 << 23) /* ADD */ return 1; if (opcode == 1 << 22) /* SUB */ return -1; return 0; } /* Perform a relocation as part of a final link. */ static bfd_reloc_status_type elf32_arm_final_link_relocate (reloc_howto_type * howto, bfd * input_bfd, bfd * output_bfd, asection * input_section, bfd_byte * contents, Elf_Internal_Rela * rel, bfd_vma value, struct bfd_link_info * info, asection * sym_sec, const char * sym_name, unsigned char st_type, enum arm_st_branch_type branch_type, struct elf_link_hash_entry * h, bfd_boolean * unresolved_reloc_p, char ** error_message) { unsigned long r_type = howto->type; unsigned long r_symndx; bfd_byte * hit_data = contents + rel->r_offset; bfd_vma * local_got_offsets; bfd_vma * local_tlsdesc_gotents; asection * sgot; asection * splt; asection * sreloc = NULL; asection * srelgot; bfd_vma addend; bfd_signed_vma signed_addend; unsigned char dynreloc_st_type; bfd_vma dynreloc_value; struct elf32_arm_link_hash_table * globals; struct elf32_arm_link_hash_entry *eh; union gotplt_union *root_plt; struct arm_plt_info *arm_plt; bfd_vma plt_offset; bfd_vma gotplt_offset; bfd_boolean has_iplt_entry; globals = elf32_arm_hash_table (info); if (globals == NULL) return bfd_reloc_notsupported; BFD_ASSERT (is_arm_elf (input_bfd)); /* Some relocation types map to different relocations depending on the target. We pick the right one here. */ r_type = arm_real_reloc_type (globals, r_type); /* It is possible to have linker relaxations on some TLS access models. Update our information here. */ r_type = elf32_arm_tls_transition (info, r_type, h); if (r_type != howto->type) howto = elf32_arm_howto_from_type (r_type); eh = (struct elf32_arm_link_hash_entry *) h; sgot = globals->root.sgot; local_got_offsets = elf_local_got_offsets (input_bfd); local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd); if (globals->root.dynamic_sections_created) srelgot = globals->root.srelgot; else srelgot = NULL; r_symndx = ELF32_R_SYM (rel->r_info); if (globals->use_rel) { addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask; if (addend & ((howto->src_mask + 1) >> 1)) { signed_addend = -1; signed_addend &= ~ howto->src_mask; signed_addend |= addend; } else signed_addend = addend; } else addend = signed_addend = rel->r_addend; /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we are resolving a function call relocation. */ if (using_thumb_only (globals) && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24) && branch_type == ST_BRANCH_TO_ARM) branch_type = ST_BRANCH_TO_THUMB; /* Record the symbol information that should be used in dynamic relocations. */ dynreloc_st_type = st_type; dynreloc_value = value; if (branch_type == ST_BRANCH_TO_THUMB) dynreloc_value |= 1; /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and VALUE appropriately for relocations that we resolve at link time. */ has_iplt_entry = FALSE; if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt) && root_plt->offset != (bfd_vma) -1) { plt_offset = root_plt->offset; gotplt_offset = arm_plt->got_offset; if (h == NULL || eh->is_iplt) { has_iplt_entry = TRUE; splt = globals->root.iplt; /* Populate .iplt entries here, because not all of them will be seen by finish_dynamic_symbol. The lower bit is set if we have already populated the entry. */ if (plt_offset & 1) plt_offset--; else { if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt, -1, dynreloc_value)) root_plt->offset |= 1; else return bfd_reloc_notsupported; } /* Static relocations always resolve to the .iplt entry. */ st_type = STT_FUNC; value = (splt->output_section->vma + splt->output_offset + plt_offset); branch_type = ST_BRANCH_TO_ARM; /* If there are non-call relocations that resolve to the .iplt entry, then all dynamic ones must too. */ if (arm_plt->noncall_refcount != 0) { dynreloc_st_type = st_type; dynreloc_value = value; } } else /* We populate the .plt entry in finish_dynamic_symbol. */ splt = globals->root.splt; } else { splt = NULL; plt_offset = (bfd_vma) -1; gotplt_offset = (bfd_vma) -1; } switch (r_type) { case R_ARM_NONE: /* We don't need to find a value for this symbol. It's just a marker. */ *unresolved_reloc_p = FALSE; return bfd_reloc_ok; case R_ARM_ABS12: if (!globals->vxworks_p) return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend); case R_ARM_PC24: case R_ARM_ABS32: case R_ARM_ABS32_NOI: case R_ARM_REL32: case R_ARM_REL32_NOI: case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_XPC25: case R_ARM_PREL31: case R_ARM_PLT32: /* Handle relocations which should use the PLT entry. ABS32/REL32 will use the symbol's value, which may point to a PLT entry, but we don't need to handle that here. If we created a PLT entry, all branches in this object should go to it, except if the PLT is too far away, in which case a long branch stub should be inserted. */ if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI && r_type != R_ARM_CALL && r_type != R_ARM_JUMP24 && r_type != R_ARM_PLT32) && plt_offset != (bfd_vma) -1) { /* If we've created a .plt section, and assigned a PLT entry to this function, it must either be a STT_GNU_IFUNC reference or not be known to bind locally. In other cases, we should have cleared the PLT entry by now. */ BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h)); value = (splt->output_section->vma + splt->output_offset + plt_offset); *unresolved_reloc_p = FALSE; return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); } /* When generating a shared object or relocatable executable, these relocations are copied into the output file to be resolved at run time. */ if ((bfd_link_pic (info) || globals->root.is_relocatable_executable) && (input_section->flags & SEC_ALLOC) && !(globals->vxworks_p && strcmp (input_section->output_section->name, ".tls_vars") == 0) && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI) || !SYMBOL_CALLS_LOCAL (info, h)) && !(input_bfd == globals->stub_bfd && strstr (input_section->name, STUB_SUFFIX)) && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && r_type != R_ARM_PC24 && r_type != R_ARM_CALL && r_type != R_ARM_JUMP24 && r_type != R_ARM_PREL31 && r_type != R_ARM_PLT32) { Elf_Internal_Rela outrel; bfd_boolean skip, relocate; if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI) && !h->def_regular) { char *v = _("shared object"); if (bfd_link_executable (info)) v = _("PIE executable"); (*_bfd_error_handler) (_("%B: relocation %s against external or undefined symbol `%s'" " can not be used when making a %s; recompile with -fPIC"), input_bfd, elf32_arm_howto_table_1[r_type].name, h->root.root.string, v); return bfd_reloc_notsupported; } *unresolved_reloc_p = FALSE; if (sreloc == NULL && globals->root.dynamic_sections_created) { sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section, ! globals->use_rel); if (sreloc == NULL) return bfd_reloc_notsupported; } skip = FALSE; relocate = FALSE; outrel.r_addend = addend; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) -1) skip = TRUE; else if (outrel.r_offset == (bfd_vma) -2) skip = TRUE, relocate = TRUE; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) memset (&outrel, 0, sizeof outrel); else if (h != NULL && h->dynindx != -1 && (!bfd_link_pic (info) || !SYMBOLIC_BIND (info, h) || !h->def_regular)) outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); else { int symbol; /* This symbol is local, or marked to become local. */ BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI); if (globals->symbian_p) { asection *osec; /* On Symbian OS, the data segment and text segement can be relocated independently. Therefore, we must indicate the segment to which this relocation is relative. The BPABI allows us to use any symbol in the right segment; we just use the section symbol as it is convenient. (We cannot use the symbol given by "h" directly as it will not appear in the dynamic symbol table.) Note that the dynamic linker ignores the section symbol value, so we don't subtract osec->vma from the emitted reloc addend. */ if (sym_sec) osec = sym_sec->output_section; else osec = input_section->output_section; symbol = elf_section_data (osec)->dynindx; if (symbol == 0) { struct elf_link_hash_table *htab = elf_hash_table (info); if ((osec->flags & SEC_READONLY) == 0 && htab->data_index_section != NULL) osec = htab->data_index_section; else osec = htab->text_index_section; symbol = elf_section_data (osec)->dynindx; } BFD_ASSERT (symbol != 0); } else /* On SVR4-ish systems, the dynamic loader cannot relocate the text and data segments independently, so the symbol does not matter. */ symbol = 0; if (dynreloc_st_type == STT_GNU_IFUNC) /* We have an STT_GNU_IFUNC symbol that doesn't resolve to the .iplt entry. Instead, every non-call reference must use an R_ARM_IRELATIVE relocation to obtain the correct run-time address. */ outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE); else outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE); if (globals->use_rel) relocate = TRUE; else outrel.r_addend += dynreloc_value; } elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel); /* If this reloc is against an external symbol, we do not want to fiddle with the addend. Otherwise, we need to include the symbol value so that it becomes an addend for the dynamic reloc. */ if (! relocate) return bfd_reloc_ok; return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, dynreloc_value, (bfd_vma) 0); } else switch (r_type) { case R_ARM_ABS12: return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend); case R_ARM_XPC25: /* Arm BLX instruction. */ case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PC24: /* Arm B/BL instruction. */ case R_ARM_PLT32: { struct elf32_arm_stub_hash_entry *stub_entry = NULL; if (r_type == R_ARM_XPC25) { /* Check for Arm calling Arm function. */ /* FIXME: Should we translate the instruction into a BL instruction instead ? */ if (branch_type != ST_BRANCH_TO_THUMB) (*_bfd_error_handler) (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."), input_bfd, h ? h->root.root.string : "(local)"); } else if (r_type == R_ARM_PC24) { /* Check for Arm calling Thumb function. */ if (branch_type == ST_BRANCH_TO_THUMB) { if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd, input_section, hit_data, sym_sec, rel->r_offset, signed_addend, value, error_message)) return bfd_reloc_ok; else return bfd_reloc_dangerous; } } /* Check if a stub has to be inserted because the destination is too far or we are changing mode. */ if ( r_type == R_ARM_CALL || r_type == R_ARM_JUMP24 || r_type == R_ARM_PLT32) { enum elf32_arm_stub_type stub_type = arm_stub_none; struct elf32_arm_link_hash_entry *hash; hash = (struct elf32_arm_link_hash_entry *) h; stub_type = arm_type_of_stub (info, input_section, rel, st_type, &branch_type, hash, value, sym_sec, input_bfd, sym_name); if (stub_type != arm_stub_none) { /* The target is out of reach, so redirect the branch to the local stub for this function. */ stub_entry = elf32_arm_get_stub_entry (input_section, sym_sec, h, rel, globals, stub_type); { if (stub_entry != NULL) value = (stub_entry->stub_offset + stub_entry->stub_sec->output_offset + stub_entry->stub_sec->output_section->vma); if (plt_offset != (bfd_vma) -1) *unresolved_reloc_p = FALSE; } } else { /* If the call goes through a PLT entry, make sure to check distance to the right destination address. */ if (plt_offset != (bfd_vma) -1) { value = (splt->output_section->vma + splt->output_offset + plt_offset); *unresolved_reloc_p = FALSE; /* The PLT entry is in ARM mode, regardless of the target function. */ branch_type = ST_BRANCH_TO_ARM; } } } /* The ARM ELF ABI says that this reloc is computed as: S - P + A where: S is the address of the symbol in the relocation. P is address of the instruction being relocated. A is the addend (extracted from the instruction) in bytes. S is held in 'value'. P is the base address of the section containing the instruction plus the offset of the reloc into that section, ie: (input_section->output_section->vma + input_section->output_offset + rel->r_offset). A is the addend, converted into bytes, ie: (signed_addend * 4) Note: None of these operations have knowledge of the pipeline size of the processor, thus it is up to the assembler to encode this information into the addend. */ value -= (input_section->output_section->vma + input_section->output_offset); value -= rel->r_offset; if (globals->use_rel) value += (signed_addend << howto->size); else /* RELA addends do not have to be adjusted by howto->size. */ value += signed_addend; signed_addend = value; signed_addend >>= howto->rightshift; /* A branch to an undefined weak symbol is turned into a jump to the next instruction unless a PLT entry will be created. Do the same for local undefined symbols (but not for STN_UNDEF). The jump to the next instruction is optimized as a NOP depending on the architecture. */ if (h ? (h->root.type == bfd_link_hash_undefweak && plt_offset == (bfd_vma) -1) : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec)) { value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000); if (arch_has_arm_nop (globals)) value |= 0x0320f000; else value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */ } else { /* Perform a signed range check. */ if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1)) || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1))) return bfd_reloc_overflow; addend = (value & 2); value = (signed_addend & howto->dst_mask) | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask)); if (r_type == R_ARM_CALL) { /* Set the H bit in the BLX instruction. */ if (branch_type == ST_BRANCH_TO_THUMB) { if (addend) value |= (1 << 24); else value &= ~(bfd_vma)(1 << 24); } /* Select the correct instruction (BL or BLX). */ /* Only if we are not handling a BL to a stub. In this case, mode switching is performed by the stub. */ if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry) value |= (1 << 28); else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN) { value &= ~(bfd_vma)(1 << 28); value |= (1 << 24); } } } } break; case R_ARM_ABS32: value += addend; if (branch_type == ST_BRANCH_TO_THUMB) value |= 1; break; case R_ARM_ABS32_NOI: value += addend; break; case R_ARM_REL32: value += addend; if (branch_type == ST_BRANCH_TO_THUMB) value |= 1; value -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); break; case R_ARM_REL32_NOI: value += addend; value -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); break; case R_ARM_PREL31: value -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); value += signed_addend; if (! h || h->root.type != bfd_link_hash_undefweak) { /* Check for overflow. */ if ((value ^ (value >> 1)) & (1 << 30)) return bfd_reloc_overflow; } value &= 0x7fffffff; value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000); if (branch_type == ST_BRANCH_TO_THUMB) value |= 1; break; } bfd_put_32 (input_bfd, value, hit_data); return bfd_reloc_ok; case R_ARM_ABS8: /* PR 16202: Refectch the addend using the correct size. */ if (globals->use_rel) addend = bfd_get_8 (input_bfd, hit_data); value += addend; /* There is no way to tell whether the user intended to use a signed or unsigned addend. When checking for overflow we accept either, as specified by the AAELF. */ if ((long) value > 0xff || (long) value < -0x80) return bfd_reloc_overflow; bfd_put_8 (input_bfd, value, hit_data); return bfd_reloc_ok; case R_ARM_ABS16: /* PR 16202: Refectch the addend using the correct size. */ if (globals->use_rel) addend = bfd_get_16 (input_bfd, hit_data); value += addend; /* See comment for R_ARM_ABS8. */ if ((long) value > 0xffff || (long) value < -0x8000) return bfd_reloc_overflow; bfd_put_16 (input_bfd, value, hit_data); return bfd_reloc_ok; case R_ARM_THM_ABS5: /* Support ldr and str instructions for the thumb. */ if (globals->use_rel) { /* Need to refetch addend. */ addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask; /* ??? Need to determine shift amount from operand size. */ addend >>= howto->rightshift; } value += addend; /* ??? Isn't value unsigned? */ if ((long) value > 0x1f || (long) value < -0x10) return bfd_reloc_overflow; /* ??? Value needs to be properly shifted into place first. */ value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f; bfd_put_16 (input_bfd, value, hit_data); return bfd_reloc_ok; case R_ARM_THM_ALU_PREL_11_0: /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */ { bfd_vma insn; bfd_signed_vma relocation; insn = (bfd_get_16 (input_bfd, hit_data) << 16) | bfd_get_16 (input_bfd, hit_data + 2); if (globals->use_rel) { signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4) | ((insn & (1 << 26)) >> 15); if (insn & 0xf00000) signed_addend = -signed_addend; } relocation = value + signed_addend; relocation -= Pa (input_section->output_section->vma + input_section->output_offset + rel->r_offset); value = relocation; if (value >= 0x1000) return bfd_reloc_overflow; insn = (insn & 0xfb0f8f00) | (value & 0xff) | ((value & 0x700) << 4) | ((value & 0x800) << 15); if (relocation < 0) insn |= 0xa00000; bfd_put_16 (input_bfd, insn >> 16, hit_data); bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); return bfd_reloc_ok; } case R_ARM_THM_PC8: /* PR 10073: This reloc is not generated by the GNU toolchain, but it is supported for compatibility with third party libraries generated by other compilers, specifically the ARM/IAR. */ { bfd_vma insn; bfd_signed_vma relocation; insn = bfd_get_16 (input_bfd, hit_data); if (globals->use_rel) addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4; relocation = value + addend; relocation -= Pa (input_section->output_section->vma + input_section->output_offset + rel->r_offset); value = relocation; /* We do not check for overflow of this reloc. Although strictly speaking this is incorrect, it appears to be necessary in order to work with IAR generated relocs. Since GCC and GAS do not generate R_ARM_THM_PC8 relocs, the lack of a check should not be a problem for them. */ value &= 0x3fc; insn = (insn & 0xff00) | (value >> 2); bfd_put_16 (input_bfd, insn, hit_data); return bfd_reloc_ok; } case R_ARM_THM_PC12: /* Corresponds to: ldr.w reg, [pc, #offset]. */ { bfd_vma insn; bfd_signed_vma relocation; insn = (bfd_get_16 (input_bfd, hit_data) << 16) | bfd_get_16 (input_bfd, hit_data + 2); if (globals->use_rel) { signed_addend = insn & 0xfff; if (!(insn & (1 << 23))) signed_addend = -signed_addend; } relocation = value + signed_addend; relocation -= Pa (input_section->output_section->vma + input_section->output_offset + rel->r_offset); value = relocation; if (value >= 0x1000) return bfd_reloc_overflow; insn = (insn & 0xff7ff000) | value; if (relocation >= 0) insn |= (1 << 23); bfd_put_16 (input_bfd, insn >> 16, hit_data); bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); return bfd_reloc_ok; } case R_ARM_THM_XPC22: case R_ARM_THM_CALL: case R_ARM_THM_JUMP24: /* Thumb BL (branch long instruction). */ { bfd_vma relocation; bfd_vma reloc_sign; bfd_boolean overflow = FALSE; bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); bfd_signed_vma reloc_signed_max; bfd_signed_vma reloc_signed_min; bfd_vma check; bfd_signed_vma signed_check; int bitsize; const int thumb2 = using_thumb2 (globals); /* A branch to an undefined weak symbol is turned into a jump to the next instruction unless a PLT entry will be created. The jump to the next instruction is optimized as a NOP.W for Thumb-2 enabled architectures. */ if (h && h->root.type == bfd_link_hash_undefweak && plt_offset == (bfd_vma) -1) { if (arch_has_thumb2_nop (globals)) { bfd_put_16 (input_bfd, 0xf3af, hit_data); bfd_put_16 (input_bfd, 0x8000, hit_data + 2); } else { bfd_put_16 (input_bfd, 0xe000, hit_data); bfd_put_16 (input_bfd, 0xbf00, hit_data + 2); } return bfd_reloc_ok; } /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible with Thumb-1) involving the J1 and J2 bits. */ if (globals->use_rel) { bfd_vma s = (upper_insn & (1 << 10)) >> 10; bfd_vma upper = upper_insn & 0x3ff; bfd_vma lower = lower_insn & 0x7ff; bfd_vma j1 = (lower_insn & (1 << 13)) >> 13; bfd_vma j2 = (lower_insn & (1 << 11)) >> 11; bfd_vma i1 = j1 ^ s ? 0 : 1; bfd_vma i2 = j2 ^ s ? 0 : 1; addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1); /* Sign extend. */ addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24); signed_addend = addend; } if (r_type == R_ARM_THM_XPC22) { /* Check for Thumb to Thumb call. */ /* FIXME: Should we translate the instruction into a BL instruction instead ? */ if (branch_type == ST_BRANCH_TO_THUMB) (*_bfd_error_handler) (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."), input_bfd, h ? h->root.root.string : "(local)"); } else { /* If it is not a call to Thumb, assume call to Arm. If it is a call relative to a section name, then it is not a function call at all, but rather a long jump. Calls through the PLT do not require stubs. */ if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1) { if (globals->use_blx && r_type == R_ARM_THM_CALL) { /* Convert BL to BLX. */ lower_insn = (lower_insn & ~0x1000) | 0x0800; } else if (( r_type != R_ARM_THM_CALL) && (r_type != R_ARM_THM_JUMP24)) { if (elf32_thumb_to_arm_stub (info, sym_name, input_bfd, output_bfd, input_section, hit_data, sym_sec, rel->r_offset, signed_addend, value, error_message)) return bfd_reloc_ok; else return bfd_reloc_dangerous; } } else if (branch_type == ST_BRANCH_TO_THUMB && globals->use_blx && r_type == R_ARM_THM_CALL) { /* Make sure this is a BL. */ lower_insn |= 0x1800; } } enum elf32_arm_stub_type stub_type = arm_stub_none; if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24) { /* Check if a stub has to be inserted because the destination is too far. */ struct elf32_arm_stub_hash_entry *stub_entry; struct elf32_arm_link_hash_entry *hash; hash = (struct elf32_arm_link_hash_entry *) h; stub_type = arm_type_of_stub (info, input_section, rel, st_type, &branch_type, hash, value, sym_sec, input_bfd, sym_name); if (stub_type != arm_stub_none) { /* The target is out of reach or we are changing modes, so redirect the branch to the local stub for this function. */ stub_entry = elf32_arm_get_stub_entry (input_section, sym_sec, h, rel, globals, stub_type); if (stub_entry != NULL) { value = (stub_entry->stub_offset + stub_entry->stub_sec->output_offset + stub_entry->stub_sec->output_section->vma); if (plt_offset != (bfd_vma) -1) *unresolved_reloc_p = FALSE; } /* If this call becomes a call to Arm, force BLX. */ if (globals->use_blx && (r_type == R_ARM_THM_CALL)) { if ((stub_entry && !arm_stub_is_thumb (stub_entry->stub_type)) || branch_type != ST_BRANCH_TO_THUMB) lower_insn = (lower_insn & ~0x1000) | 0x0800; } } } /* Handle calls via the PLT. */ if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1) { value = (splt->output_section->vma + splt->output_offset + plt_offset); if (globals->use_blx && r_type == R_ARM_THM_CALL && ! using_thumb_only (globals)) { /* If the Thumb BLX instruction is available, convert the BL to a BLX instruction to call the ARM-mode PLT entry. */ lower_insn = (lower_insn & ~0x1000) | 0x0800; branch_type = ST_BRANCH_TO_ARM; } else { if (! using_thumb_only (globals)) /* Target the Thumb stub before the ARM PLT entry. */ value -= PLT_THUMB_STUB_SIZE; branch_type = ST_BRANCH_TO_THUMB; } *unresolved_reloc_p = FALSE; } relocation = value + signed_addend; relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); check = relocation >> howto->rightshift; /* If this is a signed value, the rightshift just dropped leading 1 bits (assuming twos complement). */ if ((bfd_signed_vma) relocation >= 0) signed_check = check; else signed_check = check | ~((bfd_vma) -1 >> howto->rightshift); /* Calculate the permissable maximum and minimum values for this relocation according to whether we're relocating for Thumb-2 or not. */ bitsize = howto->bitsize; if (!thumb2) bitsize -= 2; reloc_signed_max = (1 << (bitsize - 1)) - 1; reloc_signed_min = ~reloc_signed_max; /* Assumes two's complement. */ if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) overflow = TRUE; if ((lower_insn & 0x5000) == 0x4000) /* For a BLX instruction, make sure that the relocation is rounded up to a word boundary. This follows the semantics of the instruction which specifies that bit 1 of the target address will come from bit 1 of the base address. */ relocation = (relocation + 2) & ~ 3; /* Put RELOCATION back into the insn. Assumes two's complement. We use the Thumb-2 encoding, which is safe even if dealing with a Thumb-1 instruction by virtue of our overflow check above. */ reloc_sign = (signed_check < 0) ? 1 : 0; upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x3ff) | (reloc_sign << 10); lower_insn = (lower_insn & ~(bfd_vma) 0x2fff) | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13) | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11) | ((relocation >> 1) & 0x7ff); /* Put the relocated value back in the object file: */ bfd_put_16 (input_bfd, upper_insn, hit_data); bfd_put_16 (input_bfd, lower_insn, hit_data + 2); return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); } break; case R_ARM_THM_JUMP19: /* Thumb32 conditional branch instruction. */ { bfd_vma relocation; bfd_boolean overflow = FALSE; bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); bfd_signed_vma reloc_signed_max = 0xffffe; bfd_signed_vma reloc_signed_min = -0x100000; bfd_signed_vma signed_check; enum elf32_arm_stub_type stub_type = arm_stub_none; struct elf32_arm_stub_hash_entry *stub_entry; struct elf32_arm_link_hash_entry *hash; /* Need to refetch the addend, reconstruct the top three bits, and squish the two 11 bit pieces together. */ if (globals->use_rel) { bfd_vma S = (upper_insn & 0x0400) >> 10; bfd_vma upper = (upper_insn & 0x003f); bfd_vma J1 = (lower_insn & 0x2000) >> 13; bfd_vma J2 = (lower_insn & 0x0800) >> 11; bfd_vma lower = (lower_insn & 0x07ff); upper |= J1 << 6; upper |= J2 << 7; upper |= (!S) << 8; upper -= 0x0100; /* Sign extend. */ addend = (upper << 12) | (lower << 1); signed_addend = addend; } /* Handle calls via the PLT. */ if (plt_offset != (bfd_vma) -1) { value = (splt->output_section->vma + splt->output_offset + plt_offset); /* Target the Thumb stub before the ARM PLT entry. */ value -= PLT_THUMB_STUB_SIZE; *unresolved_reloc_p = FALSE; } hash = (struct elf32_arm_link_hash_entry *)h; stub_type = arm_type_of_stub (info, input_section, rel, st_type, &branch_type, hash, value, sym_sec, input_bfd, sym_name); if (stub_type != arm_stub_none) { stub_entry = elf32_arm_get_stub_entry (input_section, sym_sec, h, rel, globals, stub_type); if (stub_entry != NULL) { value = (stub_entry->stub_offset + stub_entry->stub_sec->output_offset + stub_entry->stub_sec->output_section->vma); } } relocation = value + signed_addend; relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); signed_check = (bfd_signed_vma) relocation; if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) overflow = TRUE; /* Put RELOCATION back into the insn. */ { bfd_vma S = (relocation & 0x00100000) >> 20; bfd_vma J2 = (relocation & 0x00080000) >> 19; bfd_vma J1 = (relocation & 0x00040000) >> 18; bfd_vma hi = (relocation & 0x0003f000) >> 12; bfd_vma lo = (relocation & 0x00000ffe) >> 1; upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi; lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo; } /* Put the relocated value back in the object file: */ bfd_put_16 (input_bfd, upper_insn, hit_data); bfd_put_16 (input_bfd, lower_insn, hit_data + 2); return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); } case R_ARM_THM_JUMP11: case R_ARM_THM_JUMP8: case R_ARM_THM_JUMP6: /* Thumb B (branch) instruction). */ { bfd_signed_vma relocation; bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1; bfd_signed_vma reloc_signed_min = ~ reloc_signed_max; bfd_signed_vma signed_check; /* CZB cannot jump backward. */ if (r_type == R_ARM_THM_JUMP6) reloc_signed_min = 0; if (globals->use_rel) { /* Need to refetch addend. */ addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask; if (addend & ((howto->src_mask + 1) >> 1)) { signed_addend = -1; signed_addend &= ~ howto->src_mask; signed_addend |= addend; } else signed_addend = addend; /* The value in the insn has been right shifted. We need to undo this, so that we can perform the address calculation in terms of bytes. */ signed_addend <<= howto->rightshift; } relocation = value + signed_addend; relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); relocation >>= howto->rightshift; signed_check = relocation; if (r_type == R_ARM_THM_JUMP6) relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3); else relocation &= howto->dst_mask; relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask)); bfd_put_16 (input_bfd, relocation, hit_data); /* Assumes two's complement. */ if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) return bfd_reloc_overflow; return bfd_reloc_ok; } case R_ARM_ALU_PCREL7_0: case R_ARM_ALU_PCREL15_8: case R_ARM_ALU_PCREL23_15: { bfd_vma insn; bfd_vma relocation; insn = bfd_get_32 (input_bfd, hit_data); if (globals->use_rel) { /* Extract the addend. */ addend = (insn & 0xff) << ((insn & 0xf00) >> 7); signed_addend = addend; } relocation = value + signed_addend; relocation -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); insn = (insn & ~0xfff) | ((howto->bitpos << 7) & 0xf00) | ((relocation >> howto->bitpos) & 0xff); bfd_put_32 (input_bfd, value, hit_data); } return bfd_reloc_ok; case R_ARM_GNU_VTINHERIT: case R_ARM_GNU_VTENTRY: return bfd_reloc_ok; case R_ARM_GOTOFF32: /* Relocation is relative to the start of the global offset table. */ BFD_ASSERT (sgot != NULL); if (sgot == NULL) return bfd_reloc_notsupported; /* If we are addressing a Thumb function, we need to adjust the address by one, so that attempts to call the function pointer will correctly interpret it as Thumb code. */ if (branch_type == ST_BRANCH_TO_THUMB) value += 1; /* Note that sgot->output_offset is not involved in this calculation. We always want the start of .got. If we define _GLOBAL_OFFSET_TABLE in a different way, as is permitted by the ABI, we might have to change this calculation. */ value -= sgot->output_section->vma; return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); case R_ARM_GOTPC: /* Use global offset table as symbol value. */ BFD_ASSERT (sgot != NULL); if (sgot == NULL) return bfd_reloc_notsupported; *unresolved_reloc_p = FALSE; value = sgot->output_section->vma; return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); case R_ARM_GOT32: case R_ARM_GOT_PREL: /* Relocation is to the entry for this symbol in the global offset table. */ if (sgot == NULL) return bfd_reloc_notsupported; if (dynreloc_st_type == STT_GNU_IFUNC && plt_offset != (bfd_vma) -1 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h))) { /* We have a relocation against a locally-binding STT_GNU_IFUNC symbol, and the relocation resolves directly to the runtime target rather than to the .iplt entry. This means that any .got entry would be the same value as the .igot.plt entry, so there's no point creating both. */ sgot = globals->root.igotplt; value = sgot->output_offset + gotplt_offset; } else if (h != NULL) { bfd_vma off; off = h->got.offset; BFD_ASSERT (off != (bfd_vma) -1); if ((off & 1) != 0) { /* We have already processsed one GOT relocation against this symbol. */ off &= ~1; if (globals->root.dynamic_sections_created && !SYMBOL_REFERENCES_LOCAL (info, h)) *unresolved_reloc_p = FALSE; } else { Elf_Internal_Rela outrel; if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h)) { /* If the symbol doesn't resolve locally in a static object, we have an undefined reference. If the symbol doesn't resolve locally in a dynamic object, it should be resolved by the dynamic linker. */ if (globals->root.dynamic_sections_created) { outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT); *unresolved_reloc_p = FALSE; } else outrel.r_info = 0; outrel.r_addend = 0; } else { if (dynreloc_st_type == STT_GNU_IFUNC) outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); else if (bfd_link_pic (info) && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); else outrel.r_info = 0; outrel.r_addend = dynreloc_value; } /* The GOT entry is initialized to zero by default. See if we should install a different value. */ if (outrel.r_addend != 0 && (outrel.r_info == 0 || globals->use_rel)) { bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + off); outrel.r_addend = 0; } if (outrel.r_info != 0) { outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); } h->got.offset |= 1; } value = sgot->output_offset + off; } else { bfd_vma off; BFD_ASSERT (local_got_offsets != NULL && local_got_offsets[r_symndx] != (bfd_vma) -1); off = local_got_offsets[r_symndx]; /* The offset must always be a multiple of 4. We use the least significant bit to record whether we have already generated the necessary reloc. */ if ((off & 1) != 0) off &= ~1; else { if (globals->use_rel) bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off); if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC) { Elf_Internal_Rela outrel; outrel.r_addend = addend + dynreloc_value; outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); if (dynreloc_st_type == STT_GNU_IFUNC) outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); else outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); } local_got_offsets[r_symndx] |= 1; } value = sgot->output_offset + off; } if (r_type != R_ARM_GOT32) value += sgot->output_section->vma; return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); case R_ARM_TLS_LDO32: value = value - dtpoff_base (info); return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); case R_ARM_TLS_LDM32: { bfd_vma off; if (sgot == NULL) abort (); off = globals->tls_ldm_got.offset; if ((off & 1) != 0) off &= ~1; else { /* If we don't know the module number, create a relocation for it. */ if (bfd_link_pic (info)) { Elf_Internal_Rela outrel; if (srelgot == NULL) abort (); outrel.r_addend = 0; outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + off); outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32); if (globals->use_rel) bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + off); elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); } else bfd_put_32 (output_bfd, 1, sgot->contents + off); globals->tls_ldm_got.offset |= 1; } value = sgot->output_section->vma + sgot->output_offset + off - (input_section->output_section->vma + input_section->output_offset + rel->r_offset); return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); } case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL: case R_ARM_TLS_GD32: case R_ARM_TLS_IE32: case R_ARM_TLS_GOTDESC: case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ: { bfd_vma off, offplt; int indx = 0; char tls_type; BFD_ASSERT (sgot != NULL); if (h != NULL) { bfd_boolean dyn; dyn = globals->root.dynamic_sections_created; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h))) { *unresolved_reloc_p = FALSE; indx = h->dynindx; } off = h->got.offset; offplt = elf32_arm_hash_entry (h)->tlsdesc_got; tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type; } else { BFD_ASSERT (local_got_offsets != NULL); off = local_got_offsets[r_symndx]; offplt = local_tlsdesc_gotents[r_symndx]; tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx]; } /* Linker relaxations happens from one of the R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */ if (ELF32_R_TYPE(rel->r_info) != r_type) tls_type = GOT_TLS_IE; BFD_ASSERT (tls_type != GOT_UNKNOWN); if ((off & 1) != 0) off &= ~1; else { bfd_boolean need_relocs = FALSE; Elf_Internal_Rela outrel; int cur_off = off; /* The GOT entries have not been initialized yet. Do it now, and emit any relocations. If both an IE GOT and a GD GOT are necessary, we emit the GD first. */ if ((bfd_link_pic (info) || indx != 0) && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) { need_relocs = TRUE; BFD_ASSERT (srelgot != NULL); } if (tls_type & GOT_TLS_GDESC) { bfd_byte *loc; /* We should have relaxed, unless this is an undefined weak symbol. */ BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak)) || bfd_link_pic (info)); BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8 <= globals->root.sgotplt->size); outrel.r_addend = 0; outrel.r_offset = (globals->root.sgotplt->output_section->vma + globals->root.sgotplt->output_offset + offplt + globals->sgotplt_jump_table_size); outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC); sreloc = globals->root.srelplt; loc = sreloc->contents; loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals); BFD_ASSERT (loc + RELOC_SIZE (globals) <= sreloc->contents + sreloc->size); SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc); /* For globals, the first word in the relocation gets the relocation index and the top bit set, or zero, if we're binding now. For locals, it gets the symbol's offset in the tls section. */ bfd_put_32 (output_bfd, !h ? value - elf_hash_table (info)->tls_sec->vma : info->flags & DF_BIND_NOW ? 0 : 0x80000000 | ELF32_R_SYM (outrel.r_info), globals->root.sgotplt->contents + offplt + globals->sgotplt_jump_table_size); /* Second word in the relocation is always zero. */ bfd_put_32 (output_bfd, 0, globals->root.sgotplt->contents + offplt + globals->sgotplt_jump_table_size + 4); } if (tls_type & GOT_TLS_GD) { if (need_relocs) { outrel.r_addend = 0; outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + cur_off); outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32); if (globals->use_rel) bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + cur_off); elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); if (indx == 0) bfd_put_32 (output_bfd, value - dtpoff_base (info), sgot->contents + cur_off + 4); else { outrel.r_addend = 0; outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPOFF32); outrel.r_offset += 4; if (globals->use_rel) bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + cur_off + 4); elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); } } else { /* If we are not emitting relocations for a general dynamic reference, then we must be in a static link or an executable link with the symbol binding locally. Mark it as belonging to module 1, the executable. */ bfd_put_32 (output_bfd, 1, sgot->contents + cur_off); bfd_put_32 (output_bfd, value - dtpoff_base (info), sgot->contents + cur_off + 4); } cur_off += 8; } if (tls_type & GOT_TLS_IE) { if (need_relocs) { if (indx == 0) outrel.r_addend = value - dtpoff_base (info); else outrel.r_addend = 0; outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + cur_off); outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32); if (globals->use_rel) bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + cur_off); elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); } else bfd_put_32 (output_bfd, tpoff (info, value), sgot->contents + cur_off); cur_off += 4; } if (h != NULL) h->got.offset |= 1; else local_got_offsets[r_symndx] |= 1; } if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32) off += 8; else if (tls_type & GOT_TLS_GDESC) off = offplt; if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL) { bfd_signed_vma offset; /* TLS stubs are arm mode. The original symbol is a data object, so branch_type is bogus. */ branch_type = ST_BRANCH_TO_ARM; enum elf32_arm_stub_type stub_type = arm_type_of_stub (info, input_section, rel, st_type, &branch_type, (struct elf32_arm_link_hash_entry *)h, globals->tls_trampoline, globals->root.splt, input_bfd, sym_name); if (stub_type != arm_stub_none) { struct elf32_arm_stub_hash_entry *stub_entry = elf32_arm_get_stub_entry (input_section, globals->root.splt, 0, rel, globals, stub_type); offset = (stub_entry->stub_offset + stub_entry->stub_sec->output_offset + stub_entry->stub_sec->output_section->vma); } else offset = (globals->root.splt->output_section->vma + globals->root.splt->output_offset + globals->tls_trampoline); if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL) { unsigned long inst; offset -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset + 8); inst = offset >> 2; inst &= 0x00ffffff; value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000); } else { /* Thumb blx encodes the offset in a complicated fashion. */ unsigned upper_insn, lower_insn; unsigned neg; offset -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset + 4); if (stub_type != arm_stub_none && arm_stub_is_thumb (stub_type)) { lower_insn = 0xd000; } else { lower_insn = 0xc000; /* Round up the offset to a word boundary. */ offset = (offset + 2) & ~2; } neg = offset < 0; upper_insn = (0xf000 | ((offset >> 12) & 0x3ff) | (neg << 10)); lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13) | (((!((offset >> 22) & 1)) ^ neg) << 11) | ((offset >> 1) & 0x7ff); bfd_put_16 (input_bfd, upper_insn, hit_data); bfd_put_16 (input_bfd, lower_insn, hit_data + 2); return bfd_reloc_ok; } } /* These relocations needs special care, as besides the fact they point somewhere in .gotplt, the addend must be adjusted accordingly depending on the type of instruction we refer to. */ else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC)) { unsigned long data, insn; unsigned thumb; data = bfd_get_32 (input_bfd, hit_data); thumb = data & 1; data &= ~1u; if (thumb) { insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data); if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800) insn = (insn << 16) | bfd_get_16 (input_bfd, contents + rel->r_offset - data + 2); if ((insn & 0xf800c000) == 0xf000c000) /* bl/blx */ value = -6; else if ((insn & 0xffffff00) == 0x4400) /* add */ value = -5; else { (*_bfd_error_handler) (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"), input_bfd, input_section, (unsigned long)rel->r_offset, insn); return bfd_reloc_notsupported; } } else { insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data); switch (insn >> 24) { case 0xeb: /* bl */ case 0xfa: /* blx */ value = -4; break; case 0xe0: /* add */ value = -8; break; default: (*_bfd_error_handler) (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"), input_bfd, input_section, (unsigned long)rel->r_offset, insn); return bfd_reloc_notsupported; } } value += ((globals->root.sgotplt->output_section->vma + globals->root.sgotplt->output_offset + off) - (input_section->output_section->vma + input_section->output_offset + rel->r_offset) + globals->sgotplt_jump_table_size); } else value = ((globals->root.sgot->output_section->vma + globals->root.sgot->output_offset + off) - (input_section->output_section->vma + input_section->output_offset + rel->r_offset)); return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); } case R_ARM_TLS_LE32: if (bfd_link_dll (info)) { (*_bfd_error_handler) (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"), input_bfd, input_section, (long) rel->r_offset, howto->name); return bfd_reloc_notsupported; } else value = tpoff (info, value); return _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, value, rel->r_addend); case R_ARM_V4BX: if (globals->fix_v4bx) { bfd_vma insn = bfd_get_32 (input_bfd, hit_data); /* Ensure that we have a BX instruction. */ BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10); if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf) { /* Branch to veneer. */ bfd_vma glue_addr; glue_addr = elf32_arm_bx_glue (info, insn & 0xf); glue_addr -= input_section->output_section->vma + input_section->output_offset + rel->r_offset + 8; insn = (insn & 0xf0000000) | 0x0a000000 | ((glue_addr >> 2) & 0x00ffffff); } else { /* Preserve Rm (lowest four bits) and the condition code (highest four bits). Other bits encode MOV PC,Rm. */ insn = (insn & 0xf000000f) | 0x01a0f000; } bfd_put_32 (input_bfd, insn, hit_data); } return bfd_reloc_ok; case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: /* Until we properly support segment-base-relative addressing then we assume the segment base to be zero, as for the group relocations. Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */ case R_ARM_MOVW_BREL_NC: case R_ARM_MOVW_BREL: case R_ARM_MOVT_BREL: { bfd_vma insn = bfd_get_32 (input_bfd, hit_data); if (globals->use_rel) { addend = ((insn >> 4) & 0xf000) | (insn & 0xfff); signed_addend = (addend ^ 0x8000) - 0x8000; } value += signed_addend; if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL) value -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); if (r_type == R_ARM_MOVW_BREL && value >= 0x10000) return bfd_reloc_overflow; if (branch_type == ST_BRANCH_TO_THUMB) value |= 1; if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL || r_type == R_ARM_MOVT_BREL) value >>= 16; insn &= 0xfff0f000; insn |= value & 0xfff; insn |= (value & 0xf000) << 4; bfd_put_32 (input_bfd, insn, hit_data); } return bfd_reloc_ok; case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: /* Until we properly support segment-base-relative addressing then we assume the segment base to be zero, as for the above relocations. Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics as R_ARM_THM_MOVT_ABS. */ case R_ARM_THM_MOVW_BREL_NC: case R_ARM_THM_MOVW_BREL: case R_ARM_THM_MOVT_BREL: { bfd_vma insn; insn = bfd_get_16 (input_bfd, hit_data) << 16; insn |= bfd_get_16 (input_bfd, hit_data + 2); if (globals->use_rel) { addend = ((insn >> 4) & 0xf000) | ((insn >> 15) & 0x0800) | ((insn >> 4) & 0x0700) | (insn & 0x00ff); signed_addend = (addend ^ 0x8000) - 0x8000; } value += signed_addend; if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL) value -= (input_section->output_section->vma + input_section->output_offset + rel->r_offset); if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000) return bfd_reloc_overflow; if (branch_type == ST_BRANCH_TO_THUMB) value |= 1; if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL || r_type == R_ARM_THM_MOVT_BREL) value >>= 16; insn &= 0xfbf08f00; insn |= (value & 0xf000) << 4; insn |= (value & 0x0800) << 15; insn |= (value & 0x0700) << 4; insn |= (value & 0x00ff); bfd_put_16 (input_bfd, insn >> 16, hit_data); bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); } return bfd_reloc_ok; case R_ARM_ALU_PC_G0_NC: case R_ARM_ALU_PC_G1_NC: case R_ARM_ALU_PC_G0: case R_ARM_ALU_PC_G1: case R_ARM_ALU_PC_G2: case R_ARM_ALU_SB_G0_NC: case R_ARM_ALU_SB_G1_NC: case R_ARM_ALU_SB_G0: case R_ARM_ALU_SB_G1: case R_ARM_ALU_SB_G2: { bfd_vma insn = bfd_get_32 (input_bfd, hit_data); bfd_vma pc = input_section->output_section->vma + input_section->output_offset + rel->r_offset; /* sb is the origin of the *segment* containing the symbol. */ bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; bfd_vma residual; bfd_vma g_n; bfd_signed_vma signed_value; int group = 0; /* Determine which group of bits to select. */ switch (r_type) { case R_ARM_ALU_PC_G0_NC: case R_ARM_ALU_PC_G0: case R_ARM_ALU_SB_G0_NC: case R_ARM_ALU_SB_G0: group = 0; break; case R_ARM_ALU_PC_G1_NC: case R_ARM_ALU_PC_G1: case R_ARM_ALU_SB_G1_NC: case R_ARM_ALU_SB_G1: group = 1; break; case R_ARM_ALU_PC_G2: case R_ARM_ALU_SB_G2: group = 2; break; default: abort (); } /* If REL, extract the addend from the insn. If RELA, it will have already been fetched for us. */ if (globals->use_rel) { int negative; bfd_vma constant = insn & 0xff; bfd_vma rotation = (insn & 0xf00) >> 8; if (rotation == 0) signed_addend = constant; else { /* Compensate for the fact that in the instruction, the rotation is stored in multiples of 2 bits. */ rotation *= 2; /* Rotate "constant" right by "rotation" bits. */ signed_addend = (constant >> rotation) | (constant << (8 * sizeof (bfd_vma) - rotation)); } /* Determine if the instruction is an ADD or a SUB. (For REL, this determines the sign of the addend.) */ negative = identify_add_or_sub (insn); if (negative == 0) { (*_bfd_error_handler) (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"), input_bfd, input_section, (long) rel->r_offset, howto->name); return bfd_reloc_overflow; } signed_addend *= negative; } /* Compute the value (X) to go in the place. */ if (r_type == R_ARM_ALU_PC_G0_NC || r_type == R_ARM_ALU_PC_G1_NC || r_type == R_ARM_ALU_PC_G0 || r_type == R_ARM_ALU_PC_G1 || r_type == R_ARM_ALU_PC_G2) /* PC relative. */ signed_value = value - pc + signed_addend; else /* Section base relative. */ signed_value = value - sb + signed_addend; /* If the target symbol is a Thumb function, then set the Thumb bit in the address. */ if (branch_type == ST_BRANCH_TO_THUMB) signed_value |= 1; /* Calculate the value of the relevant G_n, in encoded constant-with-rotation format. */ g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, group, &residual); /* Check for overflow if required. */ if ((r_type == R_ARM_ALU_PC_G0 || r_type == R_ARM_ALU_PC_G1 || r_type == R_ARM_ALU_PC_G2 || r_type == R_ARM_ALU_SB_G0 || r_type == R_ARM_ALU_SB_G1 || r_type == R_ARM_ALU_SB_G2) && residual != 0) { (*_bfd_error_handler) (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), input_bfd, input_section, (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value, howto->name); return bfd_reloc_overflow; } /* Mask out the value and the ADD/SUB part of the opcode; take care not to destroy the S bit. */ insn &= 0xff1ff000; /* Set the opcode according to whether the value to go in the place is negative. */ if (signed_value < 0) insn |= 1 << 22; else insn |= 1 << 23; /* Encode the offset. */ insn |= g_n; bfd_put_32 (input_bfd, insn, hit_data); } return bfd_reloc_ok; case R_ARM_LDR_PC_G0: case R_ARM_LDR_PC_G1: case R_ARM_LDR_PC_G2: case R_ARM_LDR_SB_G0: case R_ARM_LDR_SB_G1: case R_ARM_LDR_SB_G2: { bfd_vma insn = bfd_get_32 (input_bfd, hit_data); bfd_vma pc = input_section->output_section->vma + input_section->output_offset + rel->r_offset; /* sb is the origin of the *segment* containing the symbol. */ bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; bfd_vma residual; bfd_signed_vma signed_value; int group = 0; /* Determine which groups of bits to calculate. */ switch (r_type) { case R_ARM_LDR_PC_G0: case R_ARM_LDR_SB_G0: group = 0; break; case R_ARM_LDR_PC_G1: case R_ARM_LDR_SB_G1: group = 1; break; case R_ARM_LDR_PC_G2: case R_ARM_LDR_SB_G2: group = 2; break; default: abort (); } /* If REL, extract the addend from the insn. If RELA, it will have already been fetched for us. */ if (globals->use_rel) { int negative = (insn & (1 << 23)) ? 1 : -1; signed_addend = negative * (insn & 0xfff); } /* Compute the value (X) to go in the place. */ if (r_type == R_ARM_LDR_PC_G0 || r_type == R_ARM_LDR_PC_G1 || r_type == R_ARM_LDR_PC_G2) /* PC relative. */ signed_value = value - pc + signed_addend; else /* Section base relative. */ signed_value = value - sb + signed_addend; /* Calculate the value of the relevant G_{n-1} to obtain the residual at that stage. */ calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, group - 1, &residual); /* Check for overflow. */ if (residual >= 0x1000) { (*_bfd_error_handler) (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), input_bfd, input_section, (long) rel->r_offset, labs (signed_value), howto->name); return bfd_reloc_overflow; } /* Mask out the value and U bit. */ insn &= 0xff7ff000; /* Set the U bit if the value to go in the place is non-negative. */ if (signed_value >= 0) insn |= 1 << 23; /* Encode the offset. */ insn |= residual; bfd_put_32 (input_bfd, insn, hit_data); } return bfd_reloc_ok; case R_ARM_LDRS_PC_G0: case R_ARM_LDRS_PC_G1: case R_ARM_LDRS_PC_G2: case R_ARM_LDRS_SB_G0: case R_ARM_LDRS_SB_G1: case R_ARM_LDRS_SB_G2: { bfd_vma insn = bfd_get_32 (input_bfd, hit_data); bfd_vma pc = input_section->output_section->vma + input_section->output_offset + rel->r_offset; /* sb is the origin of the *segment* containing the symbol. */ bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; bfd_vma residual; bfd_signed_vma signed_value; int group = 0; /* Determine which groups of bits to calculate. */ switch (r_type) { case R_ARM_LDRS_PC_G0: case R_ARM_LDRS_SB_G0: group = 0; break; case R_ARM_LDRS_PC_G1: case R_ARM_LDRS_SB_G1: group = 1; break; case R_ARM_LDRS_PC_G2: case R_ARM_LDRS_SB_G2: group = 2; break; default: abort (); } /* If REL, extract the addend from the insn. If RELA, it will have already been fetched for us. */ if (globals->use_rel) { int negative = (insn & (1 << 23)) ? 1 : -1; signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf)); } /* Compute the value (X) to go in the place. */ if (r_type == R_ARM_LDRS_PC_G0 || r_type == R_ARM_LDRS_PC_G1 || r_type == R_ARM_LDRS_PC_G2) /* PC relative. */ signed_value = value - pc + signed_addend; else /* Section base relative. */ signed_value = value - sb + signed_addend; /* Calculate the value of the relevant G_{n-1} to obtain the residual at that stage. */ calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, group - 1, &residual); /* Check for overflow. */ if (residual >= 0x100) { (*_bfd_error_handler) (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), input_bfd, input_section, (long) rel->r_offset, labs (signed_value), howto->name); return bfd_reloc_overflow; } /* Mask out the value and U bit. */ insn &= 0xff7ff0f0; /* Set the U bit if the value to go in the place is non-negative. */ if (signed_value >= 0) insn |= 1 << 23; /* Encode the offset. */ insn |= ((residual & 0xf0) << 4) | (residual & 0xf); bfd_put_32 (input_bfd, insn, hit_data); } return bfd_reloc_ok; case R_ARM_LDC_PC_G0: case R_ARM_LDC_PC_G1: case R_ARM_LDC_PC_G2: case R_ARM_LDC_SB_G0: case R_ARM_LDC_SB_G1: case R_ARM_LDC_SB_G2: { bfd_vma insn = bfd_get_32 (input_bfd, hit_data); bfd_vma pc = input_section->output_section->vma + input_section->output_offset + rel->r_offset; /* sb is the origin of the *segment* containing the symbol. */ bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; bfd_vma residual; bfd_signed_vma signed_value; int group = 0; /* Determine which groups of bits to calculate. */ switch (r_type) { case R_ARM_LDC_PC_G0: case R_ARM_LDC_SB_G0: group = 0; break; case R_ARM_LDC_PC_G1: case R_ARM_LDC_SB_G1: group = 1; break; case R_ARM_LDC_PC_G2: case R_ARM_LDC_SB_G2: group = 2; break; default: abort (); } /* If REL, extract the addend from the insn. If RELA, it will have already been fetched for us. */ if (globals->use_rel) { int negative = (insn & (1 << 23)) ? 1 : -1; signed_addend = negative * ((insn & 0xff) << 2); } /* Compute the value (X) to go in the place. */ if (r_type == R_ARM_LDC_PC_G0 || r_type == R_ARM_LDC_PC_G1 || r_type == R_ARM_LDC_PC_G2) /* PC relative. */ signed_value = value - pc + signed_addend; else /* Section base relative. */ signed_value = value - sb + signed_addend; /* Calculate the value of the relevant G_{n-1} to obtain the residual at that stage. */ calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, group - 1, &residual); /* Check for overflow. (The absolute value to go in the place must be divisible by four and, after having been divided by four, must fit in eight bits.) */ if ((residual & 0x3) != 0 || residual >= 0x400) { (*_bfd_error_handler) (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"), input_bfd, input_section, (long) rel->r_offset, labs (signed_value), howto->name); return bfd_reloc_overflow; } /* Mask out the value and U bit. */ insn &= 0xff7fff00; /* Set the U bit if the value to go in the place is non-negative. */ if (signed_value >= 0) insn |= 1 << 23; /* Encode the offset. */ insn |= residual >> 2; bfd_put_32 (input_bfd, insn, hit_data); } return bfd_reloc_ok; case R_ARM_THM_ALU_ABS_G0_NC: case R_ARM_THM_ALU_ABS_G1_NC: case R_ARM_THM_ALU_ABS_G2_NC: case R_ARM_THM_ALU_ABS_G3_NC: { const int shift_array[4] = {0, 8, 16, 24}; bfd_vma insn = bfd_get_16 (input_bfd, hit_data); bfd_vma addr = value; int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC]; /* Compute address. */ if (globals->use_rel) signed_addend = insn & 0xff; addr += signed_addend; if (branch_type == ST_BRANCH_TO_THUMB) addr |= 1; /* Clean imm8 insn. */ insn &= 0xff00; /* And update with correct part of address. */ insn |= (addr >> shift) & 0xff; /* Update insn. */ bfd_put_16 (input_bfd, insn, hit_data); } *unresolved_reloc_p = FALSE; return bfd_reloc_ok; default: return bfd_reloc_notsupported; } } /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */ static void arm_add_to_rel (bfd * abfd, bfd_byte * address, reloc_howto_type * howto, bfd_signed_vma increment) { bfd_signed_vma addend; if (howto->type == R_ARM_THM_CALL || howto->type == R_ARM_THM_JUMP24) { int upper_insn, lower_insn; int upper, lower; upper_insn = bfd_get_16 (abfd, address); lower_insn = bfd_get_16 (abfd, address + 2); upper = upper_insn & 0x7ff; lower = lower_insn & 0x7ff; addend = (upper << 12) | (lower << 1); addend += increment; addend >>= 1; upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff); lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff); bfd_put_16 (abfd, (bfd_vma) upper_insn, address); bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2); } else { bfd_vma contents; contents = bfd_get_32 (abfd, address); /* Get the (signed) value from the instruction. */ addend = contents & howto->src_mask; if (addend & ((howto->src_mask + 1) >> 1)) { bfd_signed_vma mask; mask = -1; mask &= ~ howto->src_mask; addend |= mask; } /* Add in the increment, (which is a byte value). */ switch (howto->type) { default: addend += increment; break; case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_CALL: case R_ARM_JUMP24: addend <<= howto->size; addend += increment; /* Should we check for overflow here ? */ /* Drop any undesired bits. */ addend >>= howto->rightshift; break; } contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask); bfd_put_32 (abfd, contents, address); } } #define IS_ARM_TLS_RELOC(R_TYPE) \ ((R_TYPE) == R_ARM_TLS_GD32 \ || (R_TYPE) == R_ARM_TLS_LDO32 \ || (R_TYPE) == R_ARM_TLS_LDM32 \ || (R_TYPE) == R_ARM_TLS_DTPOFF32 \ || (R_TYPE) == R_ARM_TLS_DTPMOD32 \ || (R_TYPE) == R_ARM_TLS_TPOFF32 \ || (R_TYPE) == R_ARM_TLS_LE32 \ || (R_TYPE) == R_ARM_TLS_IE32 \ || IS_ARM_TLS_GNU_RELOC (R_TYPE)) /* Specific set of relocations for the gnu tls dialect. */ #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \ ((R_TYPE) == R_ARM_TLS_GOTDESC \ || (R_TYPE) == R_ARM_TLS_CALL \ || (R_TYPE) == R_ARM_THM_TLS_CALL \ || (R_TYPE) == R_ARM_TLS_DESCSEQ \ || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ) /* Relocate an ARM ELF section. */ static bfd_boolean elf32_arm_relocate_section (bfd * output_bfd, struct bfd_link_info * info, bfd * input_bfd, asection * input_section, bfd_byte * contents, Elf_Internal_Rela * relocs, Elf_Internal_Sym * local_syms, asection ** local_sections) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; const char *name; struct elf32_arm_link_hash_table * globals; globals = elf32_arm_hash_table (info); if (globals == NULL) return FALSE; symtab_hdr = & elf_symtab_hdr (input_bfd); sym_hashes = elf_sym_hashes (input_bfd); rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; reloc_howto_type * howto; unsigned long r_symndx; Elf_Internal_Sym * sym; asection * sec; struct elf_link_hash_entry * h; bfd_vma relocation; bfd_reloc_status_type r; arelent bfd_reloc; char sym_type; bfd_boolean unresolved_reloc = FALSE; char *error_message = NULL; r_symndx = ELF32_R_SYM (rel->r_info); r_type = ELF32_R_TYPE (rel->r_info); r_type = arm_real_reloc_type (globals, r_type); if ( r_type == R_ARM_GNU_VTENTRY || r_type == R_ARM_GNU_VTINHERIT) continue; bfd_reloc.howto = elf32_arm_howto_from_type (r_type); howto = bfd_reloc.howto; h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sym_type = ELF32_ST_TYPE (sym->st_info); sec = local_sections[r_symndx]; /* An object file might have a reference to a local undefined symbol. This is a daft object file, but we should at least do something about it. V4BX & NONE relocations do not use the symbol and are explicitly allowed to use the undefined symbol, so allow those. Likewise for relocations against STN_UNDEF. */ if (r_type != R_ARM_V4BX && r_type != R_ARM_NONE && r_symndx != STN_UNDEF && bfd_is_und_section (sec) && ELF_ST_BIND (sym->st_info) != STB_WEAK) { if (!info->callbacks->undefined_symbol (info, bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name), input_bfd, input_section, rel->r_offset, TRUE)) return FALSE; } if (globals->use_rel) { relocation = (sec->output_section->vma + sec->output_offset + sym->st_value); if (!bfd_link_relocatable (info) && (sec->flags & SEC_MERGE) && ELF_ST_TYPE (sym->st_info) == STT_SECTION) { asection *msec; bfd_vma addend, value; switch (r_type) { case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: value = bfd_get_32 (input_bfd, contents + rel->r_offset); addend = ((value & 0xf0000) >> 4) | (value & 0xfff); addend = (addend ^ 0x8000) - 0x8000; break; case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: value = bfd_get_16 (input_bfd, contents + rel->r_offset) << 16; value |= bfd_get_16 (input_bfd, contents + rel->r_offset + 2); addend = ((value & 0xf7000) >> 4) | (value & 0xff) | ((value & 0x04000000) >> 15); addend = (addend ^ 0x8000) - 0x8000; break; default: if (howto->rightshift || (howto->src_mask & (howto->src_mask + 1))) { (*_bfd_error_handler) (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"), input_bfd, input_section, (long) rel->r_offset, howto->name); return FALSE; } value = bfd_get_32 (input_bfd, contents + rel->r_offset); /* Get the (signed) value from the instruction. */ addend = value & howto->src_mask; if (addend & ((howto->src_mask + 1) >> 1)) { bfd_signed_vma mask; mask = -1; mask &= ~ howto->src_mask; addend |= mask; } break; } msec = sec; addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend) - relocation; addend += msec->output_section->vma + msec->output_offset; /* Cases here must match those in the preceding switch statement. */ switch (r_type) { case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: value = (value & 0xfff0f000) | ((addend & 0xf000) << 4) | (addend & 0xfff); bfd_put_32 (input_bfd, value, contents + rel->r_offset); break; case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4) | (addend & 0xff) | ((addend & 0x0800) << 15); bfd_put_16 (input_bfd, value >> 16, contents + rel->r_offset); bfd_put_16 (input_bfd, value, contents + rel->r_offset + 2); break; default: value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask); bfd_put_32 (input_bfd, value, contents + rel->r_offset); break; } } } else relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); } else { bfd_boolean warned, ignored; RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned, ignored); sym_type = h->type; } if (sec != NULL && discarded_section (sec)) RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, rel, 1, relend, howto, 0, contents); if (bfd_link_relocatable (info)) { /* This is a relocatable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) { if (globals->use_rel) arm_add_to_rel (input_bfd, contents + rel->r_offset, howto, (bfd_signed_vma) sec->output_offset); else rel->r_addend += sec->output_offset; } continue; } if (h != NULL) name = h->root.root.string; else { name = (bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name)); if (name == NULL || *name == '\0') name = bfd_section_name (input_bfd, sec); } if (r_symndx != STN_UNDEF && r_type != R_ARM_NONE && (h == NULL || h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS)) { (*_bfd_error_handler) ((sym_type == STT_TLS ? _("%B(%A+0x%lx): %s used with TLS symbol %s") : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), input_bfd, input_section, (long) rel->r_offset, howto->name, name); } /* We call elf32_arm_final_link_relocate unless we're completely done, i.e., the relaxation produced the final output we want, and we won't let anybody mess with it. Also, we have to do addend adjustments in case of a R_ARM_TLS_GOTDESC relocation both in relaxed and non-relaxed cases. */ if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type) || (IS_ARM_TLS_GNU_RELOC (r_type) && !((h ? elf32_arm_hash_entry (h)->tls_type : elf32_arm_local_got_tls_type (input_bfd)[r_symndx]) & GOT_TLS_GDESC))) { r = elf32_arm_tls_relax (globals, input_bfd, input_section, contents, rel, h == NULL); /* This may have been marked unresolved because it came from a shared library. But we've just dealt with that. */ unresolved_reloc = 0; } else r = bfd_reloc_continue; if (r == bfd_reloc_continue) r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd, input_section, contents, rel, relocation, info, sec, name, sym_type, (h ? h->target_internal : ARM_SYM_BRANCH_TYPE (sym)), h, &unresolved_reloc, &error_message); /* Dynamic relocs are not propagated for SEC_DEBUGGING sections because such sections are not SEC_ALLOC and thus ld.so will not process them. */ if (unresolved_reloc && !((input_section->flags & SEC_DEBUGGING) != 0 && h->def_dynamic) && _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset) != (bfd_vma) -1) { (*_bfd_error_handler) (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), input_bfd, input_section, (long) rel->r_offset, howto->name, h->root.root.string); return FALSE; } if (r != bfd_reloc_ok) { switch (r) { case bfd_reloc_overflow: /* If the overflowing reloc was to an undefined symbol, we have already printed one error message and there is no point complaining again. */ if ((! h || h->root.type != bfd_link_hash_undefined) && (!((*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset)))) return FALSE; break; case bfd_reloc_undefined: if (!((*info->callbacks->undefined_symbol) (info, name, input_bfd, input_section, rel->r_offset, TRUE))) return FALSE; break; case bfd_reloc_outofrange: error_message = _("out of range"); goto common_error; case bfd_reloc_notsupported: error_message = _("unsupported relocation"); goto common_error; case bfd_reloc_dangerous: /* error_message should already be set. */ goto common_error; default: error_message = _("unknown error"); /* Fall through. */ common_error: BFD_ASSERT (error_message != NULL); if (!((*info->callbacks->reloc_dangerous) (info, error_message, input_bfd, input_section, rel->r_offset))) return FALSE; break; } } } return TRUE; } /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero, adds the edit to the start of the list. (The list must be built in order of ascending TINDEX: the function's callers are primarily responsible for maintaining that condition). */ static void add_unwind_table_edit (arm_unwind_table_edit **head, arm_unwind_table_edit **tail, arm_unwind_edit_type type, asection *linked_section, unsigned int tindex) { arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *) xmalloc (sizeof (arm_unwind_table_edit)); new_edit->type = type; new_edit->linked_section = linked_section; new_edit->index = tindex; if (tindex > 0) { new_edit->next = NULL; if (*tail) (*tail)->next = new_edit; (*tail) = new_edit; if (!*head) (*head) = new_edit; } else { new_edit->next = *head; if (!*tail) *tail = new_edit; *head = new_edit; } } static _arm_elf_section_data *get_arm_elf_section_data (asection *); /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */ static void adjust_exidx_size(asection *exidx_sec, int adjust) { asection *out_sec; if (!exidx_sec->rawsize) exidx_sec->rawsize = exidx_sec->size; bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust); out_sec = exidx_sec->output_section; /* Adjust size of output section. */ bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust); } /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */ static void insert_cantunwind_after(asection *text_sec, asection *exidx_sec) { struct _arm_elf_section_data *exidx_arm_data; exidx_arm_data = get_arm_elf_section_data (exidx_sec); add_unwind_table_edit ( &exidx_arm_data->u.exidx.unwind_edit_list, &exidx_arm_data->u.exidx.unwind_edit_tail, INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX); exidx_arm_data->additional_reloc_count++; adjust_exidx_size(exidx_sec, 8); } /* Scan .ARM.exidx tables, and create a list describing edits which should be made to those tables, such that: 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries. 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind codes which have been inlined into the index). If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged. The edits are applied when the tables are written (in elf32_arm_write_section). */ bfd_boolean elf32_arm_fix_exidx_coverage (asection **text_section_order, unsigned int num_text_sections, struct bfd_link_info *info, bfd_boolean merge_exidx_entries) { bfd *inp; unsigned int last_second_word = 0, i; asection *last_exidx_sec = NULL; asection *last_text_sec = NULL; int last_unwind_type = -1; /* Walk over all EXIDX sections, and create backlinks from the corrsponding text sections. */ for (inp = info->input_bfds; inp != NULL; inp = inp->link.next) { asection *sec; for (sec = inp->sections; sec != NULL; sec = sec->next) { struct bfd_elf_section_data *elf_sec = elf_section_data (sec); Elf_Internal_Shdr *hdr = &elf_sec->this_hdr; if (!hdr || hdr->sh_type != SHT_ARM_EXIDX) continue; if (elf_sec->linked_to) { Elf_Internal_Shdr *linked_hdr = &elf_section_data (elf_sec->linked_to)->this_hdr; struct _arm_elf_section_data *linked_sec_arm_data = get_arm_elf_section_data (linked_hdr->bfd_section); if (linked_sec_arm_data == NULL) continue; /* Link this .ARM.exidx section back from the text section it describes. */ linked_sec_arm_data->u.text.arm_exidx_sec = sec; } } } /* Walk all text sections in order of increasing VMA. Eilminate duplicate index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes), and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */ for (i = 0; i < num_text_sections; i++) { asection *sec = text_section_order[i]; asection *exidx_sec; struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec); struct _arm_elf_section_data *exidx_arm_data; bfd_byte *contents = NULL; int deleted_exidx_bytes = 0; bfd_vma j; arm_unwind_table_edit *unwind_edit_head = NULL; arm_unwind_table_edit *unwind_edit_tail = NULL; Elf_Internal_Shdr *hdr; bfd *ibfd; if (arm_data == NULL) continue; exidx_sec = arm_data->u.text.arm_exidx_sec; if (exidx_sec == NULL) { /* Section has no unwind data. */ if (last_unwind_type == 0 || !last_exidx_sec) continue; /* Ignore zero sized sections. */ if (sec->size == 0) continue; insert_cantunwind_after(last_text_sec, last_exidx_sec); last_unwind_type = 0; continue; } /* Skip /DISCARD/ sections. */ if (bfd_is_abs_section (exidx_sec->output_section)) continue; hdr = &elf_section_data (exidx_sec)->this_hdr; if (hdr->sh_type != SHT_ARM_EXIDX) continue; exidx_arm_data = get_arm_elf_section_data (exidx_sec); if (exidx_arm_data == NULL) continue; ibfd = exidx_sec->owner; if (hdr->contents != NULL) contents = hdr->contents; else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents)) /* An error? */ continue; if (last_unwind_type > 0) { unsigned int first_word = bfd_get_32 (ibfd, contents); /* Add cantunwind if first unwind item does not match section start. */ if (first_word != sec->vma) { insert_cantunwind_after (last_text_sec, last_exidx_sec); last_unwind_type = 0; } } for (j = 0; j < hdr->sh_size; j += 8) { unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4); int unwind_type; int elide = 0; /* An EXIDX_CANTUNWIND entry. */ if (second_word == 1) { if (last_unwind_type == 0) elide = 1; unwind_type = 0; } /* Inlined unwinding data. Merge if equal to previous. */ else if ((second_word & 0x80000000) != 0) { if (merge_exidx_entries && last_second_word == second_word && last_unwind_type == 1) elide = 1; unwind_type = 1; last_second_word = second_word; } /* Normal table entry. In theory we could merge these too, but duplicate entries are likely to be much less common. */ else unwind_type = 2; if (elide && !bfd_link_relocatable (info)) { add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail, DELETE_EXIDX_ENTRY, NULL, j / 8); deleted_exidx_bytes += 8; } last_unwind_type = unwind_type; } /* Free contents if we allocated it ourselves. */ if (contents != hdr->contents) free (contents); /* Record edits to be applied later (in elf32_arm_write_section). */ exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head; exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail; if (deleted_exidx_bytes > 0) adjust_exidx_size(exidx_sec, -deleted_exidx_bytes); last_exidx_sec = exidx_sec; last_text_sec = sec; } /* Add terminating CANTUNWIND entry. */ if (!bfd_link_relocatable (info) && last_exidx_sec && last_unwind_type != 0) insert_cantunwind_after(last_text_sec, last_exidx_sec); return TRUE; } static bfd_boolean elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd, bfd *ibfd, const char *name) { asection *sec, *osec; sec = bfd_get_linker_section (ibfd, name); if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0) return TRUE; osec = sec->output_section; if (elf32_arm_write_section (obfd, info, sec, sec->contents)) return TRUE; if (! bfd_set_section_contents (obfd, osec, sec->contents, sec->output_offset, sec->size)) return FALSE; return TRUE; } static bfd_boolean elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info) { struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); asection *sec, *osec; if (globals == NULL) return FALSE; /* Invoke the regular ELF backend linker to do all the work. */ if (!bfd_elf_final_link (abfd, info)) return FALSE; /* Process stub sections (eg BE8 encoding, ...). */ struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); unsigned int i; for (i=0; itop_id; i++) { sec = htab->stub_group[i].stub_sec; /* Only process it once, in its link_sec slot. */ if (sec && i == htab->stub_group[i].link_sec->id) { osec = sec->output_section; elf32_arm_write_section (abfd, info, sec, sec->contents); if (! bfd_set_section_contents (abfd, osec, sec->contents, sec->output_offset, sec->size)) return FALSE; } } /* Write out any glue sections now that we have created all the stubs. */ if (globals->bfd_of_glue_owner != NULL) { if (! elf32_arm_output_glue_section (info, abfd, globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME)) return FALSE; if (! elf32_arm_output_glue_section (info, abfd, globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME)) return FALSE; if (! elf32_arm_output_glue_section (info, abfd, globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME)) return FALSE; if (! elf32_arm_output_glue_section (info, abfd, globals->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME)) return FALSE; if (! elf32_arm_output_glue_section (info, abfd, globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME)) return FALSE; } return TRUE; } /* Return a best guess for the machine number based on the attributes. */ static unsigned int bfd_arm_get_mach_from_attributes (bfd * abfd) { int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch); switch (arch) { case TAG_CPU_ARCH_V4: return bfd_mach_arm_4; case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T; case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T; case TAG_CPU_ARCH_V5TE: { char * name; BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES); name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s; if (name) { if (strcmp (name, "IWMMXT2") == 0) return bfd_mach_arm_iWMMXt2; if (strcmp (name, "IWMMXT") == 0) return bfd_mach_arm_iWMMXt; if (strcmp (name, "XSCALE") == 0) { int wmmx; BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES); wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i; switch (wmmx) { case 1: return bfd_mach_arm_iWMMXt; case 2: return bfd_mach_arm_iWMMXt2; default: return bfd_mach_arm_XScale; } } } return bfd_mach_arm_5TE; } default: return bfd_mach_arm_unknown; } } /* Set the right machine number. */ static bfd_boolean elf32_arm_object_p (bfd *abfd) { unsigned int mach; mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION); if (mach == bfd_mach_arm_unknown) { if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT) mach = bfd_mach_arm_ep9312; else mach = bfd_arm_get_mach_from_attributes (abfd); } bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach); return TRUE; } /* Function to keep ARM specific flags in the ELF header. */ static bfd_boolean elf32_arm_set_private_flags (bfd *abfd, flagword flags) { if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags) { if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN) { if (flags & EF_ARM_INTERWORK) (*_bfd_error_handler) (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"), abfd); else _bfd_error_handler (_("Warning: Clearing the interworking flag of %B due to outside request"), abfd); } } else { elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; } return TRUE; } /* Copy backend specific data from one object module to another. */ static bfd_boolean elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd) { flagword in_flags; flagword out_flags; if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd)) return TRUE; in_flags = elf_elfheader (ibfd)->e_flags; out_flags = elf_elfheader (obfd)->e_flags; if (elf_flags_init (obfd) && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN && in_flags != out_flags) { /* Cannot mix APCS26 and APCS32 code. */ if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26)) return FALSE; /* Cannot mix float APCS and non-float APCS code. */ if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT)) return FALSE; /* If the src and dest have different interworking flags then turn off the interworking bit. */ if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK)) { if (out_flags & EF_ARM_INTERWORK) _bfd_error_handler (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"), obfd, ibfd); in_flags &= ~EF_ARM_INTERWORK; } /* Likewise for PIC, though don't warn for this case. */ if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC)) in_flags &= ~EF_ARM_PIC; } elf_elfheader (obfd)->e_flags = in_flags; elf_flags_init (obfd) = TRUE; return _bfd_elf_copy_private_bfd_data (ibfd, obfd); } /* Values for Tag_ABI_PCS_R9_use. */ enum { AEABI_R9_V6, AEABI_R9_SB, AEABI_R9_TLS, AEABI_R9_unused }; /* Values for Tag_ABI_PCS_RW_data. */ enum { AEABI_PCS_RW_data_absolute, AEABI_PCS_RW_data_PCrel, AEABI_PCS_RW_data_SBrel, AEABI_PCS_RW_data_unused }; /* Values for Tag_ABI_enum_size. */ enum { AEABI_enum_unused, AEABI_enum_short, AEABI_enum_wide, AEABI_enum_forced_wide }; /* Determine whether an object attribute tag takes an integer, a string or both. */ static int elf32_arm_obj_attrs_arg_type (int tag) { if (tag == Tag_compatibility) return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL; else if (tag == Tag_nodefaults) return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT; else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name) return ATTR_TYPE_FLAG_STR_VAL; else if (tag < 32) return ATTR_TYPE_FLAG_INT_VAL; else return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL; } /* The ABI defines that Tag_conformance should be emitted first, and that Tag_nodefaults should be second (if either is defined). This sets those two positions, and bumps up the position of all the remaining tags to compensate. */ static int elf32_arm_obj_attrs_order (int num) { if (num == LEAST_KNOWN_OBJ_ATTRIBUTE) return Tag_conformance; if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1) return Tag_nodefaults; if ((num - 2) < Tag_nodefaults) return num - 2; if ((num - 1) < Tag_conformance) return num - 1; return num; } /* Attribute numbers >=64 (mod 128) can be safely ignored. */ static bfd_boolean elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag) { if ((tag & 127) < 64) { _bfd_error_handler (_("%B: Unknown mandatory EABI object attribute %d"), abfd, tag); bfd_set_error (bfd_error_bad_value); return FALSE; } else { _bfd_error_handler (_("Warning: %B: Unknown EABI object attribute %d"), abfd, tag); return TRUE; } } /* Read the architecture from the Tag_also_compatible_with attribute, if any. Returns -1 if no architecture could be read. */ static int get_secondary_compatible_arch (bfd *abfd) { obj_attribute *attr = &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with]; /* Note: the tag and its argument below are uleb128 values, though currently-defined values fit in one byte for each. */ if (attr->s && attr->s[0] == Tag_CPU_arch && (attr->s[1] & 128) != 128 && attr->s[2] == 0) return attr->s[1]; /* This tag is "safely ignorable", so don't complain if it looks funny. */ return -1; } /* Set, or unset, the architecture of the Tag_also_compatible_with attribute. The tag is removed if ARCH is -1. */ static void set_secondary_compatible_arch (bfd *abfd, int arch) { obj_attribute *attr = &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with]; if (arch == -1) { attr->s = NULL; return; } /* Note: the tag and its argument below are uleb128 values, though currently-defined values fit in one byte for each. */ if (!attr->s) attr->s = (char *) bfd_alloc (abfd, 3); attr->s[0] = Tag_CPU_arch; attr->s[1] = arch; attr->s[2] = '\0'; } /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags into account. */ static int tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out, int newtag, int secondary_compat) { #define T(X) TAG_CPU_ARCH_##X int tagl, tagh, result; const int v6t2[] = { T(V6T2), /* PRE_V4. */ T(V6T2), /* V4. */ T(V6T2), /* V4T. */ T(V6T2), /* V5T. */ T(V6T2), /* V5TE. */ T(V6T2), /* V5TEJ. */ T(V6T2), /* V6. */ T(V7), /* V6KZ. */ T(V6T2) /* V6T2. */ }; const int v6k[] = { T(V6K), /* PRE_V4. */ T(V6K), /* V4. */ T(V6K), /* V4T. */ T(V6K), /* V5T. */ T(V6K), /* V5TE. */ T(V6K), /* V5TEJ. */ T(V6K), /* V6. */ T(V6KZ), /* V6KZ. */ T(V7), /* V6T2. */ T(V6K) /* V6K. */ }; const int v7[] = { T(V7), /* PRE_V4. */ T(V7), /* V4. */ T(V7), /* V4T. */ T(V7), /* V5T. */ T(V7), /* V5TE. */ T(V7), /* V5TEJ. */ T(V7), /* V6. */ T(V7), /* V6KZ. */ T(V7), /* V6T2. */ T(V7), /* V6K. */ T(V7) /* V7. */ }; const int v6_m[] = { -1, /* PRE_V4. */ -1, /* V4. */ T(V6K), /* V4T. */ T(V6K), /* V5T. */ T(V6K), /* V5TE. */ T(V6K), /* V5TEJ. */ T(V6K), /* V6. */ T(V6KZ), /* V6KZ. */ T(V7), /* V6T2. */ T(V6K), /* V6K. */ T(V7), /* V7. */ T(V6_M) /* V6_M. */ }; const int v6s_m[] = { -1, /* PRE_V4. */ -1, /* V4. */ T(V6K), /* V4T. */ T(V6K), /* V5T. */ T(V6K), /* V5TE. */ T(V6K), /* V5TEJ. */ T(V6K), /* V6. */ T(V6KZ), /* V6KZ. */ T(V7), /* V6T2. */ T(V6K), /* V6K. */ T(V7), /* V7. */ T(V6S_M), /* V6_M. */ T(V6S_M) /* V6S_M. */ }; const int v7e_m[] = { -1, /* PRE_V4. */ -1, /* V4. */ T(V7E_M), /* V4T. */ T(V7E_M), /* V5T. */ T(V7E_M), /* V5TE. */ T(V7E_M), /* V5TEJ. */ T(V7E_M), /* V6. */ T(V7E_M), /* V6KZ. */ T(V7E_M), /* V6T2. */ T(V7E_M), /* V6K. */ T(V7E_M), /* V7. */ T(V7E_M), /* V6_M. */ T(V7E_M), /* V6S_M. */ T(V7E_M) /* V7E_M. */ }; const int v8[] = { T(V8), /* PRE_V4. */ T(V8), /* V4. */ T(V8), /* V4T. */ T(V8), /* V5T. */ T(V8), /* V5TE. */ T(V8), /* V5TEJ. */ T(V8), /* V6. */ T(V8), /* V6KZ. */ T(V8), /* V6T2. */ T(V8), /* V6K. */ T(V8), /* V7. */ T(V8), /* V6_M. */ T(V8), /* V6S_M. */ T(V8), /* V7E_M. */ T(V8) /* V8. */ }; const int v8m_baseline[] = { -1, /* PRE_V4. */ -1, /* V4. */ -1, /* V4T. */ -1, /* V5T. */ -1, /* V5TE. */ -1, /* V5TEJ. */ -1, /* V6. */ -1, /* V6KZ. */ -1, /* V6T2. */ -1, /* V6K. */ -1, /* V7. */ T(V8M_BASE), /* V6_M. */ T(V8M_BASE), /* V6S_M. */ -1, /* V7E_M. */ -1, /* V8. */ -1, T(V8M_BASE) /* V8-M BASELINE. */ }; const int v8m_mainline[] = { -1, /* PRE_V4. */ -1, /* V4. */ -1, /* V4T. */ -1, /* V5T. */ -1, /* V5TE. */ -1, /* V5TEJ. */ -1, /* V6. */ -1, /* V6KZ. */ -1, /* V6T2. */ -1, /* V6K. */ T(V8M_MAIN), /* V7. */ T(V8M_MAIN), /* V6_M. */ T(V8M_MAIN), /* V6S_M. */ T(V8M_MAIN), /* V7E_M. */ -1, /* V8. */ -1, T(V8M_MAIN), /* V8-M BASELINE. */ T(V8M_MAIN) /* V8-M MAINLINE. */ }; const int v4t_plus_v6_m[] = { -1, /* PRE_V4. */ -1, /* V4. */ T(V4T), /* V4T. */ T(V5T), /* V5T. */ T(V5TE), /* V5TE. */ T(V5TEJ), /* V5TEJ. */ T(V6), /* V6. */ T(V6KZ), /* V6KZ. */ T(V6T2), /* V6T2. */ T(V6K), /* V6K. */ T(V7), /* V7. */ T(V6_M), /* V6_M. */ T(V6S_M), /* V6S_M. */ T(V7E_M), /* V7E_M. */ T(V8), /* V8. */ -1, /* Unused. */ T(V8M_BASE), /* V8-M BASELINE. */ T(V8M_MAIN), /* V8-M MAINLINE. */ T(V4T_PLUS_V6_M) /* V4T plus V6_M. */ }; const int *comb[] = { v6t2, v6k, v7, v6_m, v6s_m, v7e_m, v8, NULL, v8m_baseline, v8m_mainline, /* Pseudo-architecture. */ v4t_plus_v6_m }; /* Check we've not got a higher architecture than we know about. */ if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH) { _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd); return -1; } /* Override old tag if we have a Tag_also_compatible_with on the output. */ if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T)) || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M))) oldtag = T(V4T_PLUS_V6_M); /* And override the new tag if we have a Tag_also_compatible_with on the input. */ if ((newtag == T(V6_M) && secondary_compat == T(V4T)) || (newtag == T(V4T) && secondary_compat == T(V6_M))) newtag = T(V4T_PLUS_V6_M); tagl = (oldtag < newtag) ? oldtag : newtag; result = tagh = (oldtag > newtag) ? oldtag : newtag; /* Architectures before V6KZ add features monotonically. */ if (tagh <= TAG_CPU_ARCH_V6KZ) return result; result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1; /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M) as the canonical version. */ if (result == T(V4T_PLUS_V6_M)) { result = T(V4T); *secondary_compat_out = T(V6_M); } else *secondary_compat_out = -1; if (result == -1) { _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"), ibfd, oldtag, newtag); return -1; } return result; #undef T } /* Query attributes object to see if integer divide instructions may be present in an object. */ static bfd_boolean elf32_arm_attributes_accept_div (const obj_attribute *attr) { int arch = attr[Tag_CPU_arch].i; int profile = attr[Tag_CPU_arch_profile].i; switch (attr[Tag_DIV_use].i) { case 0: /* Integer divide allowed if instruction contained in archetecture. */ if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M')) return TRUE; else if (arch >= TAG_CPU_ARCH_V7E_M) return TRUE; else return FALSE; case 1: /* Integer divide explicitly prohibited. */ return FALSE; default: /* Unrecognised case - treat as allowing divide everywhere. */ case 2: /* Integer divide allowed in ARM state. */ return TRUE; } } /* Query attributes object to see if integer divide instructions are forbidden to be in the object. This is not the inverse of elf32_arm_attributes_accept_div. */ static bfd_boolean elf32_arm_attributes_forbid_div (const obj_attribute *attr) { return attr[Tag_DIV_use].i == 1; } /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there are conflicting attributes. */ static bfd_boolean elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd) { obj_attribute *in_attr; obj_attribute *out_attr; /* Some tags have 0 = don't care, 1 = strong requirement, 2 = weak requirement. */ static const int order_021[3] = {0, 2, 1}; int i; bfd_boolean result = TRUE; const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section; /* Skip the linker stubs file. This preserves previous behavior of accepting unknown attributes in the first input file - but is that a bug? */ if (ibfd->flags & BFD_LINKER_CREATED) return TRUE; /* Skip any input that hasn't attribute section. This enables to link object files without attribute section with any others. */ if (bfd_get_section_by_name (ibfd, sec_name) == NULL) return TRUE; if (!elf_known_obj_attributes_proc (obfd)[0].i) { /* This is the first object. Copy the attributes. */ _bfd_elf_copy_obj_attributes (ibfd, obfd); out_attr = elf_known_obj_attributes_proc (obfd); /* Use the Tag_null value to indicate the attributes have been initialized. */ out_attr[0].i = 1; /* We do not output objects with Tag_MPextension_use_legacy - we move the attribute's value to Tag_MPextension_use. */ if (out_attr[Tag_MPextension_use_legacy].i != 0) { if (out_attr[Tag_MPextension_use].i != 0 && out_attr[Tag_MPextension_use_legacy].i != out_attr[Tag_MPextension_use].i) { _bfd_error_handler (_("Error: %B has both the current and legacy " "Tag_MPextension_use attributes"), ibfd); result = FALSE; } out_attr[Tag_MPextension_use] = out_attr[Tag_MPextension_use_legacy]; out_attr[Tag_MPextension_use_legacy].type = 0; out_attr[Tag_MPextension_use_legacy].i = 0; } return result; } in_attr = elf_known_obj_attributes_proc (ibfd); out_attr = elf_known_obj_attributes_proc (obfd); /* This needs to happen before Tag_ABI_FP_number_model is merged. */ if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i) { /* Ignore mismatches if the object doesn't use floating point or is floating point ABI independent. */ if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible)) out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i; else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible) { _bfd_error_handler (_("error: %B uses VFP register arguments, %B does not"), in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd, in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd); result = FALSE; } } for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++) { /* Merge this attribute with existing attributes. */ switch (i) { case Tag_CPU_raw_name: case Tag_CPU_name: /* These are merged after Tag_CPU_arch. */ break; case Tag_ABI_optimization_goals: case Tag_ABI_FP_optimization_goals: /* Use the first value seen. */ break; case Tag_CPU_arch: { int secondary_compat = -1, secondary_compat_out = -1; unsigned int saved_out_attr = out_attr[i].i; int arch_attr; static const char *name_table[] = { /* These aren't real CPU names, but we can't guess that from the architecture version alone. */ "Pre v4", "ARM v4", "ARM v4T", "ARM v5T", "ARM v5TE", "ARM v5TEJ", "ARM v6", "ARM v6KZ", "ARM v6T2", "ARM v6K", "ARM v7", "ARM v6-M", "ARM v6S-M", "ARM v8", "", "ARM v8-M.baseline", "ARM v8-M.mainline", }; /* Merge Tag_CPU_arch and Tag_also_compatible_with. */ secondary_compat = get_secondary_compatible_arch (ibfd); secondary_compat_out = get_secondary_compatible_arch (obfd); arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i, &secondary_compat_out, in_attr[i].i, secondary_compat); /* Return with error if failed to merge. */ if (arch_attr == -1) return FALSE; out_attr[i].i = arch_attr; set_secondary_compatible_arch (obfd, secondary_compat_out); /* Merge Tag_CPU_name and Tag_CPU_raw_name. */ if (out_attr[i].i == saved_out_attr) ; /* Leave the names alone. */ else if (out_attr[i].i == in_attr[i].i) { /* The output architecture has been changed to match the input architecture. Use the input names. */ out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s) : NULL; out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s) : NULL; } else { out_attr[Tag_CPU_name].s = NULL; out_attr[Tag_CPU_raw_name].s = NULL; } /* If we still don't have a value for Tag_CPU_name, make one up now. Tag_CPU_raw_name remains blank. */ if (out_attr[Tag_CPU_name].s == NULL && out_attr[i].i < ARRAY_SIZE (name_table)) out_attr[Tag_CPU_name].s = _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]); } break; case Tag_ARM_ISA_use: case Tag_THUMB_ISA_use: case Tag_WMMX_arch: case Tag_Advanced_SIMD_arch: /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */ case Tag_ABI_FP_rounding: case Tag_ABI_FP_exceptions: case Tag_ABI_FP_user_exceptions: case Tag_ABI_FP_number_model: case Tag_FP_HP_extension: case Tag_CPU_unaligned_access: case Tag_T2EE_use: case Tag_MPextension_use: /* Use the largest value specified. */ if (in_attr[i].i > out_attr[i].i) out_attr[i].i = in_attr[i].i; break; case Tag_ABI_align_preserved: case Tag_ABI_PCS_RO_data: /* Use the smallest value specified. */ if (in_attr[i].i < out_attr[i].i) out_attr[i].i = in_attr[i].i; break; case Tag_ABI_align_needed: if ((in_attr[i].i > 0 || out_attr[i].i > 0) && (in_attr[Tag_ABI_align_preserved].i == 0 || out_attr[Tag_ABI_align_preserved].i == 0)) { /* This error message should be enabled once all non-conformant binaries in the toolchain have had the attributes set properly. _bfd_error_handler (_("error: %B: 8-byte data alignment conflicts with %B"), obfd, ibfd); result = FALSE; */ } /* Fall through. */ case Tag_ABI_FP_denormal: case Tag_ABI_PCS_GOT_use: /* Use the "greatest" from the sequence 0, 2, 1, or the largest value if greater than 2 (for future-proofing). */ if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i) || (in_attr[i].i <= 2 && out_attr[i].i <= 2 && order_021[in_attr[i].i] > order_021[out_attr[i].i])) out_attr[i].i = in_attr[i].i; break; case Tag_Virtualization_use: /* The virtualization tag effectively stores two bits of information: the intended use of TrustZone (in bit 0), and the intended use of Virtualization (in bit 1). */ if (out_attr[i].i == 0) out_attr[i].i = in_attr[i].i; else if (in_attr[i].i != 0 && in_attr[i].i != out_attr[i].i) { if (in_attr[i].i <= 3 && out_attr[i].i <= 3) out_attr[i].i = 3; else { _bfd_error_handler (_("error: %B: unable to merge virtualization attributes " "with %B"), obfd, ibfd); result = FALSE; } } break; case Tag_CPU_arch_profile: if (out_attr[i].i != in_attr[i].i) { /* 0 will merge with anything. 'A' and 'S' merge to 'A'. 'R' and 'S' merge to 'R'. 'M' and 'A|R|S' is an error. */ if (out_attr[i].i == 0 || (out_attr[i].i == 'S' && (in_attr[i].i == 'A' || in_attr[i].i == 'R'))) out_attr[i].i = in_attr[i].i; else if (in_attr[i].i == 0 || (in_attr[i].i == 'S' && (out_attr[i].i == 'A' || out_attr[i].i == 'R'))) ; /* Do nothing. */ else { _bfd_error_handler (_("error: %B: Conflicting architecture profiles %c/%c"), ibfd, in_attr[i].i ? in_attr[i].i : '0', out_attr[i].i ? out_attr[i].i : '0'); result = FALSE; } } break; case Tag_FP_arch: { /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch when it's 0. It might mean absence of FP hardware if Tag_FP_arch is zero. */ #define VFP_VERSION_COUNT 9 static const struct { int ver; int regs; } vfp_versions[VFP_VERSION_COUNT] = { {0, 0}, {1, 16}, {2, 16}, {3, 32}, {3, 16}, {4, 32}, {4, 16}, {8, 32}, {8, 16} }; int ver; int regs; int newval; /* If the output has no requirement about FP hardware, follow the requirement of the input. */ if (out_attr[i].i == 0) { BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0); out_attr[i].i = in_attr[i].i; out_attr[Tag_ABI_HardFP_use].i = in_attr[Tag_ABI_HardFP_use].i; break; } /* If the input has no requirement about FP hardware, do nothing. */ else if (in_attr[i].i == 0) { BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0); break; } /* Both the input and the output have nonzero Tag_FP_arch. So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */ /* If both the input and the output have zero Tag_ABI_HardFP_use, do nothing. */ if (in_attr[Tag_ABI_HardFP_use].i == 0 && out_attr[Tag_ABI_HardFP_use].i == 0) ; /* If the input and the output have different Tag_ABI_HardFP_use, the combination of them is 0 (implied by Tag_FP_arch). */ else if (in_attr[Tag_ABI_HardFP_use].i != out_attr[Tag_ABI_HardFP_use].i) out_attr[Tag_ABI_HardFP_use].i = 0; /* Now we can handle Tag_FP_arch. */ /* Values of VFP_VERSION_COUNT or more aren't defined, so just pick the biggest. */ if (in_attr[i].i >= VFP_VERSION_COUNT && in_attr[i].i > out_attr[i].i) { out_attr[i] = in_attr[i]; break; } /* The output uses the superset of input features (ISA version) and registers. */ ver = vfp_versions[in_attr[i].i].ver; if (ver < vfp_versions[out_attr[i].i].ver) ver = vfp_versions[out_attr[i].i].ver; regs = vfp_versions[in_attr[i].i].regs; if (regs < vfp_versions[out_attr[i].i].regs) regs = vfp_versions[out_attr[i].i].regs; /* This assumes all possible supersets are also a valid options. */ for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--) { if (regs == vfp_versions[newval].regs && ver == vfp_versions[newval].ver) break; } out_attr[i].i = newval; } break; case Tag_PCS_config: if (out_attr[i].i == 0) out_attr[i].i = in_attr[i].i; else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i) { /* It's sometimes ok to mix different configs, so this is only a warning. */ _bfd_error_handler (_("Warning: %B: Conflicting platform configuration"), ibfd); } break; case Tag_ABI_PCS_R9_use: if (in_attr[i].i != out_attr[i].i && out_attr[i].i != AEABI_R9_unused && in_attr[i].i != AEABI_R9_unused) { _bfd_error_handler (_("error: %B: Conflicting use of R9"), ibfd); result = FALSE; } if (out_attr[i].i == AEABI_R9_unused) out_attr[i].i = in_attr[i].i; break; case Tag_ABI_PCS_RW_data: if (in_attr[i].i == AEABI_PCS_RW_data_SBrel && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused) { _bfd_error_handler (_("error: %B: SB relative addressing conflicts with use of R9"), ibfd); result = FALSE; } /* Use the smallest value specified. */ if (in_attr[i].i < out_attr[i].i) out_attr[i].i = in_attr[i].i; break; case Tag_ABI_PCS_wchar_t: if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i && !elf_arm_tdata (obfd)->no_wchar_size_warning) { _bfd_error_handler (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"), ibfd, in_attr[i].i, out_attr[i].i); } else if (in_attr[i].i && !out_attr[i].i) out_attr[i].i = in_attr[i].i; break; case Tag_ABI_enum_size: if (in_attr[i].i != AEABI_enum_unused) { if (out_attr[i].i == AEABI_enum_unused || out_attr[i].i == AEABI_enum_forced_wide) { /* The existing object is compatible with anything. Use whatever requirements the new object has. */ out_attr[i].i = in_attr[i].i; } else if (in_attr[i].i != AEABI_enum_forced_wide && out_attr[i].i != in_attr[i].i && !elf_arm_tdata (obfd)->no_enum_size_warning) { static const char *aeabi_enum_names[] = { "", "variable-size", "32-bit", "" }; const char *in_name = in_attr[i].i < ARRAY_SIZE(aeabi_enum_names) ? aeabi_enum_names[in_attr[i].i] : ""; const char *out_name = out_attr[i].i < ARRAY_SIZE(aeabi_enum_names) ? aeabi_enum_names[out_attr[i].i] : ""; _bfd_error_handler (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"), ibfd, in_name, out_name); } } break; case Tag_ABI_VFP_args: /* Aready done. */ break; case Tag_ABI_WMMX_args: if (in_attr[i].i != out_attr[i].i) { _bfd_error_handler (_("error: %B uses iWMMXt register arguments, %B does not"), ibfd, obfd); result = FALSE; } break; case Tag_compatibility: /* Merged in target-independent code. */ break; case Tag_ABI_HardFP_use: /* This is handled along with Tag_FP_arch. */ break; case Tag_ABI_FP_16bit_format: if (in_attr[i].i != 0 && out_attr[i].i != 0) { if (in_attr[i].i != out_attr[i].i) { _bfd_error_handler (_("error: fp16 format mismatch between %B and %B"), ibfd, obfd); result = FALSE; } } if (in_attr[i].i != 0) out_attr[i].i = in_attr[i].i; break; case Tag_DIV_use: /* A value of zero on input means that the divide instruction may be used if available in the base architecture as specified via Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that the user did not want divide instructions. A value of 2 explicitly means that divide instructions were allowed in ARM and Thumb state. */ if (in_attr[i].i == out_attr[i].i) /* Do nothing. */ ; else if (elf32_arm_attributes_forbid_div (in_attr) && !elf32_arm_attributes_accept_div (out_attr)) out_attr[i].i = 1; else if (elf32_arm_attributes_forbid_div (out_attr) && elf32_arm_attributes_accept_div (in_attr)) out_attr[i].i = in_attr[i].i; else if (in_attr[i].i == 2) out_attr[i].i = in_attr[i].i; break; case Tag_MPextension_use_legacy: /* We don't output objects with Tag_MPextension_use_legacy - we move the value to Tag_MPextension_use. */ if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0) { if (in_attr[Tag_MPextension_use].i != in_attr[i].i) { _bfd_error_handler (_("%B has has both the current and legacy " "Tag_MPextension_use attributes"), ibfd); result = FALSE; } } if (in_attr[i].i > out_attr[Tag_MPextension_use].i) out_attr[Tag_MPextension_use] = in_attr[i]; break; case Tag_nodefaults: /* This tag is set if it exists, but the value is unused (and is typically zero). We don't actually need to do anything here - the merge happens automatically when the type flags are merged below. */ break; case Tag_also_compatible_with: /* Already done in Tag_CPU_arch. */ break; case Tag_conformance: /* Keep the attribute if it matches. Throw it away otherwise. No attribute means no claim to conform. */ if (!in_attr[i].s || !out_attr[i].s || strcmp (in_attr[i].s, out_attr[i].s) != 0) out_attr[i].s = NULL; break; default: result = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i); } /* If out_attr was copied from in_attr then it won't have a type yet. */ if (in_attr[i].type && !out_attr[i].type) out_attr[i].type = in_attr[i].type; } /* Merge Tag_compatibility attributes and any common GNU ones. */ if (!_bfd_elf_merge_object_attributes (ibfd, obfd)) return FALSE; /* Check for any attributes not known on ARM. */ result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd); return result; } /* Return TRUE if the two EABI versions are incompatible. */ static bfd_boolean elf32_arm_versions_compatible (unsigned iver, unsigned over) { /* v4 and v5 are the same spec before and after it was released, so allow mixing them. */ if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5) || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4)) return TRUE; return (iver == over); } /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd); /* Display the flags field. */ static bfd_boolean elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr) { FILE * file = (FILE *) ptr; unsigned long flags; BFD_ASSERT (abfd != NULL && ptr != NULL); /* Print normal ELF private data. */ _bfd_elf_print_private_bfd_data (abfd, ptr); flags = elf_elfheader (abfd)->e_flags; /* Ignore init flag - it may not be set, despite the flags field containing valid data. */ /* xgettext:c-format */ fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); switch (EF_ARM_EABI_VERSION (flags)) { case EF_ARM_EABI_UNKNOWN: /* The following flag bits are GNU extensions and not part of the official ARM ELF extended ABI. Hence they are only decoded if the EABI version is not set. */ if (flags & EF_ARM_INTERWORK) fprintf (file, _(" [interworking enabled]")); if (flags & EF_ARM_APCS_26) fprintf (file, " [APCS-26]"); else fprintf (file, " [APCS-32]"); if (flags & EF_ARM_VFP_FLOAT) fprintf (file, _(" [VFP float format]")); else if (flags & EF_ARM_MAVERICK_FLOAT) fprintf (file, _(" [Maverick float format]")); else fprintf (file, _(" [FPA float format]")); if (flags & EF_ARM_APCS_FLOAT) fprintf (file, _(" [floats passed in float registers]")); if (flags & EF_ARM_PIC) fprintf (file, _(" [position independent]")); if (flags & EF_ARM_NEW_ABI) fprintf (file, _(" [new ABI]")); if (flags & EF_ARM_OLD_ABI) fprintf (file, _(" [old ABI]")); if (flags & EF_ARM_SOFT_FLOAT) fprintf (file, _(" [software FP]")); flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT | EF_ARM_MAVERICK_FLOAT); break; case EF_ARM_EABI_VER1: fprintf (file, _(" [Version1 EABI]")); if (flags & EF_ARM_SYMSARESORTED) fprintf (file, _(" [sorted symbol table]")); else fprintf (file, _(" [unsorted symbol table]")); flags &= ~ EF_ARM_SYMSARESORTED; break; case EF_ARM_EABI_VER2: fprintf (file, _(" [Version2 EABI]")); if (flags & EF_ARM_SYMSARESORTED) fprintf (file, _(" [sorted symbol table]")); else fprintf (file, _(" [unsorted symbol table]")); if (flags & EF_ARM_DYNSYMSUSESEGIDX) fprintf (file, _(" [dynamic symbols use segment index]")); if (flags & EF_ARM_MAPSYMSFIRST) fprintf (file, _(" [mapping symbols precede others]")); flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX | EF_ARM_MAPSYMSFIRST); break; case EF_ARM_EABI_VER3: fprintf (file, _(" [Version3 EABI]")); break; case EF_ARM_EABI_VER4: fprintf (file, _(" [Version4 EABI]")); goto eabi; case EF_ARM_EABI_VER5: fprintf (file, _(" [Version5 EABI]")); if (flags & EF_ARM_ABI_FLOAT_SOFT) fprintf (file, _(" [soft-float ABI]")); if (flags & EF_ARM_ABI_FLOAT_HARD) fprintf (file, _(" [hard-float ABI]")); flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD); eabi: if (flags & EF_ARM_BE8) fprintf (file, _(" [BE8]")); if (flags & EF_ARM_LE8) fprintf (file, _(" [LE8]")); flags &= ~(EF_ARM_LE8 | EF_ARM_BE8); break; default: fprintf (file, _(" ")); break; } flags &= ~ EF_ARM_EABIMASK; if (flags & EF_ARM_RELEXEC) fprintf (file, _(" [relocatable executable]")); flags &= ~EF_ARM_RELEXEC; if (flags) fprintf (file, _("")); fputc ('\n', file); return TRUE; } static int elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type) { switch (ELF_ST_TYPE (elf_sym->st_info)) { case STT_ARM_TFUNC: return ELF_ST_TYPE (elf_sym->st_info); case STT_ARM_16BIT: /* If the symbol is not an object, return the STT_ARM_16BIT flag. This allows us to distinguish between data used by Thumb instructions and non-data (which is probably code) inside Thumb regions of an executable. */ if (type != STT_OBJECT && type != STT_TLS) return ELF_ST_TYPE (elf_sym->st_info); break; default: break; } return type; } static asection * elf32_arm_gc_mark_hook (asection *sec, struct bfd_link_info *info, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { if (h != NULL) switch (ELF32_R_TYPE (rel->r_info)) { case R_ARM_GNU_VTINHERIT: case R_ARM_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); } /* Update the got entry reference counts for the section being removed. */ static bfd_boolean elf32_arm_gc_sweep_hook (bfd * abfd, struct bfd_link_info * info, asection * sec, const Elf_Internal_Rela * relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; struct elf32_arm_link_hash_table * globals; if (bfd_link_relocatable (info)) return TRUE; globals = elf32_arm_hash_table (info); if (globals == NULL) return FALSE; elf_section_data (sec)->local_dynrel = NULL; symtab_hdr = & elf_symtab_hdr (abfd); sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); check_use_blx (globals); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) { unsigned long r_symndx; struct elf_link_hash_entry *h = NULL; struct elf32_arm_link_hash_entry *eh; int r_type; bfd_boolean call_reloc_p; bfd_boolean may_become_dynamic_p; bfd_boolean may_need_local_target_p; union gotplt_union *root_plt; struct arm_plt_info *arm_plt; r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } eh = (struct elf32_arm_link_hash_entry *) h; call_reloc_p = FALSE; may_become_dynamic_p = FALSE; may_need_local_target_p = FALSE; r_type = ELF32_R_TYPE (rel->r_info); r_type = arm_real_reloc_type (globals, r_type); switch (r_type) { case R_ARM_GOT32: case R_ARM_GOT_PREL: case R_ARM_TLS_GD32: case R_ARM_TLS_IE32: if (h != NULL) { if (h->got.refcount > 0) h->got.refcount -= 1; } else if (local_got_refcounts != NULL) { if (local_got_refcounts[r_symndx] > 0) local_got_refcounts[r_symndx] -= 1; } break; case R_ARM_TLS_LDM32: globals->tls_ldm_got.refcount -= 1; break; case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PREL31: case R_ARM_THM_CALL: case R_ARM_THM_JUMP24: case R_ARM_THM_JUMP19: call_reloc_p = TRUE; may_need_local_target_p = TRUE; break; case R_ARM_ABS12: if (!globals->vxworks_p) { may_need_local_target_p = TRUE; break; } /* Fall through. */ case R_ARM_ABS32: case R_ARM_ABS32_NOI: case R_ARM_REL32: case R_ARM_REL32_NOI: case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: /* Should the interworking branches be here also? */ if ((bfd_link_pic (info) || globals->root.is_relocatable_executable) && (sec->flags & SEC_ALLOC) != 0) { if (h == NULL && elf32_arm_howto_from_type (r_type)->pc_relative) { call_reloc_p = TRUE; may_need_local_target_p = TRUE; } else may_become_dynamic_p = TRUE; } else may_need_local_target_p = TRUE; break; default: break; } if (may_need_local_target_p && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt)) { /* If PLT refcount book-keeping is wrong and too low, we'll see a zero value (going to -1) for the root PLT reference count. */ if (root_plt->refcount >= 0) { BFD_ASSERT (root_plt->refcount != 0); root_plt->refcount -= 1; } else /* A value of -1 means the symbol has become local, forced or seeing a hidden definition. Any other negative value is an error. */ BFD_ASSERT (root_plt->refcount == -1); if (!call_reloc_p) arm_plt->noncall_refcount--; if (r_type == R_ARM_THM_CALL) arm_plt->maybe_thumb_refcount--; if (r_type == R_ARM_THM_JUMP24 || r_type == R_ARM_THM_JUMP19) arm_plt->thumb_refcount--; } if (may_become_dynamic_p) { struct elf_dyn_relocs **pp; struct elf_dyn_relocs *p; if (h != NULL) pp = &(eh->dyn_relocs); else { Elf_Internal_Sym *isym; isym = bfd_sym_from_r_symndx (&globals->sym_cache, abfd, r_symndx); if (isym == NULL) return FALSE; pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym); if (pp == NULL) return FALSE; } for (; (p = *pp) != NULL; pp = &p->next) if (p->sec == sec) { /* Everything must go for SEC. */ *pp = p->next; break; } } } return TRUE; } /* Look through the relocs for a section during the first phase. */ static bfd_boolean elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; bfd *dynobj; asection *sreloc; struct elf32_arm_link_hash_table *htab; bfd_boolean call_reloc_p; bfd_boolean may_become_dynamic_p; bfd_boolean may_need_local_target_p; unsigned long nsyms; if (bfd_link_relocatable (info)) return TRUE; BFD_ASSERT (is_arm_elf (abfd)); htab = elf32_arm_hash_table (info); if (htab == NULL) return FALSE; sreloc = NULL; /* Create dynamic sections for relocatable executables so that we can copy relocations. */ if (htab->root.is_relocatable_executable && ! htab->root.dynamic_sections_created) { if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) return FALSE; } if (htab->root.dynobj == NULL) htab->root.dynobj = abfd; if (!create_ifunc_sections (info)) return FALSE; dynobj = htab->root.dynobj; symtab_hdr = & elf_symtab_hdr (abfd); sym_hashes = elf_sym_hashes (abfd); nsyms = NUM_SHDR_ENTRIES (symtab_hdr); rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { Elf_Internal_Sym *isym; struct elf_link_hash_entry *h; struct elf32_arm_link_hash_entry *eh; unsigned long r_symndx; int r_type; r_symndx = ELF32_R_SYM (rel->r_info); r_type = ELF32_R_TYPE (rel->r_info); r_type = arm_real_reloc_type (htab, r_type); if (r_symndx >= nsyms /* PR 9934: It is possible to have relocations that do not refer to symbols, thus it is also possible to have an object file containing relocations but no symbol table. */ && (r_symndx > STN_UNDEF || nsyms > 0)) { (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd, r_symndx); return FALSE; } h = NULL; isym = NULL; if (nsyms > 0) { if (r_symndx < symtab_hdr->sh_info) { /* A local symbol. */ isym = bfd_sym_from_r_symndx (&htab->sym_cache, abfd, r_symndx); if (isym == NULL) return FALSE; } else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; /* PR15323, ref flags aren't set for references in the same object. */ h->root.non_ir_ref = 1; } } eh = (struct elf32_arm_link_hash_entry *) h; call_reloc_p = FALSE; may_become_dynamic_p = FALSE; may_need_local_target_p = FALSE; /* Could be done earlier, if h were already available. */ r_type = elf32_arm_tls_transition (info, r_type, h); switch (r_type) { case R_ARM_GOT32: case R_ARM_GOT_PREL: case R_ARM_TLS_GD32: case R_ARM_TLS_IE32: case R_ARM_TLS_GOTDESC: case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ: case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL: /* This symbol requires a global offset table entry. */ { int tls_type, old_tls_type; switch (r_type) { case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break; case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break; case R_ARM_TLS_GOTDESC: case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL: case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ: tls_type = GOT_TLS_GDESC; break; default: tls_type = GOT_NORMAL; break; } if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE)) info->flags |= DF_STATIC_TLS; if (h != NULL) { h->got.refcount++; old_tls_type = elf32_arm_hash_entry (h)->tls_type; } else { /* This is a global offset table entry for a local symbol. */ if (!elf32_arm_allocate_local_sym_info (abfd)) return FALSE; elf_local_got_refcounts (abfd)[r_symndx] += 1; old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx]; } /* If a variable is accessed with both tls methods, two slots may be created. */ if (GOT_TLS_GD_ANY_P (old_tls_type) && GOT_TLS_GD_ANY_P (tls_type)) tls_type |= old_tls_type; /* We will already have issued an error message if there is a TLS/non-TLS mismatch, based on the symbol type. So just combine any TLS types needed. */ if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL && tls_type != GOT_NORMAL) tls_type |= old_tls_type; /* If the symbol is accessed in both IE and GDESC method, we're able to relax. Turn off the GDESC flag, without messing up with any other kind of tls types that may be involved. */ if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC)) tls_type &= ~GOT_TLS_GDESC; if (old_tls_type != tls_type) { if (h != NULL) elf32_arm_hash_entry (h)->tls_type = tls_type; else elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type; } } /* Fall through. */ case R_ARM_TLS_LDM32: if (r_type == R_ARM_TLS_LDM32) htab->tls_ldm_got.refcount++; /* Fall through. */ case R_ARM_GOTOFF32: case R_ARM_GOTPC: if (htab->root.sgot == NULL && !create_got_section (htab->root.dynobj, info)) return FALSE; break; case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PREL31: case R_ARM_THM_CALL: case R_ARM_THM_JUMP24: case R_ARM_THM_JUMP19: call_reloc_p = TRUE; may_need_local_target_p = TRUE; break; case R_ARM_ABS12: /* VxWorks uses dynamic R_ARM_ABS12 relocations for ldr __GOTT_INDEX__ offsets. */ if (!htab->vxworks_p) { may_need_local_target_p = TRUE; break; } else goto jump_over; /* Fall through. */ case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: if (bfd_link_pic (info)) { (*_bfd_error_handler) (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), abfd, elf32_arm_howto_table_1[r_type].name, (h) ? h->root.root.string : "a local symbol"); bfd_set_error (bfd_error_bad_value); return FALSE; } /* Fall through. */ case R_ARM_ABS32: case R_ARM_ABS32_NOI: jump_over: if (h != NULL && bfd_link_executable (info)) { h->pointer_equality_needed = 1; } /* Fall through. */ case R_ARM_REL32: case R_ARM_REL32_NOI: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: /* Should the interworking branches be listed here? */ if ((bfd_link_pic (info) || htab->root.is_relocatable_executable) && (sec->flags & SEC_ALLOC) != 0) { if (h == NULL && elf32_arm_howto_from_type (r_type)->pc_relative) { /* In shared libraries and relocatable executables, we treat local relative references as calls; see the related SYMBOL_CALLS_LOCAL code in allocate_dynrelocs. */ call_reloc_p = TRUE; may_need_local_target_p = TRUE; } else /* We are creating a shared library or relocatable executable, and this is a reloc against a global symbol, or a non-PC-relative reloc against a local symbol. We may need to copy the reloc into the output. */ may_become_dynamic_p = TRUE; } else may_need_local_target_p = TRUE; break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_ARM_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_ARM_GNU_VTENTRY: BFD_ASSERT (h != NULL); if (h != NULL && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) return FALSE; break; } if (h != NULL) { if (call_reloc_p) /* We may need a .plt entry if the function this reloc refers to is in a different object, regardless of the symbol's type. We can't tell for sure yet, because something later might force the symbol local. */ h->needs_plt = 1; else if (may_need_local_target_p) /* If this reloc is in a read-only section, we might need a copy reloc. We can't check reliably at this stage whether the section is read-only, as input sections have not yet been mapped to output sections. Tentatively set the flag for now, and correct in adjust_dynamic_symbol. */ h->non_got_ref = 1; } if (may_need_local_target_p && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)) { union gotplt_union *root_plt; struct arm_plt_info *arm_plt; struct arm_local_iplt_info *local_iplt; if (h != NULL) { root_plt = &h->plt; arm_plt = &eh->plt; } else { local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx); if (local_iplt == NULL) return FALSE; root_plt = &local_iplt->root; arm_plt = &local_iplt->arm; } /* If the symbol is a function that doesn't bind locally, this relocation will need a PLT entry. */ if (root_plt->refcount != -1) root_plt->refcount += 1; if (!call_reloc_p) arm_plt->noncall_refcount++; /* It's too early to use htab->use_blx here, so we have to record possible blx references separately from relocs that definitely need a thumb stub. */ if (r_type == R_ARM_THM_CALL) arm_plt->maybe_thumb_refcount += 1; if (r_type == R_ARM_THM_JUMP24 || r_type == R_ARM_THM_JUMP19) arm_plt->thumb_refcount += 1; } if (may_become_dynamic_p) { struct elf_dyn_relocs *p, **head; /* Create a reloc section in dynobj. */ if (sreloc == NULL) { sreloc = _bfd_elf_make_dynamic_reloc_section (sec, dynobj, 2, abfd, ! htab->use_rel); if (sreloc == NULL) return FALSE; /* BPABI objects never have dynamic relocations mapped. */ if (htab->symbian_p) { flagword flags; flags = bfd_get_section_flags (dynobj, sreloc); flags &= ~(SEC_LOAD | SEC_ALLOC); bfd_set_section_flags (dynobj, sreloc, flags); } } /* If this is a global symbol, count the number of relocations we need for this symbol. */ if (h != NULL) head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs; else { head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym); if (head == NULL) return FALSE; } p = *head; if (p == NULL || p->sec != sec) { bfd_size_type amt = sizeof *p; p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt); if (p == NULL) return FALSE; p->next = *head; *head = p; p->sec = sec; p->count = 0; p->pc_count = 0; } if (elf32_arm_howto_from_type (r_type)->pc_relative) p->pc_count += 1; p->count += 1; } } return TRUE; } /* Unwinding tables are not referenced directly. This pass marks them as required if the corresponding code section is marked. */ static bfd_boolean elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info, elf_gc_mark_hook_fn gc_mark_hook) { bfd *sub; Elf_Internal_Shdr **elf_shdrp; bfd_boolean again; _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); /* Marking EH data may cause additional code sections to be marked, requiring multiple passes. */ again = TRUE; while (again) { again = FALSE; for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) { asection *o; if (! is_arm_elf (sub)) continue; elf_shdrp = elf_elfsections (sub); for (o = sub->sections; o != NULL; o = o->next) { Elf_Internal_Shdr *hdr; hdr = &elf_section_data (o)->this_hdr; if (hdr->sh_type == SHT_ARM_EXIDX && hdr->sh_link && hdr->sh_link < elf_numsections (sub) && !o->gc_mark && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark) { again = TRUE; if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) return FALSE; } } } } return TRUE; } /* Treat mapping symbols as special target symbols. */ static bfd_boolean elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym) { return bfd_is_arm_special_symbol_name (sym->name, BFD_ARM_SPECIAL_SYM_TYPE_ANY); } /* This is a copy of elf_find_function() from elf.c except that ARM mapping symbols are ignored when looking for function names and STT_ARM_TFUNC is considered to a function type. */ static bfd_boolean arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED, asymbol ** symbols, asection * section, bfd_vma offset, const char ** filename_ptr, const char ** functionname_ptr) { const char * filename = NULL; asymbol * func = NULL; bfd_vma low_func = 0; asymbol ** p; for (p = symbols; *p != NULL; p++) { elf_symbol_type *q; q = (elf_symbol_type *) *p; switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) { default: break; case STT_FILE: filename = bfd_asymbol_name (&q->symbol); break; case STT_FUNC: case STT_ARM_TFUNC: case STT_NOTYPE: /* Skip mapping symbols. */ if ((q->symbol.flags & BSF_LOCAL) && bfd_is_arm_special_symbol_name (q->symbol.name, BFD_ARM_SPECIAL_SYM_TYPE_ANY)) continue; /* Fall through. */ if (bfd_get_section (&q->symbol) == section && q->symbol.value >= low_func && q->symbol.value <= offset) { func = (asymbol *) q; low_func = q->symbol.value; } break; } } if (func == NULL) return FALSE; if (filename_ptr) *filename_ptr = filename; if (functionname_ptr) *functionname_ptr = bfd_asymbol_name (func); return TRUE; } /* Find the nearest line to a particular section and offset, for error reporting. This code is a duplicate of the code in elf.c, except that it uses arm_elf_find_function. */ static bfd_boolean elf32_arm_find_nearest_line (bfd * abfd, asymbol ** symbols, asection * section, bfd_vma offset, const char ** filename_ptr, const char ** functionname_ptr, unsigned int * line_ptr, unsigned int * discriminator_ptr) { bfd_boolean found = FALSE; if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, filename_ptr, functionname_ptr, line_ptr, discriminator_ptr, dwarf_debug_sections, 0, & elf_tdata (abfd)->dwarf2_find_line_info)) { if (!*functionname_ptr) arm_elf_find_function (abfd, symbols, section, offset, *filename_ptr ? NULL : filename_ptr, functionname_ptr); return TRUE; } /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses DWARF1. */ if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, & found, filename_ptr, functionname_ptr, line_ptr, & elf_tdata (abfd)->line_info)) return FALSE; if (found && (*functionname_ptr || *line_ptr)) return TRUE; if (symbols == NULL) return FALSE; if (! arm_elf_find_function (abfd, symbols, section, offset, filename_ptr, functionname_ptr)) return FALSE; *line_ptr = 0; return TRUE; } static bfd_boolean elf32_arm_find_inliner_info (bfd * abfd, const char ** filename_ptr, const char ** functionname_ptr, unsigned int * line_ptr) { bfd_boolean found; found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, functionname_ptr, line_ptr, & elf_tdata (abfd)->dwarf2_find_line_info); return found; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bfd_boolean elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info, struct elf_link_hash_entry * h) { bfd * dynobj; asection * s; struct elf32_arm_link_hash_entry * eh; struct elf32_arm_link_hash_table *globals; globals = elf32_arm_hash_table (info); if (globals == NULL) return FALSE; dynobj = elf_hash_table (info)->dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && (h->needs_plt || h->type == STT_GNU_IFUNC || h->u.weakdef != NULL || (h->def_dynamic && h->ref_regular && !h->def_regular))); eh = (struct elf32_arm_link_hash_entry *) h; /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later, when we know the address of the .got section. */ if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) { /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the symbol binds locally. */ if (h->plt.refcount <= 0 || (h->type != STT_GNU_IFUNC && (SYMBOL_CALLS_LOCAL (info, h) || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT && h->root.type == bfd_link_hash_undefweak)))) { /* This case can occur if we saw a PLT32 reloc in an input file, but the symbol was never referred to by a dynamic object, or if all references were garbage collected. In such a case, we don't actually need to build a procedure linkage table, and we can just do a PC24 reloc instead. */ h->plt.offset = (bfd_vma) -1; eh->plt.thumb_refcount = 0; eh->plt.maybe_thumb_refcount = 0; eh->plt.noncall_refcount = 0; h->needs_plt = 0; } return TRUE; } else { /* It's possible that we incorrectly decided a .plt reloc was needed for an R_ARM_PC24 or similar reloc to a non-function sym in check_relocs. We can't decide accurately between function and non-function syms in check-relocs; Objects loaded later in the link may change h->type. So fix it now. */ h->plt.offset = (bfd_vma) -1; eh->plt.thumb_refcount = 0; eh->plt.maybe_thumb_refcount = 0; eh->plt.noncall_refcount = 0; } /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->u.weakdef != NULL) { BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined || h->u.weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->u.weakdef->root.u.def.section; h->root.u.def.value = h->u.weakdef->root.u.def.value; return TRUE; } /* If there are no non-GOT references, we do not need a copy relocation. */ if (!h->non_got_ref) return TRUE; /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. Relocatable executables can reference data in shared objects directly, so we don't need to do anything here. */ if (bfd_link_pic (info) || globals->root.is_relocatable_executable) return TRUE; /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ s = bfd_get_linker_section (dynobj, ".dynbss"); BFD_ASSERT (s != NULL); /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rel(a).bss section we are going to use. */ if (info->nocopyreloc == 0 && (h->root.u.def.section->flags & SEC_ALLOC) != 0 /* PR 16177: A copy is only needed if the input section is readonly. */ && (h->root.u.def.section->flags & SEC_READONLY) == 0 && h->size != 0) { asection *srel; srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss")); elf32_arm_allocate_dynrelocs (info, srel, 1); h->needs_copy = 1; } return _bfd_elf_adjust_dynamic_copy (info, h, s); } /* Allocate space in .plt, .got and associated reloc sections for dynamic relocs. */ static bfd_boolean allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf) { struct bfd_link_info *info; struct elf32_arm_link_hash_table *htab; struct elf32_arm_link_hash_entry *eh; struct elf_dyn_relocs *p; if (h->root.type == bfd_link_hash_indirect) return TRUE; eh = (struct elf32_arm_link_hash_entry *) h; info = (struct bfd_link_info *) inf; htab = elf32_arm_hash_table (info); if (htab == NULL) return FALSE; if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC) && h->plt.refcount > 0) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } /* If the call in the PLT entry binds locally, the associated GOT entry should use an R_ARM_IRELATIVE relocation instead of the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather than the .plt section. */ if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h)) { eh->is_iplt = 1; if (eh->plt.noncall_refcount == 0 && SYMBOL_REFERENCES_LOCAL (info, h)) /* All non-call references can be resolved directly. This means that they can (and in some cases, must) resolve directly to the run-time target, rather than to the PLT. That in turns means that any .got entry would be equal to the .igot.plt entry, so there's no point having both. */ h->got.refcount = 0; } if (bfd_link_pic (info) || eh->is_iplt || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) { elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt); /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (! bfd_link_pic (info) && !h->def_regular) { h->root.u.def.section = htab->root.splt; h->root.u.def.value = h->plt.offset; /* Make sure the function is not marked as Thumb, in case it is the target of an ABS32 relocation, which will point to the PLT entry. */ h->target_internal = ST_BRANCH_TO_ARM; } /* VxWorks executables have a second set of relocations for each PLT entry. They go in a separate relocation section, which is processed by the kernel loader. */ if (htab->vxworks_p && !bfd_link_pic (info)) { /* There is a relocation for the initial PLT entry: an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */ if (h->plt.offset == htab->plt_header_size) elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1); /* There are two extra relocations for each subsequent PLT entry: an R_ARM_32 relocation for the GOT entry, and an R_ARM_32 relocation for the PLT entry. */ elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2); } } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } eh = (struct elf32_arm_link_hash_entry *) h; eh->tlsdesc_got = (bfd_vma) -1; if (h->got.refcount > 0) { asection *s; bfd_boolean dyn; int tls_type = elf32_arm_hash_entry (h)->tls_type; int indx; /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } if (!htab->symbian_p) { s = htab->root.sgot; h->got.offset = s->size; if (tls_type == GOT_UNKNOWN) abort (); if (tls_type == GOT_NORMAL) /* Non-TLS symbols need one GOT slot. */ s->size += 4; else { if (tls_type & GOT_TLS_GDESC) { /* R_ARM_TLS_DESC needs 2 GOT slots. */ eh->tlsdesc_got = (htab->root.sgotplt->size - elf32_arm_compute_jump_table_size (htab)); htab->root.sgotplt->size += 8; h->got.offset = (bfd_vma) -2; /* plt.got_offset needs to know there's a TLS_DESC reloc in the middle of .got.plt. */ htab->num_tls_desc++; } if (tls_type & GOT_TLS_GD) { /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If the symbol is both GD and GDESC, got.offset may have been overwritten. */ h->got.offset = s->size; s->size += 8; } if (tls_type & GOT_TLS_IE) /* R_ARM_TLS_IE32 needs one GOT slot. */ s->size += 4; } dyn = htab->root.dynamic_sections_created; indx = 0; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h))) indx = h->dynindx; if (tls_type != GOT_NORMAL && (bfd_link_pic (info) || indx != 0) && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) { if (tls_type & GOT_TLS_IE) elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); if (tls_type & GOT_TLS_GD) elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); if (tls_type & GOT_TLS_GDESC) { elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); /* GDESC needs a trampoline to jump to. */ htab->tls_trampoline = -1; } /* Only GD needs it. GDESC just emits one relocation per 2 entries. */ if ((tls_type & GOT_TLS_GD) && indx != 0) elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); } else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h)) { if (htab->root.dynamic_sections_created) /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */ elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); } else if (h->type == STT_GNU_IFUNC && eh->plt.noncall_refcount == 0) /* No non-call references resolve the STT_GNU_IFUNC's PLT entry; they all resolve dynamically instead. Reserve room for the GOT entry's R_ARM_IRELATIVE relocation. */ elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1); else if (bfd_link_pic (info) && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */ elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); } } else h->got.offset = (bfd_vma) -1; /* Allocate stubs for exported Thumb functions on v4t. */ if (!htab->use_blx && h->dynindx != -1 && h->def_regular && h->target_internal == ST_BRANCH_TO_THUMB && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) { struct elf_link_hash_entry * th; struct bfd_link_hash_entry * bh; struct elf_link_hash_entry * myh; char name[1024]; asection *s; bh = NULL; /* Create a new symbol to regist the real location of the function. */ s = h->root.u.def.section; sprintf (name, "__real_%s", h->root.root.string); _bfd_generic_link_add_one_symbol (info, s->owner, name, BSF_GLOBAL, s, h->root.u.def.value, NULL, TRUE, FALSE, &bh); myh = (struct elf_link_hash_entry *) bh; myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); myh->forced_local = 1; myh->target_internal = ST_BRANCH_TO_THUMB; eh->export_glue = myh; th = record_arm_to_thumb_glue (info, h); /* Point the symbol at the stub. */ h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC); h->target_internal = ST_BRANCH_TO_ARM; h->root.u.def.section = th->root.u.def.section; h->root.u.def.value = th->root.u.def.value & ~1; } if (eh->dyn_relocs == NULL) return TRUE; /* In the shared -Bsymbolic case, discard space allocated for dynamic pc-relative relocs against symbols which turn out to be defined in regular objects. For the normal shared case, discard space for pc-relative relocs that have become local due to symbol visibility changes. */ if (bfd_link_pic (info) || htab->root.is_relocatable_executable) { /* Relocs that use pc_count are PC-relative forms, which will appear on something like ".long foo - ." or "movw REG, foo - .". We want calls to protected symbols to resolve directly to the function rather than going via the plt. If people want function pointer comparisons to work as expected then they should avoid writing assembly like ".long foo - .". */ if (SYMBOL_CALLS_LOCAL (info, h)) { struct elf_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) { p->count -= p->pc_count; p->pc_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } if (htab->vxworks_p) { struct elf_dyn_relocs **pp; for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) { if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) *pp = p->next; else pp = &p->next; } } /* Also discard relocs on undefined weak syms with non-default visibility. */ if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak) { if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) eh->dyn_relocs = NULL; /* Make sure undefined weak symbols are output as a dynamic symbol in PIEs. */ else if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } } else if (htab->root.is_relocatable_executable && h->dynindx == -1 && h->root.type == bfd_link_hash_new) { /* Output absolute symbols so that we can create relocations against them. For normal symbols we output a relocation against the section that contains them. */ if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } } else { /* For the non-shared case, discard space for relocs against symbols which turn out to need copy relocs or are not dynamic. */ if (!h->non_got_ref && ((h->def_dynamic && !h->def_regular) || (htab->root.dynamic_sections_created && (h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_undefined)))) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } /* If that succeeded, we know we'll be keeping all the relocs. */ if (h->dynindx != -1) goto keep; } eh->dyn_relocs = NULL; keep: ; } /* Finally, allocate space. */ for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *sreloc = elf_section_data (p->sec)->sreloc; if (h->type == STT_GNU_IFUNC && eh->plt.noncall_refcount == 0 && SYMBOL_REFERENCES_LOCAL (info, h)) elf32_arm_allocate_irelocs (info, sreloc, p->count); else elf32_arm_allocate_dynrelocs (info, sreloc, p->count); } return TRUE; } /* Find any dynamic relocs that apply to read-only sections. */ static bfd_boolean elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf) { struct elf32_arm_link_hash_entry * eh; struct elf_dyn_relocs * p; eh = (struct elf32_arm_link_hash_entry *) h; for (p = eh->dyn_relocs; p != NULL; p = p->next) { asection *s = p->sec; if (s != NULL && (s->flags & SEC_READONLY) != 0) { struct bfd_link_info *info = (struct bfd_link_info *) inf; info->flags |= DF_TEXTREL; /* Not an error, just cut short the traversal. */ return FALSE; } } return TRUE; } void bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info, int byteswap_code) { struct elf32_arm_link_hash_table *globals; globals = elf32_arm_hash_table (info); if (globals == NULL) return; globals->byteswap_code = byteswap_code; } /* Set the sizes of the dynamic sections. */ static bfd_boolean elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info * info) { bfd * dynobj; asection * s; bfd_boolean plt; bfd_boolean relocs; bfd *ibfd; struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); if (htab == NULL) return FALSE; dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); check_use_blx (htab); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (bfd_link_executable (info) && !info->nointerp) { s = bfd_get_linker_section (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } /* Set up .got offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; struct arm_local_iplt_info **local_iplt_ptr, *local_iplt; char *local_tls_type; bfd_vma *local_tlsdesc_gotent; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srel; bfd_boolean is_vxworks = htab->vxworks_p; unsigned int symndx; if (! is_arm_elf (ibfd)) continue; for (s = ibfd->sections; s != NULL; s = s->next) { struct elf_dyn_relocs *p; for (p = (struct elf_dyn_relocs *) elf_section_data (s)->local_dynrel; p != NULL; p = p->next) { if (!bfd_is_abs_section (p->sec) && bfd_is_abs_section (p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (is_vxworks && strcmp (p->sec->output_section->name, ".tls_vars") == 0) { /* Relocations in vxworks .tls_vars sections are handled specially by the loader. */ } else if (p->count != 0) { srel = elf_section_data (p->sec)->sreloc; elf32_arm_allocate_dynrelocs (info, srel, p->count); if ((p->sec->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; } } } local_got = elf_local_got_refcounts (ibfd); if (!local_got) continue; symtab_hdr = & elf_symtab_hdr (ibfd); locsymcount = symtab_hdr->sh_info; end_local_got = local_got + locsymcount; local_iplt_ptr = elf32_arm_local_iplt (ibfd); local_tls_type = elf32_arm_local_got_tls_type (ibfd); local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd); symndx = 0; s = htab->root.sgot; srel = htab->root.srelgot; for (; local_got < end_local_got; ++local_got, ++local_iplt_ptr, ++local_tls_type, ++local_tlsdesc_gotent, ++symndx) { *local_tlsdesc_gotent = (bfd_vma) -1; local_iplt = *local_iplt_ptr; if (local_iplt != NULL) { struct elf_dyn_relocs *p; if (local_iplt->root.refcount > 0) { elf32_arm_allocate_plt_entry (info, TRUE, &local_iplt->root, &local_iplt->arm); if (local_iplt->arm.noncall_refcount == 0) /* All references to the PLT are calls, so all non-call references can resolve directly to the run-time target. This means that the .got entry would be the same as the .igot.plt entry, so there's no point creating both. */ *local_got = 0; } else { BFD_ASSERT (local_iplt->arm.noncall_refcount == 0); local_iplt->root.offset = (bfd_vma) -1; } for (p = local_iplt->dyn_relocs; p != NULL; p = p->next) { asection *psrel; psrel = elf_section_data (p->sec)->sreloc; if (local_iplt->arm.noncall_refcount == 0) elf32_arm_allocate_irelocs (info, psrel, p->count); else elf32_arm_allocate_dynrelocs (info, psrel, p->count); } } if (*local_got > 0) { Elf_Internal_Sym *isym; *local_got = s->size; if (*local_tls_type & GOT_TLS_GD) /* TLS_GD relocs need an 8-byte structure in the GOT. */ s->size += 8; if (*local_tls_type & GOT_TLS_GDESC) { *local_tlsdesc_gotent = htab->root.sgotplt->size - elf32_arm_compute_jump_table_size (htab); htab->root.sgotplt->size += 8; *local_got = (bfd_vma) -2; /* plt.got_offset needs to know there's a TLS_DESC reloc in the middle of .got.plt. */ htab->num_tls_desc++; } if (*local_tls_type & GOT_TLS_IE) s->size += 4; if (*local_tls_type & GOT_NORMAL) { /* If the symbol is both GD and GDESC, *local_got may have been overwritten. */ *local_got = s->size; s->size += 4; } isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx); if (isym == NULL) return FALSE; /* If all references to an STT_GNU_IFUNC PLT are calls, then all non-call references, including this GOT entry, resolve directly to the run-time target. */ if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC && (local_iplt == NULL || local_iplt->arm.noncall_refcount == 0)) elf32_arm_allocate_irelocs (info, srel, 1); else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC) { if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)) || *local_tls_type & GOT_TLS_GD) elf32_arm_allocate_dynrelocs (info, srel, 1); if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC) { elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); htab->tls_trampoline = -1; } } } else *local_got = (bfd_vma) -1; } } if (htab->tls_ldm_got.refcount > 0) { /* Allocate two GOT entries and one dynamic relocation (if necessary) for R_ARM_TLS_LDM32 relocations. */ htab->tls_ldm_got.offset = htab->root.sgot->size; htab->root.sgot->size += 8; if (bfd_link_pic (info)) elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); } else htab->tls_ldm_got.offset = -1; /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info); /* Here we rummage through the found bfds to collect glue information. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) { if (! is_arm_elf (ibfd)) continue; /* Initialise mapping tables for code/data. */ bfd_elf32_arm_init_maps (ibfd); if (!bfd_elf32_arm_process_before_allocation (ibfd, info) || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info) || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info)) /* xgettext:c-format */ _bfd_error_handler (_("Errors encountered processing file %s"), ibfd->filename); } /* Allocate space for the glue sections now that we've sized them. */ bfd_elf32_arm_allocate_interworking_sections (info); /* For every jump slot reserved in the sgotplt, reloc_count is incremented. However, when we reserve space for TLS descriptors, it's not incremented, so in order to compute the space reserved for them, it suffices to multiply the reloc count by the jump slot size. */ if (htab->root.srelplt) htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab); if (htab->tls_trampoline) { if (htab->root.splt->size == 0) htab->root.splt->size += htab->plt_header_size; htab->tls_trampoline = htab->root.splt->size; htab->root.splt->size += htab->plt_entry_size; /* If we're not using lazy TLS relocations, don't generate the PLT and GOT entries they require. */ if (!(info->flags & DF_BIND_NOW)) { htab->dt_tlsdesc_got = htab->root.sgot->size; htab->root.sgot->size += 4; htab->dt_tlsdesc_plt = htab->root.splt->size; htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline); } } /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ plt = FALSE; relocs = FALSE; for (s = dynobj->sections; s != NULL; s = s->next) { const char * name; if ((s->flags & SEC_LINKER_CREATED) == 0) continue; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, s); if (s == htab->root.splt) { /* Remember whether there is a PLT. */ plt = s->size != 0; } else if (CONST_STRNEQ (name, ".rel")) { if (s->size != 0) { /* Remember whether there are any reloc sections other than .rel(a).plt and .rela.plt.unloaded. */ if (s != htab->root.srelplt && s != htab->srelplt2) relocs = TRUE; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } } else if (s != htab->root.sgot && s != htab->root.sgotplt && s != htab->root.iplt && s != htab->root.igotplt && s != htab->sdynbss) { /* It's not one of our sections, so don't allocate space. */ continue; } if (s->size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rel(a).bss and .rel(a).plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. */ s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size); if (s->contents == NULL) return FALSE; } if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in elf32_arm_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (bfd_link_executable (info)) { if (!add_dynamic_entry (DT_DEBUG, 0)) return FALSE; } if (plt) { if ( !add_dynamic_entry (DT_PLTGOT, 0) || !add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, htab->use_rel ? DT_REL : DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0)) return FALSE; if (htab->dt_tlsdesc_plt && (!add_dynamic_entry (DT_TLSDESC_PLT,0) || !add_dynamic_entry (DT_TLSDESC_GOT,0))) return FALSE; } if (relocs) { if (htab->use_rel) { if (!add_dynamic_entry (DT_REL, 0) || !add_dynamic_entry (DT_RELSZ, 0) || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab))) return FALSE; } else { if (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab))) return FALSE; } } /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ if ((info->flags & DF_TEXTREL) == 0) elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs, info); if ((info->flags & DF_TEXTREL) != 0) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; } if (htab->vxworks_p && !elf_vxworks_add_dynamic_entries (output_bfd, info)) return FALSE; } #undef add_dynamic_entry return TRUE; } /* Size sections even though they're not dynamic. We use it to setup _TLS_MODULE_BASE_, if needed. */ static bfd_boolean elf32_arm_always_size_sections (bfd *output_bfd, struct bfd_link_info *info) { asection *tls_sec; if (bfd_link_relocatable (info)) return TRUE; tls_sec = elf_hash_table (info)->tls_sec; if (tls_sec) { struct elf_link_hash_entry *tlsbase; tlsbase = elf_link_hash_lookup (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE); if (tlsbase) { struct bfd_link_hash_entry *bh = NULL; const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); if (!(_bfd_generic_link_add_one_symbol (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, tls_sec, 0, NULL, FALSE, bed->collect, &bh))) return FALSE; tlsbase->type = STT_TLS; tlsbase = (struct elf_link_hash_entry *)bh; tlsbase->def_regular = 1; tlsbase->other = STV_HIDDEN; (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); } } return TRUE; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bfd_boolean elf32_arm_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info * info, struct elf_link_hash_entry * h, Elf_Internal_Sym * sym) { struct elf32_arm_link_hash_table *htab; struct elf32_arm_link_hash_entry *eh; htab = elf32_arm_hash_table (info); if (htab == NULL) return FALSE; eh = (struct elf32_arm_link_hash_entry *) h; if (h->plt.offset != (bfd_vma) -1) { if (!eh->is_iplt) { BFD_ASSERT (h->dynindx != -1); if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt, h->dynindx, 0)) return FALSE; } if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. */ sym->st_shndx = SHN_UNDEF; /* If the symbol is weak we need to clear the value. Otherwise, the PLT entry would provide a definition for the symbol even if the symbol wasn't defined anywhere, and so the symbol would never be NULL. Leave the value if there were any relocations where pointer equality matters (this is a clue for the dynamic linker, to make function pointer comparisons work between an application and shared library). */ if (!h->ref_regular_nonweak || !h->pointer_equality_needed) sym->st_value = 0; } else if (eh->is_iplt && eh->plt.noncall_refcount != 0) { /* At least one non-call relocation references this .iplt entry, so the .iplt entry is the function's canonical address. */ sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC); sym->st_target_internal = ST_BRANCH_TO_ARM; sym->st_shndx = (_bfd_elf_section_from_bfd_section (output_bfd, htab->root.iplt->output_section)); sym->st_value = (h->plt.offset + htab->root.iplt->output_section->vma + htab->root.iplt->output_offset); } } if (h->needs_copy) { asection * s; Elf_Internal_Rela rel; /* This symbol needs a copy reloc. Set it up. */ BFD_ASSERT (h->dynindx != -1 && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)); s = htab->srelbss; BFD_ASSERT (s != NULL); rel.r_addend = 0; rel.r_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY); elf32_arm_add_dynreloc (output_bfd, info, s, &rel); } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative to the ".got" section. */ if (h == htab->root.hdynamic || (!htab->vxworks_p && h == htab->root.hgot)) sym->st_shndx = SHN_ABS; return TRUE; } static void arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd, void *contents, const unsigned long *template, unsigned count) { unsigned ix; for (ix = 0; ix != count; ix++) { unsigned long insn = template[ix]; /* Emit mov pc,rx if bx is not permitted. */ if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10) insn = (insn & 0xf000000f) | 0x01a0f000; put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4); } } /* Install the special first PLT entry for elf32-arm-nacl. Unlike other variants, NaCl needs this entry in a static executable's .iplt too. When we're handling that case, GOT_DISPLACEMENT is zero. For .iplt really only the last bundle is useful, and .iplt could have a shorter first entry, with each individual PLT entry's relative branch calculated differently so it targets the last bundle instead of the instruction before it (labelled .Lplt_tail above). But it's simpler to keep the size and layout of PLT0 consistent with the dynamic case, at the cost of some dead code at the start of .iplt and the one dead store to the stack at the start of .Lplt_tail. */ static void arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd, asection *plt, bfd_vma got_displacement) { unsigned int i; put_arm_insn (htab, output_bfd, elf32_arm_nacl_plt0_entry[0] | arm_movw_immediate (got_displacement), plt->contents + 0); put_arm_insn (htab, output_bfd, elf32_arm_nacl_plt0_entry[1] | arm_movt_immediate (got_displacement), plt->contents + 4); for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i) put_arm_insn (htab, output_bfd, elf32_arm_nacl_plt0_entry[i], plt->contents + (i * 4)); } /* Finish up the dynamic sections. */ static bfd_boolean elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info) { bfd * dynobj; asection * sgot; asection * sdyn; struct elf32_arm_link_hash_table *htab; htab = elf32_arm_hash_table (info); if (htab == NULL) return FALSE; dynobj = elf_hash_table (info)->dynobj; sgot = htab->root.sgotplt; /* A broken linker script might have discarded the dynamic sections. Catch this here so that we do not seg-fault later on. */ if (sgot != NULL && bfd_is_abs_section (sgot->output_section)) return FALSE; sdyn = bfd_get_linker_section (dynobj, ".dynamic"); if (elf_hash_table (info)->dynamic_sections_created) { asection *splt; Elf32_External_Dyn *dyncon, *dynconend; splt = htab->root.splt; BFD_ASSERT (splt != NULL && sdyn != NULL); BFD_ASSERT (htab->symbian_p || sgot != NULL); dyncon = (Elf32_External_Dyn *) sdyn->contents; dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; const char * name; asection * s; bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { unsigned int type; default: if (htab->vxworks_p && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_HASH: name = ".hash"; goto get_vma_if_bpabi; case DT_STRTAB: name = ".dynstr"; goto get_vma_if_bpabi; case DT_SYMTAB: name = ".dynsym"; goto get_vma_if_bpabi; case DT_VERSYM: name = ".gnu.version"; goto get_vma_if_bpabi; case DT_VERDEF: name = ".gnu.version_d"; goto get_vma_if_bpabi; case DT_VERNEED: name = ".gnu.version_r"; goto get_vma_if_bpabi; case DT_PLTGOT: name = ".got"; goto get_vma; case DT_JMPREL: name = RELOC_SECTION (htab, ".plt"); get_vma: s = bfd_get_section_by_name (output_bfd, name); if (s == NULL) { /* PR ld/14397: Issue an error message if a required section is missing. */ (*_bfd_error_handler) (_("error: required section '%s' not found in the linker script"), name); bfd_set_error (bfd_error_invalid_operation); return FALSE; } if (!htab->symbian_p) dyn.d_un.d_ptr = s->vma; else /* In the BPABI, tags in the PT_DYNAMIC section point at the file offset, not the memory address, for the convenience of the post linker. */ dyn.d_un.d_ptr = s->filepos; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; get_vma_if_bpabi: if (htab->symbian_p) goto get_vma; break; case DT_PLTRELSZ: s = htab->root.srelplt; BFD_ASSERT (s != NULL); dyn.d_un.d_val = s->size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_RELSZ: case DT_RELASZ: if (!htab->symbian_p) { /* My reading of the SVR4 ABI indicates that the procedure linkage table relocs (DT_JMPREL) should be included in the overall relocs (DT_REL). This is what Solaris does. However, UnixWare can not handle that case. Therefore, we override the DT_RELSZ entry here to make it not include the JMPREL relocs. Since the linker script arranges for .rel(a).plt to follow all other relocation sections, we don't have to worry about changing the DT_REL entry. */ s = htab->root.srelplt; if (s != NULL) dyn.d_un.d_val -= s->size; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; } /* Fall through. */ case DT_REL: case DT_RELA: /* In the BPABI, the DT_REL tag must point at the file offset, not the VMA, of the first relocation section. So, we use code similar to that in elflink.c, but do not check for SHF_ALLOC on the relcoation section, since relocations sections are never allocated under the BPABI. The comments above about Unixware notwithstanding, we include all of the relocations here. */ if (htab->symbian_p) { unsigned int i; type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) ? SHT_REL : SHT_RELA); dyn.d_un.d_val = 0; for (i = 1; i < elf_numsections (output_bfd); i++) { Elf_Internal_Shdr *hdr = elf_elfsections (output_bfd)[i]; if (hdr->sh_type == type) { if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) dyn.d_un.d_val += hdr->sh_size; else if ((ufile_ptr) hdr->sh_offset <= dyn.d_un.d_val - 1) dyn.d_un.d_val = hdr->sh_offset; } } bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); } break; case DT_TLSDESC_PLT: s = htab->root.splt; dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset + htab->dt_tlsdesc_plt); bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_TLSDESC_GOT: s = htab->root.sgot; dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset + htab->dt_tlsdesc_got); bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); break; /* Set the bottom bit of DT_INIT/FINI if the corresponding function is Thumb. */ case DT_INIT: name = info->init_function; goto get_sym; case DT_FINI: name = info->fini_function; get_sym: /* If it wasn't set by elf_bfd_final_link then there is nothing to adjust. */ if (dyn.d_un.d_val != 0) { struct elf_link_hash_entry * eh; eh = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE); if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB) { dyn.d_un.d_val |= 1; bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); } } break; } } /* Fill in the first entry in the procedure linkage table. */ if (splt->size > 0 && htab->plt_header_size) { const bfd_vma *plt0_entry; bfd_vma got_address, plt_address, got_displacement; /* Calculate the addresses of the GOT and PLT. */ got_address = sgot->output_section->vma + sgot->output_offset; plt_address = splt->output_section->vma + splt->output_offset; if (htab->vxworks_p) { /* The VxWorks GOT is relocated by the dynamic linker. Therefore, we must emit relocations rather than simply computing the values now. */ Elf_Internal_Rela rel; plt0_entry = elf32_arm_vxworks_exec_plt0_entry; put_arm_insn (htab, output_bfd, plt0_entry[0], splt->contents + 0); put_arm_insn (htab, output_bfd, plt0_entry[1], splt->contents + 4); put_arm_insn (htab, output_bfd, plt0_entry[2], splt->contents + 8); bfd_put_32 (output_bfd, got_address, splt->contents + 12); /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */ rel.r_offset = plt_address + 12; rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); rel.r_addend = 0; SWAP_RELOC_OUT (htab) (output_bfd, &rel, htab->srelplt2->contents); } else if (htab->nacl_p) arm_nacl_put_plt0 (htab, output_bfd, splt, got_address + 8 - (plt_address + 16)); else if (using_thumb_only (htab)) { got_displacement = got_address - (plt_address + 12); plt0_entry = elf32_thumb2_plt0_entry; put_arm_insn (htab, output_bfd, plt0_entry[0], splt->contents + 0); put_arm_insn (htab, output_bfd, plt0_entry[1], splt->contents + 4); put_arm_insn (htab, output_bfd, plt0_entry[2], splt->contents + 8); bfd_put_32 (output_bfd, got_displacement, splt->contents + 12); } else { got_displacement = got_address - (plt_address + 16); plt0_entry = elf32_arm_plt0_entry; put_arm_insn (htab, output_bfd, plt0_entry[0], splt->contents + 0); put_arm_insn (htab, output_bfd, plt0_entry[1], splt->contents + 4); put_arm_insn (htab, output_bfd, plt0_entry[2], splt->contents + 8); put_arm_insn (htab, output_bfd, plt0_entry[3], splt->contents + 12); #ifdef FOUR_WORD_PLT /* The displacement value goes in the otherwise-unused last word of the second entry. */ bfd_put_32 (output_bfd, got_displacement, splt->contents + 28); #else bfd_put_32 (output_bfd, got_displacement, splt->contents + 16); #endif } } /* UnixWare sets the entsize of .plt to 4, although that doesn't really seem like the right value. */ if (splt->output_section->owner == output_bfd) elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4; if (htab->dt_tlsdesc_plt) { bfd_vma got_address = sgot->output_section->vma + sgot->output_offset; bfd_vma gotplt_address = (htab->root.sgot->output_section->vma + htab->root.sgot->output_offset); bfd_vma plt_address = splt->output_section->vma + splt->output_offset; arm_put_trampoline (htab, output_bfd, splt->contents + htab->dt_tlsdesc_plt, dl_tlsdesc_lazy_trampoline, 6); bfd_put_32 (output_bfd, gotplt_address + htab->dt_tlsdesc_got - (plt_address + htab->dt_tlsdesc_plt) - dl_tlsdesc_lazy_trampoline[6], splt->contents + htab->dt_tlsdesc_plt + 24); bfd_put_32 (output_bfd, got_address - (plt_address + htab->dt_tlsdesc_plt) - dl_tlsdesc_lazy_trampoline[7], splt->contents + htab->dt_tlsdesc_plt + 24 + 4); } if (htab->tls_trampoline) { arm_put_trampoline (htab, output_bfd, splt->contents + htab->tls_trampoline, tls_trampoline, 3); #ifdef FOUR_WORD_PLT bfd_put_32 (output_bfd, 0x00000000, splt->contents + htab->tls_trampoline + 12); #endif } if (htab->vxworks_p && !bfd_link_pic (info) && htab->root.splt->size > 0) { /* Correct the .rel(a).plt.unloaded relocations. They will have incorrect symbol indexes. */ int num_plts; unsigned char *p; num_plts = ((htab->root.splt->size - htab->plt_header_size) / htab->plt_entry_size); p = htab->srelplt2->contents + RELOC_SIZE (htab); for (; num_plts; num_plts--) { Elf_Internal_Rela rel; SWAP_RELOC_IN (htab) (output_bfd, p, &rel); rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); SWAP_RELOC_OUT (htab) (output_bfd, &rel, p); p += RELOC_SIZE (htab); SWAP_RELOC_IN (htab) (output_bfd, p, &rel); rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32); SWAP_RELOC_OUT (htab) (output_bfd, &rel, p); p += RELOC_SIZE (htab); } } } if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0) /* NaCl uses a special first entry in .iplt too. */ arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0); /* Fill in the first three entries in the global offset table. */ if (sgot) { if (sgot->size > 0) { if (sdyn == NULL) bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); else bfd_put_32 (output_bfd, sdyn->output_section->vma + sdyn->output_offset, sgot->contents); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); } elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; } return TRUE; } static void elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED) { Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */ struct elf32_arm_link_hash_table *globals; struct elf_segment_map *m; i_ehdrp = elf_elfheader (abfd); if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN) i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM; else _bfd_elf_post_process_headers (abfd, link_info); i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION; if (link_info) { globals = elf32_arm_hash_table (link_info); if (globals != NULL && globals->byteswap_code) i_ehdrp->e_flags |= EF_ARM_BE8; } if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC))) { int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args); if (abi == AEABI_VFP_args_vfp) i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD; else i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT; } /* Scan segment to set p_flags attribute if it contains only sections with SHF_ARM_NOREAD flag. */ for (m = elf_seg_map (abfd); m != NULL; m = m->next) { unsigned int j; if (m->count == 0) continue; for (j = 0; j < m->count; j++) { if (!(elf_section_flags (m->sections[j]) & SHF_ARM_NOREAD)) break; } if (j == m->count) { m->p_flags = PF_X; m->p_flags_valid = 1; } } } static enum elf_reloc_type_class elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, const asection *rel_sec ATTRIBUTE_UNUSED, const Elf_Internal_Rela *rela) { switch ((int) ELF32_R_TYPE (rela->r_info)) { case R_ARM_RELATIVE: return reloc_class_relative; case R_ARM_JUMP_SLOT: return reloc_class_plt; case R_ARM_COPY: return reloc_class_copy; case R_ARM_IRELATIVE: return reloc_class_ifunc; default: return reloc_class_normal; } } static void elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED) { bfd_arm_update_notes (abfd, ARM_NOTE_SECTION); } /* Return TRUE if this is an unwinding table entry. */ static bfd_boolean is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name) { return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind) || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once)); } /* Set the type and flags for an ARM section. We do this by the section name, which is a hack, but ought to work. */ static bfd_boolean elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec) { const char * name; name = bfd_get_section_name (abfd, sec); if (is_arm_elf_unwind_section_name (abfd, name)) { hdr->sh_type = SHT_ARM_EXIDX; hdr->sh_flags |= SHF_LINK_ORDER; } if (sec->flags & SEC_ELF_NOREAD) hdr->sh_flags |= SHF_ARM_NOREAD; return TRUE; } /* Handle an ARM specific section when reading an object file. This is called when bfd_section_from_shdr finds a section with an unknown type. */ static bfd_boolean elf32_arm_section_from_shdr (bfd *abfd, Elf_Internal_Shdr * hdr, const char *name, int shindex) { /* There ought to be a place to keep ELF backend specific flags, but at the moment there isn't one. We just keep track of the sections by their name, instead. Fortunately, the ABI gives names for all the ARM specific sections, so we will probably get away with this. */ switch (hdr->sh_type) { case SHT_ARM_EXIDX: case SHT_ARM_PREEMPTMAP: case SHT_ARM_ATTRIBUTES: break; default: return FALSE; } if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) return FALSE; return TRUE; } static _arm_elf_section_data * get_arm_elf_section_data (asection * sec) { if (sec && sec->owner && is_arm_elf (sec->owner)) return elf32_arm_section_data (sec); else return NULL; } typedef struct { void *flaginfo; struct bfd_link_info *info; asection *sec; int sec_shndx; int (*func) (void *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *); } output_arch_syminfo; enum map_symbol_type { ARM_MAP_ARM, ARM_MAP_THUMB, ARM_MAP_DATA }; /* Output a single mapping symbol. */ static bfd_boolean elf32_arm_output_map_sym (output_arch_syminfo *osi, enum map_symbol_type type, bfd_vma offset) { static const char *names[3] = {"$a", "$t", "$d"}; Elf_Internal_Sym sym; sym.st_value = osi->sec->output_section->vma + osi->sec->output_offset + offset; sym.st_size = 0; sym.st_other = 0; sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); sym.st_shndx = osi->sec_shndx; sym.st_target_internal = 0; elf32_arm_section_map_add (osi->sec, names[type][1], offset); return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1; } /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT. IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */ static bfd_boolean elf32_arm_output_plt_map_1 (output_arch_syminfo *osi, bfd_boolean is_iplt_entry_p, union gotplt_union *root_plt, struct arm_plt_info *arm_plt) { struct elf32_arm_link_hash_table *htab; bfd_vma addr, plt_header_size; if (root_plt->offset == (bfd_vma) -1) return TRUE; htab = elf32_arm_hash_table (osi->info); if (htab == NULL) return FALSE; if (is_iplt_entry_p) { osi->sec = htab->root.iplt; plt_header_size = 0; } else { osi->sec = htab->root.splt; plt_header_size = htab->plt_header_size; } osi->sec_shndx = (_bfd_elf_section_from_bfd_section (osi->info->output_bfd, osi->sec->output_section)); addr = root_plt->offset & -2; if (htab->symbian_p) { if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) return FALSE; if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4)) return FALSE; } else if (htab->vxworks_p) { if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) return FALSE; if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8)) return FALSE; if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12)) return FALSE; if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20)) return FALSE; } else if (htab->nacl_p) { if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) return FALSE; } else if (using_thumb_only (htab)) { if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr)) return FALSE; } else { bfd_boolean thumb_stub_p; thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt); if (thumb_stub_p) { if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4)) return FALSE; } #ifdef FOUR_WORD_PLT if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) return FALSE; if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12)) return FALSE; #else /* A three-word PLT with no Thumb thunk contains only Arm code, so only need to output a mapping symbol for the first PLT entry and entries with thumb thunks. */ if (thumb_stub_p || addr == plt_header_size) { if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) return FALSE; } #endif } return TRUE; } /* Output mapping symbols for PLT entries associated with H. */ static bfd_boolean elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf) { output_arch_syminfo *osi = (output_arch_syminfo *) inf; struct elf32_arm_link_hash_entry *eh; if (h->root.type == bfd_link_hash_indirect) return TRUE; if (h->root.type == bfd_link_hash_warning) /* When warning symbols are created, they **replace** the "real" entry in the hash table, thus we never get to see the real symbol in a hash traversal. So look at it now. */ h = (struct elf_link_hash_entry *) h->root.u.i.link; eh = (struct elf32_arm_link_hash_entry *) h; return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h), &h->plt, &eh->plt); } /* Output a single local symbol for a generated stub. */ static bfd_boolean elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name, bfd_vma offset, bfd_vma size) { Elf_Internal_Sym sym; sym.st_value = osi->sec->output_section->vma + osi->sec->output_offset + offset; sym.st_size = size; sym.st_other = 0; sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC); sym.st_shndx = osi->sec_shndx; sym.st_target_internal = 0; return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1; } static bfd_boolean arm_map_one_stub (struct bfd_hash_entry * gen_entry, void * in_arg) { struct elf32_arm_stub_hash_entry *stub_entry; asection *stub_sec; bfd_vma addr; char *stub_name; output_arch_syminfo *osi; const insn_sequence *template_sequence; enum stub_insn_type prev_type; int size; int i; enum map_symbol_type sym_type; /* Massage our args to the form they really have. */ stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; osi = (output_arch_syminfo *) in_arg; stub_sec = stub_entry->stub_sec; /* Ensure this stub is attached to the current section being processed. */ if (stub_sec != osi->sec) return TRUE; addr = (bfd_vma) stub_entry->stub_offset; stub_name = stub_entry->output_name; template_sequence = stub_entry->stub_template; switch (template_sequence[0].type) { case ARM_TYPE: if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size)) return FALSE; break; case THUMB16_TYPE: case THUMB32_TYPE: if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, stub_entry->stub_size)) return FALSE; break; default: BFD_FAIL (); return 0; } prev_type = DATA_TYPE; size = 0; for (i = 0; i < stub_entry->stub_template_size; i++) { switch (template_sequence[i].type) { case ARM_TYPE: sym_type = ARM_MAP_ARM; break; case THUMB16_TYPE: case THUMB32_TYPE: sym_type = ARM_MAP_THUMB; break; case DATA_TYPE: sym_type = ARM_MAP_DATA; break; default: BFD_FAIL (); return FALSE; } if (template_sequence[i].type != prev_type) { prev_type = template_sequence[i].type; if (!elf32_arm_output_map_sym (osi, sym_type, addr + size)) return FALSE; } switch (template_sequence[i].type) { case ARM_TYPE: case THUMB32_TYPE: size += 4; break; case THUMB16_TYPE: size += 2; break; case DATA_TYPE: size += 4; break; default: BFD_FAIL (); return FALSE; } } return TRUE; } /* Output mapping symbols for linker generated sections, and for those data-only sections that do not have a $d. */ static bfd_boolean elf32_arm_output_arch_local_syms (bfd *output_bfd, struct bfd_link_info *info, void *flaginfo, int (*func) (void *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *)) { output_arch_syminfo osi; struct elf32_arm_link_hash_table *htab; bfd_vma offset; bfd_size_type size; bfd *input_bfd; htab = elf32_arm_hash_table (info); if (htab == NULL) return FALSE; check_use_blx (htab); osi.flaginfo = flaginfo; osi.info = info; osi.func = func; /* Add a $d mapping symbol to data-only sections that don't have any mapping symbol. This may result in (harmless) redundant mapping symbols. */ for (input_bfd = info->input_bfds; input_bfd != NULL; input_bfd = input_bfd->link.next) { if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS) for (osi.sec = input_bfd->sections; osi.sec != NULL; osi.sec = osi.sec->next) { if (osi.sec->output_section != NULL && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE)) != 0) && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED)) == SEC_HAS_CONTENTS && get_arm_elf_section_data (osi.sec) != NULL && get_arm_elf_section_data (osi.sec)->mapcount == 0 && osi.sec->size > 0 && (osi.sec->flags & SEC_EXCLUDE) == 0) { osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd, osi.sec->output_section); if (osi.sec_shndx != (int)SHN_BAD) elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0); } } } /* ARM->Thumb glue. */ if (htab->arm_glue_size > 0) { osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd, osi.sec->output_section); if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->pic_veneer) size = ARM2THUMB_PIC_GLUE_SIZE; else if (htab->use_blx) size = ARM2THUMB_V5_STATIC_GLUE_SIZE; else size = ARM2THUMB_STATIC_GLUE_SIZE; for (offset = 0; offset < htab->arm_glue_size; offset += size) { elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset); elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4); } } /* Thumb->ARM glue. */ if (htab->thumb_glue_size > 0) { osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME); osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd, osi.sec->output_section); size = THUMB2ARM_GLUE_SIZE; for (offset = 0; offset < htab->thumb_glue_size; offset += size) { elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset); elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4); } } /* ARMv4 BX veneers. */ if (htab->bx_glue_size > 0) { osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME); osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd, osi.sec->output_section); elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0); } /* Long calls stubs. */ if (htab->stub_bfd && htab->stub_bfd->sections) { asection* stub_sec; for (stub_sec = htab->stub_bfd->sections; stub_sec != NULL; stub_sec = stub_sec->next) { /* Ignore non-stub sections. */ if (!strstr (stub_sec->name, STUB_SUFFIX)) continue; osi.sec = stub_sec; osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd, osi.sec->output_section); bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi); } } /* Finally, output mapping symbols for the PLT. */ if (htab->root.splt && htab->root.splt->size > 0) { osi.sec = htab->root.splt; osi.sec_shndx = (_bfd_elf_section_from_bfd_section (output_bfd, osi.sec->output_section)); /* Output mapping symbols for the plt header. SymbianOS does not have a plt header. */ if (htab->vxworks_p) { /* VxWorks shared libraries have no PLT header. */ if (!bfd_link_pic (info)) { if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) return FALSE; if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12)) return FALSE; } } else if (htab->nacl_p) { if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) return FALSE; } else if (using_thumb_only (htab)) { if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0)) return FALSE; if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12)) return FALSE; if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16)) return FALSE; } else if (!htab->symbian_p) { if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) return FALSE; #ifndef FOUR_WORD_PLT if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16)) return FALSE; #endif } } if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0) { /* NaCl uses a special first entry in .iplt too. */ osi.sec = htab->root.iplt; osi.sec_shndx = (_bfd_elf_section_from_bfd_section (output_bfd, osi.sec->output_section)); if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) return FALSE; } if ((htab->root.splt && htab->root.splt->size > 0) || (htab->root.iplt && htab->root.iplt->size > 0)) { elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi); for (input_bfd = info->input_bfds; input_bfd != NULL; input_bfd = input_bfd->link.next) { struct arm_local_iplt_info **local_iplt; unsigned int i, num_syms; local_iplt = elf32_arm_local_iplt (input_bfd); if (local_iplt != NULL) { num_syms = elf_symtab_hdr (input_bfd).sh_info; for (i = 0; i < num_syms; i++) if (local_iplt[i] != NULL && !elf32_arm_output_plt_map_1 (&osi, TRUE, &local_iplt[i]->root, &local_iplt[i]->arm)) return FALSE; } } } if (htab->dt_tlsdesc_plt != 0) { /* Mapping symbols for the lazy tls trampoline. */ if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt)) return FALSE; if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, htab->dt_tlsdesc_plt + 24)) return FALSE; } if (htab->tls_trampoline != 0) { /* Mapping symbols for the tls trampoline. */ if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline)) return FALSE; #ifdef FOUR_WORD_PLT if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, htab->tls_trampoline + 12)) return FALSE; #endif } return TRUE; } /* Allocate target specific section data. */ static bfd_boolean elf32_arm_new_section_hook (bfd *abfd, asection *sec) { if (!sec->used_by_bfd) { _arm_elf_section_data *sdata; bfd_size_type amt = sizeof (*sdata); sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt); if (sdata == NULL) return FALSE; sec->used_by_bfd = sdata; } return _bfd_elf_new_section_hook (abfd, sec); } /* Used to order a list of mapping symbols by address. */ static int elf32_arm_compare_mapping (const void * a, const void * b) { const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a; const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b; if (amap->vma > bmap->vma) return 1; else if (amap->vma < bmap->vma) return -1; else if (amap->type > bmap->type) /* Ensure results do not depend on the host qsort for objects with multiple mapping symbols at the same address by sorting on type after vma. */ return 1; else if (amap->type < bmap->type) return -1; else return 0; } /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */ static unsigned long offset_prel31 (unsigned long addr, bfd_vma offset) { return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful); } /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31 relocations. */ static void copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset) { unsigned long first_word = bfd_get_32 (output_bfd, from); unsigned long second_word = bfd_get_32 (output_bfd, from + 4); /* High bit of first word is supposed to be zero. */ if ((first_word & 0x80000000ul) == 0) first_word = offset_prel31 (first_word, offset); /* If the high bit of the first word is clear, and the bit pattern is not 0x1 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */ if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0)) second_word = offset_prel31 (second_word, offset); bfd_put_32 (output_bfd, first_word, to); bfd_put_32 (output_bfd, second_word, to + 4); } /* Data for make_branch_to_a8_stub(). */ struct a8_branch_to_stub_data { asection *writing_section; bfd_byte *contents; }; /* Helper to insert branches to Cortex-A8 erratum stubs in the right places for a particular section. */ static bfd_boolean make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry, void *in_arg) { struct elf32_arm_stub_hash_entry *stub_entry; struct a8_branch_to_stub_data *data; bfd_byte *contents; unsigned long branch_insn; bfd_vma veneered_insn_loc, veneer_entry_loc; bfd_signed_vma branch_offset; bfd *abfd; unsigned int target; stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; data = (struct a8_branch_to_stub_data *) in_arg; if (stub_entry->target_section != data->writing_section || stub_entry->stub_type < arm_stub_a8_veneer_lwm) return TRUE; contents = data->contents; veneered_insn_loc = stub_entry->target_section->output_section->vma + stub_entry->target_section->output_offset + stub_entry->target_value; veneer_entry_loc = stub_entry->stub_sec->output_section->vma + stub_entry->stub_sec->output_offset + stub_entry->stub_offset; if (stub_entry->stub_type == arm_stub_a8_veneer_blx) veneered_insn_loc &= ~3u; branch_offset = veneer_entry_loc - veneered_insn_loc - 4; abfd = stub_entry->target_section->owner; target = stub_entry->target_value; /* We attempt to avoid this condition by setting stubs_always_after_branch in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround. This check is just to be on the safe side... */ if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff)) { (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is " "allocated in unsafe location"), abfd); return FALSE; } switch (stub_entry->stub_type) { case arm_stub_a8_veneer_b: case arm_stub_a8_veneer_b_cond: branch_insn = 0xf0009000; goto jump24; case arm_stub_a8_veneer_blx: branch_insn = 0xf000e800; goto jump24; case arm_stub_a8_veneer_bl: { unsigned int i1, j1, i2, j2, s; branch_insn = 0xf000d000; jump24: if (branch_offset < -16777216 || branch_offset > 16777214) { /* There's not much we can do apart from complain if this happens. */ (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out " "of range (input file too large)"), abfd); return FALSE; } /* i1 = not(j1 eor s), so: not i1 = j1 eor s j1 = (not i1) eor s. */ branch_insn |= (branch_offset >> 1) & 0x7ff; branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16; i2 = (branch_offset >> 22) & 1; i1 = (branch_offset >> 23) & 1; s = (branch_offset >> 24) & 1; j1 = (!i1) ^ s; j2 = (!i2) ^ s; branch_insn |= j2 << 11; branch_insn |= j1 << 13; branch_insn |= s << 26; } break; default: BFD_FAIL (); return FALSE; } bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]); bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]); return TRUE; } /* Beginning of stm32l4xx work-around. */ /* Functions encoding instructions necessary for the emission of the fix-stm32l4xx-629360. Encoding is extracted from the ARM (C) Architecture Reference Manual ARMv7-A and ARMv7-R edition ARM DDI 0406C.b (ID072512). */ static inline bfd_vma create_instruction_branch_absolute (int branch_offset) { /* A8.8.18 B (A8-334) B target_address (Encoding T4). */ /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */ /* jump offset is: S:I1:I2:imm10:imm11:0. */ /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */ int s = ((branch_offset & 0x1000000) >> 24); int j1 = s ^ !((branch_offset & 0x800000) >> 23); int j2 = s ^ !((branch_offset & 0x400000) >> 22); if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24)) BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch."); bfd_vma patched_inst = 0xf0009000 | s << 26 /* S. */ | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */ | j1 << 13 /* J1. */ | j2 << 11 /* J2. */ | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */ return patched_inst; } static inline bfd_vma create_instruction_ldmia (int base_reg, int wback, int reg_mask) { /* A8.8.57 LDM/LDMIA/LDMFD (A8-396) LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */ bfd_vma patched_inst = 0xe8900000 | (/*W=*/wback << 21) | (base_reg << 16) | (reg_mask & 0x0000ffff); return patched_inst; } static inline bfd_vma create_instruction_ldmdb (int base_reg, int wback, int reg_mask) { /* A8.8.60 LDMDB/LDMEA (A8-402) LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */ bfd_vma patched_inst = 0xe9100000 | (/*W=*/wback << 21) | (base_reg << 16) | (reg_mask & 0x0000ffff); return patched_inst; } static inline bfd_vma create_instruction_mov (int target_reg, int source_reg) { /* A8.8.103 MOV (register) (A8-486) MOV Rd, Rm (Encoding T1). */ bfd_vma patched_inst = 0x4600 | (target_reg & 0x7) | ((target_reg & 0x8) >> 3) << 7 | (source_reg << 3); return patched_inst; } static inline bfd_vma create_instruction_sub (int target_reg, int source_reg, int value) { /* A8.8.221 SUB (immediate) (A8-708) SUB Rd, Rn, #value (Encoding T3). */ bfd_vma patched_inst = 0xf1a00000 | (target_reg << 8) | (source_reg << 16) | (/*S=*/0 << 20) | ((value & 0x800) >> 11) << 26 | ((value & 0x700) >> 8) << 12 | (value & 0x0ff); return patched_inst; } static inline bfd_vma create_instruction_vldmia (int base_reg, int wback, int num_regs, int first_reg) { /* A8.8.332 VLDM (A8-922) VLMD{MODE} Rn{!}, {list} (Encoding T2). */ bfd_vma patched_inst = 0xec900a00 | (/*W=*/wback << 21) | (base_reg << 16) | (num_regs & 0x000000ff) | (((unsigned)first_reg>>1) & 0x0000000f) << 12 | (first_reg & 0x00000001) << 22; return patched_inst; } static inline bfd_vma create_instruction_vldmdb (int base_reg, int num_regs, int first_reg) { /* A8.8.332 VLDM (A8-922) VLMD{MODE} Rn!, {} (Encoding T2). */ bfd_vma patched_inst = 0xed300a00 | (base_reg << 16) | (num_regs & 0x000000ff) | (((unsigned)first_reg>>1) & 0x0000000f) << 12 | (first_reg & 0x00000001) << 22; return patched_inst; } static inline bfd_vma create_instruction_udf_w (int value) { /* A8.8.247 UDF (A8-758) Undefined (Encoding T2). */ bfd_vma patched_inst = 0xf7f0a000 | (value & 0x00000fff) | (value & 0x000f0000) << 16; return patched_inst; } static inline bfd_vma create_instruction_udf (int value) { /* A8.8.247 UDF (A8-758) Undefined (Encoding T1). */ bfd_vma patched_inst = 0xde00 | (value & 0xff); return patched_inst; } /* Functions writing an instruction in memory, returning the next memory position to write to. */ static inline bfd_byte * push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab, bfd * output_bfd, bfd_byte *pt, insn32 insn) { put_thumb2_insn (htab, output_bfd, insn, pt); return pt + 4; } static inline bfd_byte * push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab, bfd * output_bfd, bfd_byte *pt, insn32 insn) { put_thumb_insn (htab, output_bfd, insn, pt); return pt + 2; } /* Function filling up a region in memory with T1 and T2 UDFs taking care of alignment. */ static bfd_byte * stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab, bfd * output_bfd, const bfd_byte * const base_stub_contents, bfd_byte * const from_stub_contents, const bfd_byte * const end_stub_contents) { bfd_byte *current_stub_contents = from_stub_contents; /* Fill the remaining of the stub with deterministic contents : UDF instructions. Check if realignment is needed on modulo 4 frontier using T1, to further use T2. */ if ((current_stub_contents < end_stub_contents) && !((current_stub_contents - base_stub_contents) % 2) && ((current_stub_contents - base_stub_contents) % 4)) current_stub_contents = push_thumb2_insn16 (htab, output_bfd, current_stub_contents, create_instruction_udf (0)); for (; current_stub_contents < end_stub_contents;) current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_udf_w (0)); return current_stub_contents; } /* Functions writing the stream of instructions equivalent to the derived sequence for ldmia, ldmdb, vldm respectively. */ static void stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab, bfd * output_bfd, const insn32 initial_insn, const bfd_byte *const initial_insn_addr, bfd_byte *const base_stub_contents) { int wback = (initial_insn & 0x00200000) >> 21; int ri, rn = (initial_insn & 0x000F0000) >> 16; int insn_all_registers = initial_insn & 0x0000ffff; int insn_low_registers, insn_high_registers; int usable_register_mask; int nb_registers = popcount (insn_all_registers); int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0; int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0; bfd_byte *current_stub_contents = base_stub_contents; BFD_ASSERT (is_thumb2_ldmia (initial_insn)); /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with smaller than 8 registers load sequences that do not cause the hardware issue. */ if (nb_registers <= 8) { /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, initial_insn); /* B initial_insn_addr+4. */ if (!restore_pc) current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_branch_absolute (initial_insn_addr - current_stub_contents)); /* Fill the remaining of the stub with deterministic contents. */ current_stub_contents = stm32l4xx_fill_stub_udf (htab, output_bfd, base_stub_contents, current_stub_contents, base_stub_contents + STM32L4XX_ERRATUM_LDM_VENEER_SIZE); return; } /* - reg_list[13] == 0. */ BFD_ASSERT ((insn_all_registers & (1 << 13))==0); /* - reg_list[14] & reg_list[15] != 1. */ BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000); /* - if (wback==1) reg_list[rn] == 0. */ BFD_ASSERT (!wback || !restore_rn); /* - nb_registers > 8. */ BFD_ASSERT (popcount (insn_all_registers) > 8); /* At this point, LDMxx initial insn loads between 9 and 14 registers. */ /* In the following algorithm, we split this wide LDM using 2 LDM insns: - One with the 7 lowest registers (register mask 0x007F) This LDM will finally contain between 2 and 7 registers - One with the 7 highest registers (register mask 0xDF80) This ldm will finally contain between 2 and 7 registers. */ insn_low_registers = insn_all_registers & 0x007F; insn_high_registers = insn_all_registers & 0xDF80; /* A spare register may be needed during this veneer to temporarily handle the base register. This register will be restored with the last LDM operation. The usable register may be any general purpose register (that excludes PC, SP, LR : register mask is 0x1FFF). */ usable_register_mask = 0x1FFF; /* Generate the stub function. */ if (wback) { /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmia (rn, /*wback=*/1, insn_low_registers)); /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmia (rn, /*wback=*/1, insn_high_registers)); if (!restore_pc) { /* B initial_insn_addr+4. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_branch_absolute (initial_insn_addr - current_stub_contents)); } } else /* if (!wback). */ { ri = rn; /* If Rn is not part of the high-register-list, move it there. */ if (!(insn_high_registers & (1 << rn))) { /* Choose a Ri in the high-register-list that will be restored. */ ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); /* MOV Ri, Rn. */ current_stub_contents = push_thumb2_insn16 (htab, output_bfd, current_stub_contents, create_instruction_mov (ri, rn)); } /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmia (ri, /*wback=*/1, insn_low_registers)); /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmia (ri, /*wback=*/0, insn_high_registers)); if (!restore_pc) { /* B initial_insn_addr+4. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_branch_absolute (initial_insn_addr - current_stub_contents)); } } /* Fill the remaining of the stub with deterministic contents. */ current_stub_contents = stm32l4xx_fill_stub_udf (htab, output_bfd, base_stub_contents, current_stub_contents, base_stub_contents + STM32L4XX_ERRATUM_LDM_VENEER_SIZE); } static void stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab, bfd * output_bfd, const insn32 initial_insn, const bfd_byte *const initial_insn_addr, bfd_byte *const base_stub_contents) { int wback = (initial_insn & 0x00200000) >> 21; int ri, rn = (initial_insn & 0x000f0000) >> 16; int insn_all_registers = initial_insn & 0x0000ffff; int insn_low_registers, insn_high_registers; int usable_register_mask; int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0; int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0; int nb_registers = popcount (insn_all_registers); bfd_byte *current_stub_contents = base_stub_contents; BFD_ASSERT (is_thumb2_ldmdb (initial_insn)); /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with smaller than 8 registers load sequences that do not cause the hardware issue. */ if (nb_registers <= 8) { /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, initial_insn); /* B initial_insn_addr+4. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_branch_absolute (initial_insn_addr - current_stub_contents)); /* Fill the remaining of the stub with deterministic contents. */ current_stub_contents = stm32l4xx_fill_stub_udf (htab, output_bfd, base_stub_contents, current_stub_contents, base_stub_contents + STM32L4XX_ERRATUM_LDM_VENEER_SIZE); return; } /* - reg_list[13] == 0. */ BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0); /* - reg_list[14] & reg_list[15] != 1. */ BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000); /* - if (wback==1) reg_list[rn] == 0. */ BFD_ASSERT (!wback || !restore_rn); /* - nb_registers > 8. */ BFD_ASSERT (popcount (insn_all_registers) > 8); /* At this point, LDMxx initial insn loads between 9 and 14 registers. */ /* In the following algorithm, we split this wide LDM using 2 LDM insn: - One with the 7 lowest registers (register mask 0x007F) This LDM will finally contain between 2 and 7 registers - One with the 7 highest registers (register mask 0xDF80) This ldm will finally contain between 2 and 7 registers. */ insn_low_registers = insn_all_registers & 0x007F; insn_high_registers = insn_all_registers & 0xDF80; /* A spare register may be needed during this veneer to temporarily handle the base register. This register will be restored with the last LDM operation. The usable register may be any general purpose register (that excludes PC, SP, LR : register mask is 0x1FFF). */ usable_register_mask = 0x1FFF; /* Generate the stub function. */ if (!wback && !restore_pc && !restore_rn) { /* Choose a Ri in the low-register-list that will be restored. */ ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn)); /* MOV Ri, Rn. */ current_stub_contents = push_thumb2_insn16 (htab, output_bfd, current_stub_contents, create_instruction_mov (ri, rn)); /* LDMDB Ri!, {R-high-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmdb (ri, /*wback=*/1, insn_high_registers)); /* LDMDB Ri, {R-low-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmdb (ri, /*wback=*/0, insn_low_registers)); /* B initial_insn_addr+4. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_branch_absolute (initial_insn_addr - current_stub_contents)); } else if (wback && !restore_pc && !restore_rn) { /* LDMDB Rn!, {R-high-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmdb (rn, /*wback=*/1, insn_high_registers)); /* LDMDB Rn!, {R-low-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmdb (rn, /*wback=*/1, insn_low_registers)); /* B initial_insn_addr+4. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_branch_absolute (initial_insn_addr - current_stub_contents)); } else if (!wback && restore_pc && !restore_rn) { /* Choose a Ri in the high-register-list that will be restored. */ ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); /* SUB Ri, Rn, #(4*nb_registers). */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_sub (ri, rn, (4 * nb_registers))); /* LDMIA Ri!, {R-low-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmia (ri, /*wback=*/1, insn_low_registers)); /* LDMIA Ri, {R-high-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmia (ri, /*wback=*/0, insn_high_registers)); } else if (wback && restore_pc && !restore_rn) { /* Choose a Ri in the high-register-list that will be restored. */ ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); /* SUB Rn, Rn, #(4*nb_registers) */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_sub (rn, rn, (4 * nb_registers))); /* MOV Ri, Rn. */ current_stub_contents = push_thumb2_insn16 (htab, output_bfd, current_stub_contents, create_instruction_mov (ri, rn)); /* LDMIA Ri!, {R-low-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmia (ri, /*wback=*/1, insn_low_registers)); /* LDMIA Ri, {R-high-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmia (ri, /*wback=*/0, insn_high_registers)); } else if (!wback && !restore_pc && restore_rn) { ri = rn; if (!(insn_low_registers & (1 << rn))) { /* Choose a Ri in the low-register-list that will be restored. */ ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn)); /* MOV Ri, Rn. */ current_stub_contents = push_thumb2_insn16 (htab, output_bfd, current_stub_contents, create_instruction_mov (ri, rn)); } /* LDMDB Ri!, {R-high-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmdb (ri, /*wback=*/1, insn_high_registers)); /* LDMDB Ri, {R-low-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmdb (ri, /*wback=*/0, insn_low_registers)); /* B initial_insn_addr+4. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_branch_absolute (initial_insn_addr - current_stub_contents)); } else if (!wback && restore_pc && restore_rn) { ri = rn; if (!(insn_high_registers & (1 << rn))) { /* Choose a Ri in the high-register-list that will be restored. */ ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); } /* SUB Ri, Rn, #(4*nb_registers). */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_sub (ri, rn, (4 * nb_registers))); /* LDMIA Ri!, {R-low-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmia (ri, /*wback=*/1, insn_low_registers)); /* LDMIA Ri, {R-high-register-list}. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_ldmia (ri, /*wback=*/0, insn_high_registers)); } else if (wback && restore_rn) { /* The assembler should not have accepted to encode this. */ BFD_ASSERT (0 && "Cannot patch an instruction that has an " "undefined behavior.\n"); } /* Fill the remaining of the stub with deterministic contents. */ current_stub_contents = stm32l4xx_fill_stub_udf (htab, output_bfd, base_stub_contents, current_stub_contents, base_stub_contents + STM32L4XX_ERRATUM_LDM_VENEER_SIZE); } static void stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab, bfd * output_bfd, const insn32 initial_insn, const bfd_byte *const initial_insn_addr, bfd_byte *const base_stub_contents) { int num_regs = ((unsigned int)initial_insn << 24) >> 24; bfd_byte *current_stub_contents = base_stub_contents; BFD_ASSERT (is_thumb2_vldm (initial_insn)); /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with smaller than 8 registers load sequences that do not cause the hardware issue. */ if (num_regs <= 8) { /* Untouched instruction. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, initial_insn); /* B initial_insn_addr+4. */ current_stub_contents = push_thumb2_insn32 (htab, output_bfd, current_stub_contents, create_instruction_branch_absolute (initial_insn_addr - current_stub_contents)); } else { bfd_boolean is_ia_nobang = /* (IA without !). */ (((initial_insn << 7) >> 28) & 0xd) == 0x4; bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */ (((initial_insn << 7) >> 28) & 0xd) == 0x5; bfd_boolean is_db_bang = /* (DB with !). */ (((initial_insn << 7) >> 28) & 0xd) == 0x9; int base_reg = ((unsigned int)initial_insn << 12) >> 28; /* d = UInt (Vd:D);. */ int first_reg = ((((unsigned int)initial_insn << 16) >> 28) << 1) | (((unsigned int)initial_insn << 9) >> 31); /* Compute the number of 8-register chunks needed to split. */ int chunks = (num_regs%8) ? (num_regs/8 + 1) : (num_regs/8); int chunk; /* The test coverage has been done assuming the following hypothesis that exactly one of the previous is_ predicates is true. */ BFD_ASSERT ((is_ia_nobang ^ is_ia_bang ^ is_db_bang) && !(is_ia_nobang & is_ia_bang & is_db_bang)); /* We treat the cutting of the register in one pass for all cases, then we emit the adjustments: vldm rx, {...} -> vldm rx!, {8_words_or_less} for each needed 8_word -> sub rx, rx, #size (list) vldm rx!, {...} -> vldm rx!, {8_words_or_less} for each needed 8_word This also handles vpop instruction (when rx is sp) vldmd rx!, {...} -> vldmb rx!, {8_words_or_less} for each needed 8_word. */ for (chunk = 0; chunkrel.hdr) { rel_hdr = oesd->rel.hdr; output_reldata = &(oesd->rel); } else if (oesd->rela.hdr) { rel_hdr = oesd->rela.hdr; output_reldata = &(oesd->rela); } else { abort (); } bfd_byte *erel = rel_hdr->contents; erel += output_reldata->count * rel_hdr->sh_entsize; htab = elf32_arm_hash_table (info); SWAP_RELOC_OUT (htab) (output_bfd, rel, erel); output_reldata->count++; } /* Do code byteswapping. Return FALSE afterwards so that the section is written out as normal. */ static bfd_boolean elf32_arm_write_section (bfd *output_bfd, struct bfd_link_info *link_info, asection *sec, bfd_byte *contents) { unsigned int mapcount, errcount; _arm_elf_section_data *arm_data; struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); elf32_arm_section_map *map; elf32_vfp11_erratum_list *errnode; elf32_stm32l4xx_erratum_list *stm32l4xx_errnode; bfd_vma ptr; bfd_vma end; bfd_vma offset = sec->output_section->vma + sec->output_offset; bfd_byte tmp; unsigned int i; if (globals == NULL) return FALSE; /* If this section has not been allocated an _arm_elf_section_data structure then we cannot record anything. */ arm_data = get_arm_elf_section_data (sec); if (arm_data == NULL) return FALSE; mapcount = arm_data->mapcount; map = arm_data->map; errcount = arm_data->erratumcount; if (errcount != 0) { unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0; for (errnode = arm_data->erratumlist; errnode != 0; errnode = errnode->next) { bfd_vma target = errnode->vma - offset; switch (errnode->type) { case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER: { bfd_vma branch_to_veneer; /* Original condition code of instruction, plus bit mask for ARM B instruction. */ unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000) | 0x0a000000; /* The instruction is before the label. */ target -= 4; /* Above offset included in -4 below. */ branch_to_veneer = errnode->u.b.veneer->vma - errnode->vma - 4; if ((signed) branch_to_veneer < -(1 << 25) || (signed) branch_to_veneer >= (1 << 25)) (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of " "range"), output_bfd); insn |= (branch_to_veneer >> 2) & 0xffffff; contents[endianflip ^ target] = insn & 0xff; contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff; contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff; contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff; } break; case VFP11_ERRATUM_ARM_VENEER: { bfd_vma branch_from_veneer; unsigned int insn; /* Take size of veneer into account. */ branch_from_veneer = errnode->u.v.branch->vma - errnode->vma - 12; if ((signed) branch_from_veneer < -(1 << 25) || (signed) branch_from_veneer >= (1 << 25)) (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of " "range"), output_bfd); /* Original instruction. */ insn = errnode->u.v.branch->u.b.vfp_insn; contents[endianflip ^ target] = insn & 0xff; contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff; contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff; contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff; /* Branch back to insn after original insn. */ insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff); contents[endianflip ^ (target + 4)] = insn & 0xff; contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff; contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff; contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff; } break; default: abort (); } } } if (arm_data->stm32l4xx_erratumcount != 0) { for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist; stm32l4xx_errnode != 0; stm32l4xx_errnode = stm32l4xx_errnode->next) { bfd_vma target = stm32l4xx_errnode->vma - offset; switch (stm32l4xx_errnode->type) { case STM32L4XX_ERRATUM_BRANCH_TO_VENEER: { unsigned int insn; bfd_vma branch_to_veneer = stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma; if ((signed) branch_to_veneer < -(1 << 24) || (signed) branch_to_veneer >= (1 << 24)) { bfd_vma out_of_range = ((signed) branch_to_veneer < -(1 << 24)) ? - branch_to_veneer - (1 << 24) : ((signed) branch_to_veneer >= (1 << 24)) ? branch_to_veneer - (1 << 24) : 0; (*_bfd_error_handler) (_("%B(%#x): error: Cannot create STM32L4XX veneer. " "Jump out of range by %ld bytes. " "Cannot encode branch instruction. "), output_bfd, (long) (stm32l4xx_errnode->vma - 4), out_of_range); continue; } insn = create_instruction_branch_absolute (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma); /* The instruction is before the label. */ target -= 4; put_thumb2_insn (globals, output_bfd, (bfd_vma) insn, contents + target); } break; case STM32L4XX_ERRATUM_VENEER: { bfd_byte * veneer; bfd_byte * veneer_r; unsigned int insn; veneer = contents + target; veneer_r = veneer + stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma - 4; if ((signed) (veneer_r - veneer - STM32L4XX_ERRATUM_VLDM_VENEER_SIZE > STM32L4XX_ERRATUM_LDM_VENEER_SIZE ? STM32L4XX_ERRATUM_VLDM_VENEER_SIZE : STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24) || (signed) (veneer_r - veneer) >= (1 << 24)) { (*_bfd_error_handler) (_("%B: error: Cannot create STM32L4XX " "veneer."), output_bfd); continue; } /* Original instruction. */ insn = stm32l4xx_errnode->u.v.branch->u.b.insn; stm32l4xx_create_replacing_stub (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer); } break; default: abort (); } } } if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX) { arm_unwind_table_edit *edit_node = arm_data->u.exidx.unwind_edit_list; /* Now, sec->size is the size of the section we will write. The original size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND markers) was sec->rawsize. (This isn't the case if we perform no edits, then rawsize will be zero and we should use size). */ bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size); unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size; unsigned int in_index, out_index; bfd_vma add_to_offsets = 0; for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;) { if (edit_node) { unsigned int edit_index = edit_node->index; if (in_index < edit_index && in_index * 8 < input_size) { copy_exidx_entry (output_bfd, edited_contents + out_index * 8, contents + in_index * 8, add_to_offsets); out_index++; in_index++; } else if (in_index == edit_index || (in_index * 8 >= input_size && edit_index == UINT_MAX)) { switch (edit_node->type) { case DELETE_EXIDX_ENTRY: in_index++; add_to_offsets += 8; break; case INSERT_EXIDX_CANTUNWIND_AT_END: { asection *text_sec = edit_node->linked_section; bfd_vma text_offset = text_sec->output_section->vma + text_sec->output_offset + text_sec->size; bfd_vma exidx_offset = offset + out_index * 8; unsigned long prel31_offset; /* Note: this is meant to be equivalent to an R_ARM_PREL31 relocation. These synthetic EXIDX_CANTUNWIND markers are not relocated by the usual BFD method. */ prel31_offset = (text_offset - exidx_offset) & 0x7ffffffful; if (bfd_link_relocatable (link_info)) { /* Here relocation for new EXIDX_CANTUNWIND is created, so there is no need to adjust offset by hand. */ prel31_offset = text_sec->output_offset + text_sec->size; /* New relocation entity. */ asection *text_out = text_sec->output_section; Elf_Internal_Rela rel; rel.r_addend = 0; rel.r_offset = exidx_offset; rel.r_info = ELF32_R_INFO (text_out->target_index, R_ARM_PREL31); elf32_arm_add_relocation (output_bfd, link_info, sec->output_section, &rel); } /* First address we can't unwind. */ bfd_put_32 (output_bfd, prel31_offset, &edited_contents[out_index * 8]); /* Code for EXIDX_CANTUNWIND. */ bfd_put_32 (output_bfd, 0x1, &edited_contents[out_index * 8 + 4]); out_index++; add_to_offsets -= 8; } break; } edit_node = edit_node->next; } } else { /* No more edits, copy remaining entries verbatim. */ copy_exidx_entry (output_bfd, edited_contents + out_index * 8, contents + in_index * 8, add_to_offsets); out_index++; in_index++; } } if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD)) bfd_set_section_contents (output_bfd, sec->output_section, edited_contents, (file_ptr) sec->output_offset, sec->size); return TRUE; } /* Fix code to point to Cortex-A8 erratum stubs. */ if (globals->fix_cortex_a8) { struct a8_branch_to_stub_data data; data.writing_section = sec; data.contents = contents; bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub, & data); } if (mapcount == 0) return FALSE; if (globals->byteswap_code) { qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping); ptr = map[0].vma; for (i = 0; i < mapcount; i++) { if (i == mapcount - 1) end = sec->size; else end = map[i + 1].vma; switch (map[i].type) { case 'a': /* Byte swap code words. */ while (ptr + 3 < end) { tmp = contents[ptr]; contents[ptr] = contents[ptr + 3]; contents[ptr + 3] = tmp; tmp = contents[ptr + 1]; contents[ptr + 1] = contents[ptr + 2]; contents[ptr + 2] = tmp; ptr += 4; } break; case 't': /* Byte swap code halfwords. */ while (ptr + 1 < end) { tmp = contents[ptr]; contents[ptr] = contents[ptr + 1]; contents[ptr + 1] = tmp; ptr += 2; } break; case 'd': /* Leave data alone. */ break; } ptr = end; } } free (map); arm_data->mapcount = -1; arm_data->mapsize = 0; arm_data->map = NULL; return FALSE; } /* Mangle thumb function symbols as we read them in. */ static bfd_boolean elf32_arm_swap_symbol_in (bfd * abfd, const void *psrc, const void *pshn, Elf_Internal_Sym *dst) { if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst)) return FALSE; /* New EABI objects mark thumb function symbols by setting the low bit of the address. */ if (ELF_ST_TYPE (dst->st_info) == STT_FUNC || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC) { if (dst->st_value & 1) { dst->st_value &= ~(bfd_vma) 1; dst->st_target_internal = ST_BRANCH_TO_THUMB; } else dst->st_target_internal = ST_BRANCH_TO_ARM; } else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC) { dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC); dst->st_target_internal = ST_BRANCH_TO_THUMB; } else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION) dst->st_target_internal = ST_BRANCH_LONG; else dst->st_target_internal = ST_BRANCH_UNKNOWN; return TRUE; } /* Mangle thumb function symbols as we write them out. */ static void elf32_arm_swap_symbol_out (bfd *abfd, const Elf_Internal_Sym *src, void *cdst, void *shndx) { Elf_Internal_Sym newsym; /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit of the address set, as per the new EABI. We do this unconditionally because objcopy does not set the elf header flags until after it writes out the symbol table. */ if (src->st_target_internal == ST_BRANCH_TO_THUMB) { newsym = *src; if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC) newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC); if (newsym.st_shndx != SHN_UNDEF) { /* Do this only for defined symbols. At link type, the static linker will simulate the work of dynamic linker of resolving symbols and will carry over the thumbness of found symbols to the output symbol table. It's not clear how it happens, but the thumbness of undefined symbols can well be different at runtime, and writing '1' for them will be confusing for users and possibly for dynamic linker itself. */ newsym.st_value |= 1; } src = &newsym; } bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx); } /* Add the PT_ARM_EXIDX program header. */ static bfd_boolean elf32_arm_modify_segment_map (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) { struct elf_segment_map *m; asection *sec; sec = bfd_get_section_by_name (abfd, ".ARM.exidx"); if (sec != NULL && (sec->flags & SEC_LOAD) != 0) { /* If there is already a PT_ARM_EXIDX header, then we do not want to add another one. This situation arises when running "strip"; the input binary already has the header. */ m = elf_seg_map (abfd); while (m && m->p_type != PT_ARM_EXIDX) m = m->next; if (!m) { m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof (struct elf_segment_map)); if (m == NULL) return FALSE; m->p_type = PT_ARM_EXIDX; m->count = 1; m->sections[0] = sec; m->next = elf_seg_map (abfd); elf_seg_map (abfd) = m; } } return TRUE; } /* We may add a PT_ARM_EXIDX program header. */ static int elf32_arm_additional_program_headers (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) { asection *sec; sec = bfd_get_section_by_name (abfd, ".ARM.exidx"); if (sec != NULL && (sec->flags & SEC_LOAD) != 0) return 1; else return 0; } /* Hook called by the linker routine which adds symbols from an object file. */ static bfd_boolean elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym, const char **namep, flagword *flagsp, asection **secp, bfd_vma *valp) { if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE) && (abfd->flags & DYNAMIC) == 0 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour) elf_tdata (info->output_bfd)->has_gnu_symbols = elf_gnu_symbol_any; if (elf32_arm_hash_table (info) == NULL) return FALSE; if (elf32_arm_hash_table (info)->vxworks_p && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)) return FALSE; return TRUE; } /* We use this to override swap_symbol_in and swap_symbol_out. */ const struct elf_size_info elf32_arm_size_info = { sizeof (Elf32_External_Ehdr), sizeof (Elf32_External_Phdr), sizeof (Elf32_External_Shdr), sizeof (Elf32_External_Rel), sizeof (Elf32_External_Rela), sizeof (Elf32_External_Sym), sizeof (Elf32_External_Dyn), sizeof (Elf_External_Note), 4, 1, 32, 2, ELFCLASS32, EV_CURRENT, bfd_elf32_write_out_phdrs, bfd_elf32_write_shdrs_and_ehdr, bfd_elf32_checksum_contents, bfd_elf32_write_relocs, elf32_arm_swap_symbol_in, elf32_arm_swap_symbol_out, bfd_elf32_slurp_reloc_table, bfd_elf32_slurp_symbol_table, bfd_elf32_swap_dyn_in, bfd_elf32_swap_dyn_out, bfd_elf32_swap_reloc_in, bfd_elf32_swap_reloc_out, bfd_elf32_swap_reloca_in, bfd_elf32_swap_reloca_out }; static bfd_vma read_code32 (const bfd *abfd, const bfd_byte *addr) { /* V7 BE8 code is always little endian. */ if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0) return bfd_getl32 (addr); return bfd_get_32 (abfd, addr); } static bfd_vma read_code16 (const bfd *abfd, const bfd_byte *addr) { /* V7 BE8 code is always little endian. */ if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0) return bfd_getl16 (addr); return bfd_get_16 (abfd, addr); } /* Return size of plt0 entry starting at ADDR or (bfd_vma) -1 if size can not be determined. */ static bfd_vma elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr) { bfd_vma first_word; bfd_vma plt0_size; first_word = read_code32 (abfd, addr); if (first_word == elf32_arm_plt0_entry[0]) plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry); else if (first_word == elf32_thumb2_plt0_entry[0]) plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry); else /* We don't yet handle this PLT format. */ return (bfd_vma) -1; return plt0_size; } /* Return size of plt entry starting at offset OFFSET of plt section located at address START or (bfd_vma) -1 if size can not be determined. */ static bfd_vma elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset) { bfd_vma first_insn; bfd_vma plt_size = 0; const bfd_byte *addr = start + offset; /* PLT entry size if fixed on Thumb-only platforms. */ if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0]) return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry); /* Respect Thumb stub if necessary. */ if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0]) { plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub); } /* Strip immediate from first add. */ first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00; #ifdef FOUR_WORD_PLT if (first_insn == elf32_arm_plt_entry[0]) plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry); #else if (first_insn == elf32_arm_plt_entry_long[0]) plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long); else if (first_insn == elf32_arm_plt_entry_short[0]) plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short); #endif else /* We don't yet handle this PLT format. */ return (bfd_vma) -1; return plt_size; } /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */ static long elf32_arm_get_synthetic_symtab (bfd *abfd, long symcount ATTRIBUTE_UNUSED, asymbol **syms ATTRIBUTE_UNUSED, long dynsymcount, asymbol **dynsyms, asymbol **ret) { asection *relplt; asymbol *s; arelent *p; long count, i, n; size_t size; Elf_Internal_Shdr *hdr; char *names; asection *plt; bfd_vma offset; bfd_byte *data; *ret = NULL; if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0) return 0; if (dynsymcount <= 0) return 0; relplt = bfd_get_section_by_name (abfd, ".rel.plt"); if (relplt == NULL) return 0; hdr = &elf_section_data (relplt)->this_hdr; if (hdr->sh_link != elf_dynsymtab (abfd) || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA)) return 0; plt = bfd_get_section_by_name (abfd, ".plt"); if (plt == NULL) return 0; if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE)) return -1; data = plt->contents; if (data == NULL) { if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL) return -1; bfd_cache_section_contents((asection *) plt, data); } count = relplt->size / hdr->sh_entsize; size = count * sizeof (asymbol); p = relplt->relocation; for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel) { size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); if (p->addend != 0) size += sizeof ("+0x") - 1 + 8; } s = *ret = (asymbol *) bfd_malloc (size); if (s == NULL) return -1; offset = elf32_arm_plt0_size (abfd, data); if (offset == (bfd_vma) -1) return -1; names = (char *) (s + count); p = relplt->relocation; n = 0; for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel) { size_t len; bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset); if (plt_size == (bfd_vma) -1) break; *s = **p->sym_ptr_ptr; /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since we are defining a symbol, ensure one of them is set. */ if ((s->flags & BSF_LOCAL) == 0) s->flags |= BSF_GLOBAL; s->flags |= BSF_SYNTHETIC; s->section = plt; s->value = offset; s->name = names; s->udata.p = NULL; len = strlen ((*p->sym_ptr_ptr)->name); memcpy (names, (*p->sym_ptr_ptr)->name, len); names += len; if (p->addend != 0) { char buf[30], *a; memcpy (names, "+0x", sizeof ("+0x") - 1); names += sizeof ("+0x") - 1; bfd_sprintf_vma (abfd, buf, p->addend); for (a = buf; *a == '0'; ++a) ; len = strlen (a); memcpy (names, a, len); names += len; } memcpy (names, "@plt", sizeof ("@plt")); names += sizeof ("@plt"); ++s, ++n; offset += plt_size; } return n; } static bfd_boolean elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr) { if (hdr->sh_flags & SHF_ARM_NOREAD) *flags |= SEC_ELF_NOREAD; return TRUE; } static flagword elf32_arm_lookup_section_flags (char *flag_name) { if (!strcmp (flag_name, "SHF_ARM_NOREAD")) return SHF_ARM_NOREAD; return SEC_NO_FLAGS; } static unsigned int elf32_arm_count_additional_relocs (asection *sec) { struct _arm_elf_section_data *arm_data; arm_data = get_arm_elf_section_data (sec); return arm_data->additional_reloc_count; } /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which has a type >= SHT_LOOS. Returns TRUE if these fields were initialised FALSE otherwise. ISECTION is the best guess matching section from the input bfd IBFD, but it might be NULL. */ static bfd_boolean elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED, bfd *obfd ATTRIBUTE_UNUSED, const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED, Elf_Internal_Shdr *osection) { switch (osection->sh_type) { case SHT_ARM_EXIDX: { Elf_Internal_Shdr **oheaders = elf_elfsections (obfd); Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd); unsigned i = 0; osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER; osection->sh_info = 0; /* The sh_link field must be set to the text section associated with this index section. Unfortunately the ARM EHABI does not specify exactly how to determine this association. Our caller does try to match up OSECTION with its corresponding input section however so that is a good first guess. */ if (isection != NULL && osection->bfd_section != NULL && isection->bfd_section != NULL && isection->bfd_section->output_section != NULL && isection->bfd_section->output_section == osection->bfd_section && iheaders != NULL && isection->sh_link > 0 && isection->sh_link < elf_numsections (ibfd) && iheaders[isection->sh_link]->bfd_section != NULL && iheaders[isection->sh_link]->bfd_section->output_section != NULL ) { for (i = elf_numsections (obfd); i-- > 0;) if (oheaders[i]->bfd_section == iheaders[isection->sh_link]->bfd_section->output_section) break; } if (i == 0) { /* Failing that we have to find a matching section ourselves. If we had the output section name available we could compare that with input section names. Unfortunately we don't. So instead we use a simple heuristic and look for the nearest executable section before this one. */ for (i = elf_numsections (obfd); i-- > 0;) if (oheaders[i] == osection) break; if (i == 0) break; while (i-- > 0) if (oheaders[i]->sh_type == SHT_PROGBITS && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR)) == (SHF_ALLOC | SHF_EXECINSTR)) break; } if (i) { osection->sh_link = i; /* If the text section was part of a group then the index section should be too. */ if (oheaders[i]->sh_flags & SHF_GROUP) osection->sh_flags |= SHF_GROUP; return TRUE; } } break; case SHT_ARM_PREEMPTMAP: osection->sh_flags = SHF_ALLOC; break; case SHT_ARM_ATTRIBUTES: case SHT_ARM_DEBUGOVERLAY: case SHT_ARM_OVERLAYSECTION: default: break; } return FALSE; } #undef elf_backend_copy_special_section_fields #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields #define ELF_ARCH bfd_arch_arm #define ELF_TARGET_ID ARM_ELF_DATA #define ELF_MACHINE_CODE EM_ARM #ifdef __QNXTARGET__ #define ELF_MAXPAGESIZE 0x1000 #else #define ELF_MAXPAGESIZE 0x10000 #endif #define ELF_MINPAGESIZE 0x1000 #define ELF_COMMONPAGESIZE 0x1000 #define bfd_elf32_mkobject elf32_arm_mkobject #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info #define bfd_elf32_new_section_hook elf32_arm_new_section_hook #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol #define bfd_elf32_bfd_final_link elf32_arm_final_link #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab #define elf_backend_get_symbol_type elf32_arm_get_symbol_type #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook #define elf_backend_check_relocs elf32_arm_check_relocs #define elf_backend_relocate_section elf32_arm_relocate_section #define elf_backend_write_section elf32_arm_write_section #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections #define elf_backend_always_size_sections elf32_arm_always_size_sections #define elf_backend_init_index_section _bfd_elf_init_2_index_sections #define elf_backend_post_process_headers elf32_arm_post_process_headers #define elf_backend_reloc_type_class elf32_arm_reloc_type_class #define elf_backend_object_p elf32_arm_object_p #define elf_backend_fake_sections elf32_arm_fake_sections #define elf_backend_section_from_shdr elf32_arm_section_from_shdr #define elf_backend_final_write_processing elf32_arm_final_write_processing #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol #define elf_backend_size_info elf32_arm_size_info #define elf_backend_modify_segment_map elf32_arm_modify_segment_map #define elf_backend_additional_program_headers elf32_arm_additional_program_headers #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms #define elf_backend_begin_write_processing elf32_arm_begin_write_processing #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs #define elf_backend_can_refcount 1 #define elf_backend_can_gc_sections 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_got_plt 1 #define elf_backend_want_plt_sym 0 #define elf_backend_may_use_rel_p 1 #define elf_backend_may_use_rela_p 0 #define elf_backend_default_use_rela_p 0 #define elf_backend_got_header_size 12 #define elf_backend_extern_protected_data 1 #undef elf_backend_obj_attrs_vendor #define elf_backend_obj_attrs_vendor "aeabi" #undef elf_backend_obj_attrs_section #define elf_backend_obj_attrs_section ".ARM.attributes" #undef elf_backend_obj_attrs_arg_type #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type #undef elf_backend_obj_attrs_section_type #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown #undef elf_backend_section_flags #define elf_backend_section_flags elf32_arm_section_flags #undef elf_backend_lookup_section_flags_hook #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags #include "elf32-target.h" /* Native Client targets. */ #undef TARGET_LITTLE_SYM #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec #undef TARGET_LITTLE_NAME #define TARGET_LITTLE_NAME "elf32-littlearm-nacl" #undef TARGET_BIG_SYM #define TARGET_BIG_SYM arm_elf32_nacl_be_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-bigarm-nacl" /* Like elf32_arm_link_hash_table_create -- but overrides appropriately for NaCl. */ static struct bfd_link_hash_table * elf32_arm_nacl_link_hash_table_create (bfd *abfd) { struct bfd_link_hash_table *ret; ret = elf32_arm_link_hash_table_create (abfd); if (ret) { struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret; htab->nacl_p = 1; htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry); htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry); } return ret; } /* Since NaCl doesn't use the ARM-specific unwind format, we don't really need to use elf32_arm_modify_segment_map. But we do it anyway just to reduce gratuitous differences with the stock ARM backend. */ static bfd_boolean elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info) { return (elf32_arm_modify_segment_map (abfd, info) && nacl_modify_segment_map (abfd, info)); } static void elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker) { elf32_arm_final_write_processing (abfd, linker); nacl_final_write_processing (abfd, linker); } static bfd_vma elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt, const arelent *rel ATTRIBUTE_UNUSED) { return plt->vma + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) + i * ARRAY_SIZE (elf32_arm_nacl_plt_entry)); } #undef elf32_bed #define elf32_bed elf32_arm_nacl_bed #undef bfd_elf32_bfd_link_hash_table_create #define bfd_elf32_bfd_link_hash_table_create \ elf32_arm_nacl_link_hash_table_create #undef elf_backend_plt_alignment #define elf_backend_plt_alignment 4 #undef elf_backend_modify_segment_map #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map #undef elf_backend_modify_program_headers #define elf_backend_modify_program_headers nacl_modify_program_headers #undef elf_backend_final_write_processing #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing #undef bfd_elf32_get_synthetic_symtab #undef elf_backend_plt_sym_val #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val #undef elf_backend_copy_special_section_fields #undef ELF_MINPAGESIZE #undef ELF_COMMONPAGESIZE #include "elf32-target.h" /* Reset to defaults. */ #undef elf_backend_plt_alignment #undef elf_backend_modify_segment_map #define elf_backend_modify_segment_map elf32_arm_modify_segment_map #undef elf_backend_modify_program_headers #undef elf_backend_final_write_processing #define elf_backend_final_write_processing elf32_arm_final_write_processing #undef ELF_MINPAGESIZE #define ELF_MINPAGESIZE 0x1000 #undef ELF_COMMONPAGESIZE #define ELF_COMMONPAGESIZE 0x1000 /* VxWorks Targets. */ #undef TARGET_LITTLE_SYM #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec #undef TARGET_LITTLE_NAME #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks" #undef TARGET_BIG_SYM #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-bigarm-vxworks" /* Like elf32_arm_link_hash_table_create -- but overrides appropriately for VxWorks. */ static struct bfd_link_hash_table * elf32_arm_vxworks_link_hash_table_create (bfd *abfd) { struct bfd_link_hash_table *ret; ret = elf32_arm_link_hash_table_create (abfd); if (ret) { struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret; htab->use_rel = 0; htab->vxworks_p = 1; } return ret; } static void elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker) { elf32_arm_final_write_processing (abfd, linker); elf_vxworks_final_write_processing (abfd, linker); } #undef elf32_bed #define elf32_bed elf32_arm_vxworks_bed #undef bfd_elf32_bfd_link_hash_table_create #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create #undef elf_backend_final_write_processing #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing #undef elf_backend_emit_relocs #define elf_backend_emit_relocs elf_vxworks_emit_relocs #undef elf_backend_may_use_rel_p #define elf_backend_may_use_rel_p 0 #undef elf_backend_may_use_rela_p #define elf_backend_may_use_rela_p 1 #undef elf_backend_default_use_rela_p #define elf_backend_default_use_rela_p 1 #undef elf_backend_want_plt_sym #define elf_backend_want_plt_sym 1 #undef ELF_MAXPAGESIZE #define ELF_MAXPAGESIZE 0x1000 #include "elf32-target.h" /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd) { flagword out_flags; flagword in_flags; bfd_boolean flags_compatible = TRUE; asection *sec; /* Check if we have the same endianness. */ if (! _bfd_generic_verify_endian_match (ibfd, obfd)) return FALSE; if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd)) return TRUE; if (!elf32_arm_merge_eabi_attributes (ibfd, obfd)) return FALSE; /* The input BFD must have had its flags initialised. */ /* The following seems bogus to me -- The flags are initialized in the assembler but I don't think an elf_flags_init field is written into the object. */ /* BFD_ASSERT (elf_flags_init (ibfd)); */ in_flags = elf_elfheader (ibfd)->e_flags; out_flags = elf_elfheader (obfd)->e_flags; /* In theory there is no reason why we couldn't handle this. However in practice it isn't even close to working and there is no real reason to want it. */ if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4 && !(ibfd->flags & DYNAMIC) && (in_flags & EF_ARM_BE8)) { _bfd_error_handler (_("error: %B is already in final BE8 format"), ibfd); return FALSE; } if (!elf_flags_init (obfd)) { /* If the input is the default architecture and had the default flags then do not bother setting the flags for the output architecture, instead allow future merges to do this. If no future merges ever set these flags then they will retain their uninitialised values, which surprise surprise, correspond to the default values. */ if (bfd_get_arch_info (ibfd)->the_default && elf_elfheader (ibfd)->e_flags == 0) return TRUE; elf_flags_init (obfd) = TRUE; elf_elfheader (obfd)->e_flags = in_flags; if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) && bfd_get_arch_info (obfd)->the_default) return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd)); return TRUE; } /* Determine what should happen if the input ARM architecture does not match the output ARM architecture. */ if (! bfd_arm_merge_machines (ibfd, obfd)) return FALSE; /* Identical flags must be compatible. */ if (in_flags == out_flags) return TRUE; /* Check to see if the input BFD actually contains any sections. If not, its flags may not have been initialised either, but it cannot actually cause any incompatiblity. Do not short-circuit dynamic objects; their section list may be emptied by elf_link_add_object_symbols. Also check to see if there are no code sections in the input. In this case there is no need to check for code specific flags. XXX - do we need to worry about floating-point format compatability in data sections ? */ if (!(ibfd->flags & DYNAMIC)) { bfd_boolean null_input_bfd = TRUE; bfd_boolean only_data_sections = TRUE; for (sec = ibfd->sections; sec != NULL; sec = sec->next) { /* Ignore synthetic glue sections. */ if (strcmp (sec->name, ".glue_7") && strcmp (sec->name, ".glue_7t")) { if ((bfd_get_section_flags (ibfd, sec) & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) only_data_sections = FALSE; null_input_bfd = FALSE; break; } } if (null_input_bfd || only_data_sections) return TRUE; } /* Complain about various flag mismatches. */ if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags), EF_ARM_EABI_VERSION (out_flags))) { _bfd_error_handler (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"), ibfd, obfd, (in_flags & EF_ARM_EABIMASK) >> 24, (out_flags & EF_ARM_EABIMASK) >> 24); return FALSE; } /* Not sure what needs to be checked for EABI versions >= 1. */ /* VxWorks libraries do not use these flags. */ if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN) { if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26)) { _bfd_error_handler (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"), ibfd, obfd, in_flags & EF_ARM_APCS_26 ? 26 : 32, out_flags & EF_ARM_APCS_26 ? 26 : 32); flags_compatible = FALSE; } if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT)) { if (in_flags & EF_ARM_APCS_FLOAT) _bfd_error_handler (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"), ibfd, obfd); else _bfd_error_handler (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"), ibfd, obfd); flags_compatible = FALSE; } if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT)) { if (in_flags & EF_ARM_VFP_FLOAT) _bfd_error_handler (_("error: %B uses VFP instructions, whereas %B does not"), ibfd, obfd); else _bfd_error_handler (_("error: %B uses FPA instructions, whereas %B does not"), ibfd, obfd); flags_compatible = FALSE; } if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT)) { if (in_flags & EF_ARM_MAVERICK_FLOAT) _bfd_error_handler (_("error: %B uses Maverick instructions, whereas %B does not"), ibfd, obfd); else _bfd_error_handler (_("error: %B does not use Maverick instructions, whereas %B does"), ibfd, obfd); flags_compatible = FALSE; } #ifdef EF_ARM_SOFT_FLOAT if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT)) { /* We can allow interworking between code that is VFP format layout, and uses either soft float or integer regs for passing floating point arguments and results. We already know that the APCS_FLOAT flags match; similarly for VFP flags. */ if ((in_flags & EF_ARM_APCS_FLOAT) != 0 || (in_flags & EF_ARM_VFP_FLOAT) == 0) { if (in_flags & EF_ARM_SOFT_FLOAT) _bfd_error_handler (_("error: %B uses software FP, whereas %B uses hardware FP"), ibfd, obfd); else _bfd_error_handler (_("error: %B uses hardware FP, whereas %B uses software FP"), ibfd, obfd); flags_compatible = FALSE; } } #endif /* Interworking mismatch is only a warning. */ if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK)) { if (in_flags & EF_ARM_INTERWORK) { _bfd_error_handler (_("Warning: %B supports interworking, whereas %B does not"), ibfd, obfd); } else { _bfd_error_handler (_("Warning: %B does not support interworking, whereas %B does"), ibfd, obfd); } } } return flags_compatible; } /* Symbian OS Targets. */ #undef TARGET_LITTLE_SYM #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec #undef TARGET_LITTLE_NAME #define TARGET_LITTLE_NAME "elf32-littlearm-symbian" #undef TARGET_BIG_SYM #define TARGET_BIG_SYM arm_elf32_symbian_be_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf32-bigarm-symbian" /* Like elf32_arm_link_hash_table_create -- but overrides appropriately for Symbian OS. */ static struct bfd_link_hash_table * elf32_arm_symbian_link_hash_table_create (bfd *abfd) { struct bfd_link_hash_table *ret; ret = elf32_arm_link_hash_table_create (abfd); if (ret) { struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *)ret; /* There is no PLT header for Symbian OS. */ htab->plt_header_size = 0; /* The PLT entries are each one instruction and one word. */ htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry); htab->symbian_p = 1; /* Symbian uses armv5t or above, so use_blx is always true. */ htab->use_blx = 1; htab->root.is_relocatable_executable = 1; } return ret; } static const struct bfd_elf_special_section elf32_arm_symbian_special_sections[] = { /* In a BPABI executable, the dynamic linking sections do not go in the loadable read-only segment. The post-linker may wish to refer to these sections, but they are not part of the final program image. */ { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 }, { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 }, { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 }, { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 }, { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 }, /* These sections do not need to be writable as the SymbianOS postlinker will arrange things so that no dynamic relocation is required. */ { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC }, { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC }, { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC }, { NULL, 0, 0, 0, 0 } }; static void elf32_arm_symbian_begin_write_processing (bfd *abfd, struct bfd_link_info *link_info) { /* BPABI objects are never loaded directly by an OS kernel; they are processed by a postlinker first, into an OS-specific format. If the D_PAGED bit is set on the file, BFD will align segments on page boundaries, so that an OS can directly map the file. With BPABI objects, that just results in wasted space. In addition, because we clear the D_PAGED bit, map_sections_to_segments will recognize that the program headers should not be mapped into any loadable segment. */ abfd->flags &= ~D_PAGED; elf32_arm_begin_write_processing (abfd, link_info); } static bfd_boolean elf32_arm_symbian_modify_segment_map (bfd *abfd, struct bfd_link_info *info) { struct elf_segment_map *m; asection *dynsec; /* BPABI shared libraries and executables should have a PT_DYNAMIC segment. However, because the .dynamic section is not marked with SEC_LOAD, the generic ELF code will not create such a segment. */ dynsec = bfd_get_section_by_name (abfd, ".dynamic"); if (dynsec) { for (m = elf_seg_map (abfd); m != NULL; m = m->next) if (m->p_type == PT_DYNAMIC) break; if (m == NULL) { m = _bfd_elf_make_dynamic_segment (abfd, dynsec); m->next = elf_seg_map (abfd); elf_seg_map (abfd) = m; } } /* Also call the generic arm routine. */ return elf32_arm_modify_segment_map (abfd, info); } /* Return address for Ith PLT stub in section PLT, for relocation REL or (bfd_vma) -1 if it should not be included. */ static bfd_vma elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt, const arelent *rel ATTRIBUTE_UNUSED) { return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i; } #undef elf32_bed #define elf32_bed elf32_arm_symbian_bed /* The dynamic sections are not allocated on SymbianOS; the postlinker will process them and then discard them. */ #undef ELF_DYNAMIC_SEC_FLAGS #define ELF_DYNAMIC_SEC_FLAGS \ (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED) #undef elf_backend_emit_relocs #undef bfd_elf32_bfd_link_hash_table_create #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create #undef elf_backend_special_sections #define elf_backend_special_sections elf32_arm_symbian_special_sections #undef elf_backend_begin_write_processing #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing #undef elf_backend_final_write_processing #define elf_backend_final_write_processing elf32_arm_final_write_processing #undef elf_backend_modify_segment_map #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map /* There is no .got section for BPABI objects, and hence no header. */ #undef elf_backend_got_header_size #define elf_backend_got_header_size 0 /* Similarly, there is no .got.plt section. */ #undef elf_backend_want_got_plt #define elf_backend_want_got_plt 0 #undef elf_backend_plt_sym_val #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val #undef elf_backend_may_use_rel_p #define elf_backend_may_use_rel_p 1 #undef elf_backend_may_use_rela_p #define elf_backend_may_use_rela_p 0 #undef elf_backend_default_use_rela_p #define elf_backend_default_use_rela_p 0 #undef elf_backend_want_plt_sym #define elf_backend_want_plt_sym 0 #undef ELF_MAXPAGESIZE #define ELF_MAXPAGESIZE 0x8000 #include "elf32-target.h"