/* * Copyright © 2012 Intel Corporation * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see . * * Author: Benjamin Segovia */ #include "cl_command_queue.h" #include "cl_context.h" #include "cl_program.h" #include "cl_kernel.h" #include "cl_device_id.h" #include "cl_mem.h" #include "cl_utils.h" #include "cl_alloc.h" #include #include #include #define MAX_GROUP_SIZE_IN_HALFSLICE 512 static INLINE size_t cl_kernel_compute_batch_sz(cl_kernel k) { return 256+256; } /* "Varing" payload is the part of the curbe that changes accross threads in the * same work group. Right now, it consists in local IDs and block IPs */ static cl_int cl_set_varying_payload(const cl_kernel ker, char *data, const size_t *local_wk_sz, size_t simd_sz, size_t cst_sz, size_t thread_n) { uint32_t *ids[3] = {NULL,NULL,NULL}; uint16_t *block_ips = NULL; size_t i, j, k, curr = 0; int32_t id_offset[3], ip_offset; cl_int err = CL_SUCCESS; id_offset[0] = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_LOCAL_ID_X, 0); id_offset[1] = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_LOCAL_ID_Y, 0); id_offset[2] = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_LOCAL_ID_Z, 0); ip_offset = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_BLOCK_IP, 0); assert(id_offset[0] >= 0 && id_offset[1] >= 0 && id_offset[2] >= 0 && ip_offset >= 0); TRY_ALLOC(ids[0], (uint32_t*) alloca(sizeof(uint32_t)*thread_n*simd_sz)); TRY_ALLOC(ids[1], (uint32_t*) alloca(sizeof(uint32_t)*thread_n*simd_sz)); TRY_ALLOC(ids[2], (uint32_t*) alloca(sizeof(uint32_t)*thread_n*simd_sz)); TRY_ALLOC(block_ips, (uint16_t*) alloca(sizeof(uint16_t)*thread_n*simd_sz)); /* 0xffff means that the lane is inactivated */ memset(block_ips, 0xff, sizeof(uint16_t)*thread_n*simd_sz); /* Compute the IDs and the block IPs */ for (k = 0; k < local_wk_sz[2]; ++k) for (j = 0; j < local_wk_sz[1]; ++j) for (i = 0; i < local_wk_sz[0]; ++i, ++curr) { ids[0][curr] = i; ids[1][curr] = j; ids[2][curr] = k; block_ips[curr] = 0; } /* Copy them to the curbe buffer */ curr = 0; for (i = 0; i < thread_n; ++i, data += cst_sz) { uint32_t *ids0 = (uint32_t *) (data + id_offset[0]); uint32_t *ids1 = (uint32_t *) (data + id_offset[1]); uint32_t *ids2 = (uint32_t *) (data + id_offset[2]); uint16_t *ips = (uint16_t *) (data + ip_offset); for (j = 0; j < simd_sz; ++j, ++curr) { ids0[j] = ids[0][curr]; ids1[j] = ids[1][curr]; ids2[j] = ids[2][curr]; ips[j] = block_ips[curr]; } } error: return err; } static int cl_upload_constant_buffer(cl_command_queue queue, cl_kernel ker) { /* calculate constant buffer size * we need raw_size & aligned_size */ GET_QUEUE_THREAD_GPGPU(queue); int32_t arg; size_t offset = 0; uint32_t raw_size = 0, aligned_size =0; gbe_program prog = ker->program->opaque; const int32_t arg_n = interp_kernel_get_arg_num(ker->opaque); size_t global_const_size = interp_program_get_global_constant_size(prog); raw_size = global_const_size; // Surface state need 4 byte alignment, and Constant argument's buffer size // have align to 4 byte when alloc, so align global constant size to 4 can // ensure the finally aligned_size align to 4. aligned_size = ALIGN(raw_size, 4); /* Reserve 8 bytes to get rid of 0 address */ if(global_const_size == 0) aligned_size = 8; for (arg = 0; arg < arg_n; ++arg) { const enum gbe_arg_type type = interp_kernel_get_arg_type(ker->opaque, arg); if (type == GBE_ARG_CONSTANT_PTR && ker->args[arg].mem) { uint32_t alignment = interp_kernel_get_arg_align(ker->opaque, arg); assert(alignment != 0); cl_mem mem = ker->args[arg].mem; raw_size += mem->size; aligned_size = ALIGN(aligned_size, alignment); aligned_size += mem->size; } } if(raw_size == 0) return 0; cl_buffer bo = cl_gpgpu_alloc_constant_buffer(gpgpu, aligned_size, BTI_CONSTANT); if (bo == NULL) return -1; cl_buffer_map(bo, 1); char * cst_addr = cl_buffer_get_virtual(bo); if (cst_addr == NULL) return -1; /* upload the global constant data */ if (global_const_size > 0) { interp_program_get_global_constant_data(prog, (char*)(cst_addr+offset)); offset += global_const_size; } /* reserve 8 bytes to get rid of 0 address */ if(global_const_size == 0) { offset = 8; } /* upload constant buffer argument */ int32_t curbe_offset = 0; for (arg = 0; arg < arg_n; ++arg) { const enum gbe_arg_type type = interp_kernel_get_arg_type(ker->opaque, arg); if (type == GBE_ARG_CONSTANT_PTR && ker->args[arg].mem) { cl_mem mem = ker->args[arg].mem; uint32_t alignment = interp_kernel_get_arg_align(ker->opaque, arg); offset = ALIGN(offset, alignment); curbe_offset = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_KERNEL_ARGUMENT, arg); assert(curbe_offset >= 0); *(uint32_t *) (ker->curbe + curbe_offset) = offset; cl_buffer_map(mem->bo, 1); void * addr = cl_buffer_get_virtual(mem->bo); memcpy(cst_addr + offset, addr, mem->size); cl_buffer_unmap(mem->bo); offset += mem->size; } } cl_buffer_unmap(bo); return 0; } /* Will return the total amount of slm used */ static int32_t cl_curbe_fill(cl_kernel ker, const uint32_t work_dim, const size_t *global_wk_off, const size_t *global_wk_sz, const size_t *local_wk_sz, size_t thread_n) { int32_t offset; #define UPLOAD(ENUM, VALUE) \ if ((offset = interp_kernel_get_curbe_offset(ker->opaque, ENUM, 0)) >= 0) \ *((uint32_t *) (ker->curbe + offset)) = VALUE; UPLOAD(GBE_CURBE_LOCAL_SIZE_X, local_wk_sz[0]); UPLOAD(GBE_CURBE_LOCAL_SIZE_Y, local_wk_sz[1]); UPLOAD(GBE_CURBE_LOCAL_SIZE_Z, local_wk_sz[2]); UPLOAD(GBE_CURBE_GLOBAL_SIZE_X, global_wk_sz[0]); UPLOAD(GBE_CURBE_GLOBAL_SIZE_Y, global_wk_sz[1]); UPLOAD(GBE_CURBE_GLOBAL_SIZE_Z, global_wk_sz[2]); UPLOAD(GBE_CURBE_GLOBAL_OFFSET_X, global_wk_off[0]); UPLOAD(GBE_CURBE_GLOBAL_OFFSET_Y, global_wk_off[1]); UPLOAD(GBE_CURBE_GLOBAL_OFFSET_Z, global_wk_off[2]); UPLOAD(GBE_CURBE_GROUP_NUM_X, global_wk_sz[0]/local_wk_sz[0]); UPLOAD(GBE_CURBE_GROUP_NUM_Y, global_wk_sz[1]/local_wk_sz[1]); UPLOAD(GBE_CURBE_GROUP_NUM_Z, global_wk_sz[2]/local_wk_sz[2]); UPLOAD(GBE_CURBE_THREAD_NUM, thread_n); UPLOAD(GBE_CURBE_WORK_DIM, work_dim); #undef UPLOAD /* Write identity for the stack pointer. This is required by the stack pointer * computation in the kernel */ if ((offset = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_STACK_POINTER, 0)) >= 0) { const uint32_t simd_sz = interp_kernel_get_simd_width(ker->opaque); uint32_t *stackptr = (uint32_t *) (ker->curbe + offset); int32_t i; for (i = 0; i < (int32_t) simd_sz; ++i) stackptr[i] = i; } /* Handle the various offsets to SLM */ const int32_t arg_n = interp_kernel_get_arg_num(ker->opaque); int32_t arg, slm_offset = interp_kernel_get_slm_size(ker->opaque); ker->local_mem_sz = 0; for (arg = 0; arg < arg_n; ++arg) { const enum gbe_arg_type type = interp_kernel_get_arg_type(ker->opaque, arg); if (type != GBE_ARG_LOCAL_PTR) continue; uint32_t align = interp_kernel_get_arg_align(ker->opaque, arg); assert(align != 0); slm_offset = ALIGN(slm_offset, align); offset = interp_kernel_get_curbe_offset(ker->opaque, GBE_CURBE_KERNEL_ARGUMENT, arg); assert(offset >= 0); uint32_t *slmptr = (uint32_t *) (ker->curbe + offset); *slmptr = slm_offset; slm_offset += ker->args[arg].local_sz; ker->local_mem_sz += ker->args[arg].local_sz; } return slm_offset; } static void cl_bind_stack(cl_gpgpu gpgpu, cl_kernel ker) { cl_context ctx = ker->program->ctx; cl_device_id device = ctx->device; const int32_t per_lane_stack_sz = ker->stack_size; const int32_t value = GBE_CURBE_EXTRA_ARGUMENT; const int32_t sub_value = GBE_STACK_BUFFER; const int32_t offset = interp_kernel_get_curbe_offset(ker->opaque, value, sub_value); int32_t stack_sz = per_lane_stack_sz; /* No stack required for this kernel */ if (per_lane_stack_sz == 0) return; /* The stack size is given for *each* SIMD lane. So, we accordingly compute * the size we need for the complete machine */ assert(offset >= 0); stack_sz *= interp_kernel_get_simd_width(ker->opaque); stack_sz *= device->max_compute_unit * ctx->device->max_thread_per_unit; /* Because HSW calc stack offset per thread is relative with half slice, when thread schedule in half slice is not balance, would out of bound. Because the max half slice is 4 in GT4, multiply stack size with 4 for safe. */ if(cl_driver_get_ver(ctx->drv) == 75) stack_sz *= 4; cl_gpgpu_set_stack(gpgpu, offset, stack_sz, BTI_PRIVATE); } static int cl_bind_printf(cl_gpgpu gpgpu, cl_kernel ker, void* printf_info, int printf_num, size_t global_sz) { int32_t value = GBE_CURBE_PRINTF_INDEX_POINTER; int32_t offset = interp_kernel_get_curbe_offset(ker->opaque, value, 0); size_t buf_size = global_sz * sizeof(int) * printf_num; if (offset > 0) { if (cl_gpgpu_set_printf_buffer(gpgpu, 0, buf_size*2, offset, interp_get_printf_indexbuf_bti(printf_info)) != 0) return -1; } value = GBE_CURBE_PRINTF_BUF_POINTER; offset = interp_kernel_get_curbe_offset(ker->opaque, value, 0); buf_size = interp_get_printf_sizeof_size(printf_info) * global_sz; /* because of the printf may exist in a loop, which loop number can not be gotten by static analysis. So we set the data buffer as big as we can. Out of bound printf info will be discarded. */ if (buf_size < 1*1024) buf_size = 1*1024*1024; else buf_size = 16*1024*1024; //at most. if (offset > 0) { if (cl_gpgpu_set_printf_buffer(gpgpu, 1, buf_size, offset, interp_get_printf_buf_bti(printf_info)) != 0) return -1; } return 0; } LOCAL cl_int cl_command_queue_ND_range_gen7(cl_command_queue queue, cl_kernel ker, const uint32_t work_dim, const size_t *global_wk_off, const size_t *global_wk_sz, const size_t *local_wk_sz) { GET_QUEUE_THREAD_GPGPU(queue); cl_context ctx = queue->ctx; char *final_curbe = NULL; /* Includes them and one sub-buffer per group */ cl_gpgpu_kernel kernel; const uint32_t simd_sz = cl_kernel_get_simd_width(ker); size_t i, batch_sz = 0u, local_sz = 0u; size_t cst_sz = ker->curbe_sz= interp_kernel_get_curbe_size(ker->opaque); int32_t scratch_sz = interp_kernel_get_scratch_size(ker->opaque); size_t thread_n = 0u; int printf_num = 0; cl_int err = CL_SUCCESS; size_t global_size = global_wk_sz[0] * global_wk_sz[1] * global_wk_sz[2]; void* printf_info = NULL; /* Setup kernel */ kernel.name = "KERNEL"; kernel.grf_blocks = 128; kernel.bo = ker->bo; kernel.barrierID = 0; kernel.slm_sz = 0; kernel.use_slm = interp_kernel_use_slm(ker->opaque); /* Compute the number of HW threads we need */ if(UNLIKELY(err = cl_kernel_work_group_sz(ker, local_wk_sz, 3, &local_sz) != CL_SUCCESS)) { fprintf(stderr, "Beignet: Work group size exceed Kerne's work group size.\n"); return err; } kernel.thread_n = thread_n = (local_sz + simd_sz - 1) / simd_sz; kernel.curbe_sz = cst_sz; if (scratch_sz > ker->program->ctx->device->scratch_mem_size) { fprintf(stderr, "Beignet: Out of scratch memory %d.\n", scratch_sz); return CL_OUT_OF_RESOURCES; } /* Curbe step 1: fill the constant urb buffer data shared by all threads */ if (ker->curbe) { kernel.slm_sz = cl_curbe_fill(ker, work_dim, global_wk_off, global_wk_sz, local_wk_sz, thread_n); if (kernel.slm_sz > ker->program->ctx->device->local_mem_size) { fprintf(stderr, "Beignet: Out of shared local memory %d.\n", kernel.slm_sz); return CL_OUT_OF_RESOURCES; } } printf_info = interp_dup_printfset(ker->opaque); cl_gpgpu_set_printf_info(gpgpu, printf_info, (size_t *)global_wk_sz); /* Setup the kernel */ if (queue->props & CL_QUEUE_PROFILING_ENABLE) err = cl_gpgpu_state_init(gpgpu, ctx->device->max_compute_unit * ctx->device->max_thread_per_unit, cst_sz / 32, 1); else err = cl_gpgpu_state_init(gpgpu, ctx->device->max_compute_unit * ctx->device->max_thread_per_unit, cst_sz / 32, 0); if (err != 0) goto error; printf_num = interp_get_printf_num(printf_info); if (printf_num) { if (cl_bind_printf(gpgpu, ker, printf_info, printf_num, global_size) != 0) goto error; } /* Bind user buffers */ cl_command_queue_bind_surface(queue, ker); /* Bind user images */ cl_command_queue_bind_image(queue, ker); /* Bind all samplers */ cl_gpgpu_bind_sampler(gpgpu, ker->samplers, ker->sampler_sz); if (cl_gpgpu_set_scratch(gpgpu, scratch_sz) != 0) goto error; /* Bind a stack if needed */ cl_bind_stack(gpgpu, ker); if (cl_upload_constant_buffer(queue, ker) != 0) goto error; cl_gpgpu_states_setup(gpgpu, &kernel); /* Curbe step 2. Give the localID and upload it to video memory */ if (ker->curbe) { assert(cst_sz > 0); TRY_ALLOC (final_curbe, (char*) alloca(thread_n * cst_sz)); for (i = 0; i < thread_n; ++i) { memcpy(final_curbe + cst_sz * i, ker->curbe, cst_sz); } TRY (cl_set_varying_payload, ker, final_curbe, local_wk_sz, simd_sz, cst_sz, thread_n); if (cl_gpgpu_upload_curbes(gpgpu, final_curbe, thread_n*cst_sz) != 0) goto error; } /* Start a new batch buffer */ batch_sz = cl_kernel_compute_batch_sz(ker); if (cl_gpgpu_batch_reset(gpgpu, batch_sz) != 0) goto error; cl_set_thread_batch_buf(queue, cl_gpgpu_ref_batch_buf(gpgpu)); cl_gpgpu_batch_start(gpgpu); /* Issue the GPGPU_WALKER command */ cl_gpgpu_walker(gpgpu, simd_sz, thread_n, global_wk_off, global_wk_sz, local_wk_sz); /* Close the batch buffer and submit it */ cl_gpgpu_batch_end(gpgpu, 0); return CL_SUCCESS; error: /* only some command/buffer internal error reach here, so return error code OOR */ return CL_OUT_OF_RESOURCES; }