/* * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. * Copyright (c) 1999-2004 Hewlett-Packard Development Company, L.P. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ #include "private/gc_priv.h" #include #include /* Allocate reclaim list for kind: */ /* Return TRUE on success */ STATIC GC_bool GC_alloc_reclaim_list(struct obj_kind *kind) { struct hblk ** result = (struct hblk **) GC_scratch_alloc((MAXOBJGRANULES+1) * sizeof(struct hblk *)); if (result == 0) return(FALSE); BZERO(result, (MAXOBJGRANULES+1)*sizeof(struct hblk *)); kind -> ok_reclaim_list = result; return(TRUE); } GC_INNER GC_bool GC_collect_or_expand(word needed_blocks, GC_bool ignore_off_page, GC_bool retry); /* from alloc.c */ /* Allocate a large block of size lb bytes. */ /* The block is not cleared. */ /* Flags is 0 or IGNORE_OFF_PAGE. */ /* We hold the allocation lock. */ /* EXTRA_BYTES were already added to lb. */ GC_INNER ptr_t GC_alloc_large(size_t lb, int k, unsigned flags) { struct hblk * h; word n_blocks; ptr_t result; GC_bool retry = FALSE; /* Round up to a multiple of a granule. */ lb = (lb + GRANULE_BYTES - 1) & ~(GRANULE_BYTES - 1); n_blocks = OBJ_SZ_TO_BLOCKS(lb); if (!EXPECT(GC_is_initialized, TRUE)) GC_init(); /* Do our share of marking work */ if (GC_incremental && !GC_dont_gc) GC_collect_a_little_inner((int)n_blocks); h = GC_allochblk(lb, k, flags); # ifdef USE_MUNMAP if (0 == h) { GC_merge_unmapped(); h = GC_allochblk(lb, k, flags); } # endif while (0 == h && GC_collect_or_expand(n_blocks, flags != 0, retry)) { h = GC_allochblk(lb, k, flags); retry = TRUE; } if (h == 0) { result = 0; } else { size_t total_bytes = n_blocks * HBLKSIZE; if (n_blocks > 1) { GC_large_allocd_bytes += total_bytes; if (GC_large_allocd_bytes > GC_max_large_allocd_bytes) GC_max_large_allocd_bytes = GC_large_allocd_bytes; } result = h -> hb_body; } return result; } /* Allocate a large block of size lb bytes. Clear if appropriate. */ /* We hold the allocation lock. */ /* EXTRA_BYTES were already added to lb. */ STATIC ptr_t GC_alloc_large_and_clear(size_t lb, int k, unsigned flags) { ptr_t result = GC_alloc_large(lb, k, flags); word n_blocks = OBJ_SZ_TO_BLOCKS(lb); if (0 == result) return 0; if (GC_debugging_started || GC_obj_kinds[k].ok_init) { /* Clear the whole block, in case of GC_realloc call. */ BZERO(result, n_blocks * HBLKSIZE); } return result; } /* allocate lb bytes for an object of kind k. */ /* Should not be used to directly to allocate */ /* objects such as STUBBORN objects that */ /* require special handling on allocation. */ /* First a version that assumes we already */ /* hold lock: */ GC_INNER void * GC_generic_malloc_inner(size_t lb, int k) { void *op; if(SMALL_OBJ(lb)) { struct obj_kind * kind = GC_obj_kinds + k; size_t lg = GC_size_map[lb]; void ** opp = &(kind -> ok_freelist[lg]); if( (op = *opp) == 0 ) { if (GC_size_map[lb] == 0) { if (!EXPECT(GC_is_initialized, TRUE)) GC_init(); if (GC_size_map[lb] == 0) GC_extend_size_map(lb); return(GC_generic_malloc_inner(lb, k)); } if (kind -> ok_reclaim_list == 0) { if (!GC_alloc_reclaim_list(kind)) goto out; } op = GC_allocobj(lg, k); if (op == 0) goto out; } *opp = obj_link(op); obj_link(op) = 0; GC_bytes_allocd += GRANULES_TO_BYTES(lg); } else { op = (ptr_t)GC_alloc_large_and_clear(ADD_SLOP(lb), k, 0); GC_bytes_allocd += lb; } out: return op; } /* Allocate a composite object of size n bytes. The caller guarantees */ /* that pointers past the first page are not relevant. Caller holds */ /* allocation lock. */ GC_INNER void * GC_generic_malloc_inner_ignore_off_page(size_t lb, int k) { word lb_adjusted; void * op; if (lb <= HBLKSIZE) return(GC_generic_malloc_inner(lb, k)); lb_adjusted = ADD_SLOP(lb); op = GC_alloc_large_and_clear(lb_adjusted, k, IGNORE_OFF_PAGE); GC_bytes_allocd += lb_adjusted; return op; } GC_API void * GC_CALL GC_generic_malloc(size_t lb, int k) { void * result; DCL_LOCK_STATE; if (EXPECT(GC_have_errors, FALSE)) GC_print_all_errors(); GC_INVOKE_FINALIZERS(); if (SMALL_OBJ(lb)) { LOCK(); result = GC_generic_malloc_inner((word)lb, k); UNLOCK(); } else { size_t lg; size_t lb_rounded; word n_blocks; GC_bool init; lg = ROUNDED_UP_GRANULES(lb); lb_rounded = GRANULES_TO_BYTES(lg); n_blocks = OBJ_SZ_TO_BLOCKS(lb_rounded); init = GC_obj_kinds[k].ok_init; LOCK(); result = (ptr_t)GC_alloc_large(lb_rounded, k, 0); if (0 != result) { if (GC_debugging_started) { BZERO(result, n_blocks * HBLKSIZE); } else { # ifdef THREADS /* Clear any memory that might be used for GC descriptors */ /* before we release the lock. */ ((word *)result)[0] = 0; ((word *)result)[1] = 0; ((word *)result)[GRANULES_TO_WORDS(lg)-1] = 0; ((word *)result)[GRANULES_TO_WORDS(lg)-2] = 0; # endif } } GC_bytes_allocd += lb_rounded; UNLOCK(); if (init && !GC_debugging_started && 0 != result) { BZERO(result, n_blocks * HBLKSIZE); } } if (0 == result) { return((*GC_get_oom_fn())(lb)); } else { return(result); } } /* Allocate lb bytes of atomic (pointerfree) data */ #ifdef THREAD_LOCAL_ALLOC GC_INNER void * GC_core_malloc_atomic(size_t lb) #else GC_API void * GC_CALL GC_malloc_atomic(size_t lb) #endif { void *op; void ** opp; size_t lg; DCL_LOCK_STATE; if(SMALL_OBJ(lb)) { lg = GC_size_map[lb]; opp = &(GC_aobjfreelist[lg]); LOCK(); if (EXPECT((op = *opp) == 0, FALSE)) { UNLOCK(); return(GENERAL_MALLOC((word)lb, PTRFREE)); } *opp = obj_link(op); GC_bytes_allocd += GRANULES_TO_BYTES(lg); UNLOCK(); return((void *) op); } else { return(GENERAL_MALLOC((word)lb, PTRFREE)); } } /* Allocate lb bytes of composite (pointerful) data */ #ifdef THREAD_LOCAL_ALLOC GC_INNER void * GC_core_malloc(size_t lb) #else GC_API void * GC_CALL GC_malloc(size_t lb) #endif { void *op; void **opp; size_t lg; DCL_LOCK_STATE; if(SMALL_OBJ(lb)) { lg = GC_size_map[lb]; opp = (void **)&(GC_objfreelist[lg]); LOCK(); if (EXPECT((op = *opp) == 0, FALSE)) { UNLOCK(); return (GENERAL_MALLOC((word)lb, NORMAL)); } GC_ASSERT(0 == obj_link(op) || ((word)obj_link(op) <= (word)GC_greatest_plausible_heap_addr && (word)obj_link(op) >= (word)GC_least_plausible_heap_addr)); *opp = obj_link(op); obj_link(op) = 0; GC_bytes_allocd += GRANULES_TO_BYTES(lg); UNLOCK(); return op; } else { return(GENERAL_MALLOC(lb, NORMAL)); } } /* Allocate lb bytes of pointerful, traced, but not collectable data */ GC_API void * GC_CALL GC_malloc_uncollectable(size_t lb) { void *op; void **opp; size_t lg; DCL_LOCK_STATE; if( SMALL_OBJ(lb) ) { if (EXTRA_BYTES != 0 && lb != 0) lb--; /* We don't need the extra byte, since this won't be */ /* collected anyway. */ lg = GC_size_map[lb]; opp = &(GC_uobjfreelist[lg]); LOCK(); if( (op = *opp) != 0 ) { *opp = obj_link(op); obj_link(op) = 0; GC_bytes_allocd += GRANULES_TO_BYTES(lg); /* Mark bit ws already set on free list. It will be */ /* cleared only temporarily during a collection, as a */ /* result of the normal free list mark bit clearing. */ GC_non_gc_bytes += GRANULES_TO_BYTES(lg); UNLOCK(); } else { UNLOCK(); op = (ptr_t)GC_generic_malloc((word)lb, UNCOLLECTABLE); /* For small objects, the free lists are completely marked. */ } GC_ASSERT(0 == op || GC_is_marked(op)); return((void *) op); } else { hdr * hhdr; op = (ptr_t)GC_generic_malloc((word)lb, UNCOLLECTABLE); if (0 == op) return(0); GC_ASSERT(((word)op & (HBLKSIZE - 1)) == 0); /* large block */ hhdr = HDR(op); /* We don't need the lock here, since we have an undisguised */ /* pointer. We do need to hold the lock while we adjust */ /* mark bits. */ LOCK(); set_mark_bit_from_hdr(hhdr, 0); /* Only object. */ GC_ASSERT(hhdr -> hb_n_marks == 0); hhdr -> hb_n_marks = 1; UNLOCK(); return((void *) op); } } #ifdef REDIRECT_MALLOC # ifndef MSWINCE # include # endif /* Avoid unnecessary nested procedure calls here, by #defining some */ /* malloc replacements. Otherwise we end up saving a */ /* meaningless return address in the object. It also speeds things up, */ /* but it is admittedly quite ugly. */ # define GC_debug_malloc_replacement(lb) \ GC_debug_malloc(lb, GC_DBG_RA "unknown", 0) void * malloc(size_t lb) { /* It might help to manually inline the GC_malloc call here. */ /* But any decent compiler should reduce the extra procedure call */ /* to at most a jump instruction in this case. */ # if defined(I386) && defined(GC_SOLARIS_THREADS) /* * Thread initialisation can call malloc before * we're ready for it. * It's not clear that this is enough to help matters. * The thread implementation may well call malloc at other * inopportune times. */ if (!EXPECT(GC_is_initialized, TRUE)) return sbrk(lb); # endif /* I386 && GC_SOLARIS_THREADS */ return((void *)REDIRECT_MALLOC(lb)); } #if defined(GC_LINUX_THREADS) /* && !defined(USE_PROC_FOR_LIBRARIES) */ STATIC ptr_t GC_libpthread_start = 0; STATIC ptr_t GC_libpthread_end = 0; STATIC ptr_t GC_libld_start = 0; STATIC ptr_t GC_libld_end = 0; STATIC void GC_init_lib_bounds(void) { if (GC_libpthread_start != 0) return; GC_init(); /* if not called yet */ if (!GC_text_mapping("libpthread-", &GC_libpthread_start, &GC_libpthread_end)) { WARN("Failed to find libpthread.so text mapping: Expect crash\n", 0); /* This might still work with some versions of libpthread, */ /* so we don't abort. Perhaps we should. */ /* Generate message only once: */ GC_libpthread_start = (ptr_t)1; } if (!GC_text_mapping("ld-", &GC_libld_start, &GC_libld_end)) { WARN("Failed to find ld.so text mapping: Expect crash\n", 0); } } #endif /* GC_LINUX_THREADS */ void * calloc(size_t n, size_t lb) { # if defined(GC_LINUX_THREADS) /* && !defined(USE_PROC_FOR_LIBRARIES) */ /* libpthread allocated some memory that is only pointed to by */ /* mmapped thread stacks. Make sure it's not collectable. */ { static GC_bool lib_bounds_set = FALSE; ptr_t caller = (ptr_t)__builtin_return_address(0); /* This test does not need to ensure memory visibility, since */ /* the bounds will be set when/if we create another thread. */ if (!EXPECT(lib_bounds_set, TRUE)) { GC_init_lib_bounds(); lib_bounds_set = TRUE; } if ((caller >= GC_libpthread_start && caller < GC_libpthread_end) || (caller >= GC_libld_start && caller < GC_libld_end)) return GC_malloc_uncollectable(n*lb); /* The two ranges are actually usually adjacent, so there may */ /* be a way to speed this up. */ } # endif return((void *)REDIRECT_MALLOC(n*lb)); } #ifndef strdup char *strdup(const char *s) { size_t lb = strlen(s) + 1; char *result = (char *)REDIRECT_MALLOC(lb); if (result == 0) { errno = ENOMEM; return 0; } BCOPY(s, result, lb); return result; } #endif /* !defined(strdup) */ /* If strdup is macro defined, we assume that it actually calls malloc, */ /* and thus the right thing will happen even without overriding it. */ /* This seems to be true on most Linux systems. */ #ifndef strndup /* This is similar to strdup(). */ char *strndup(const char *str, size_t size) { char *copy; size_t len = strlen(str); if (len > size) len = size; copy = (char *)REDIRECT_MALLOC(len + 1); if (copy == NULL) { errno = ENOMEM; return NULL; } BCOPY(str, copy, len); copy[len] = '\0'; return copy; } #endif /* !strndup */ #undef GC_debug_malloc_replacement #endif /* REDIRECT_MALLOC */ /* Explicitly deallocate an object p. */ GC_API void GC_CALL GC_free(void * p) { struct hblk *h; hdr *hhdr; size_t sz; /* In bytes */ size_t ngranules; /* sz in granules */ void **flh; int knd; struct obj_kind * ok; DCL_LOCK_STATE; if (p == 0) return; /* Required by ANSI. It's not my fault ... */ # ifdef LOG_ALLOCS GC_err_printf("GC_free(%p): %lu\n", p, (unsigned long)GC_gc_no); # endif h = HBLKPTR(p); hhdr = HDR(h); # if defined(REDIRECT_MALLOC) && \ (defined(GC_SOLARIS_THREADS) || defined(GC_LINUX_THREADS) \ || defined(MSWIN32)) /* For Solaris, we have to redirect malloc calls during */ /* initialization. For the others, this seems to happen */ /* implicitly. */ /* Don't try to deallocate that memory. */ if (0 == hhdr) return; # endif GC_ASSERT(GC_base(p) == p); sz = hhdr -> hb_sz; ngranules = BYTES_TO_GRANULES(sz); knd = hhdr -> hb_obj_kind; ok = &GC_obj_kinds[knd]; if (EXPECT(ngranules <= MAXOBJGRANULES, TRUE)) { LOCK(); GC_bytes_freed += sz; if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz; /* Its unnecessary to clear the mark bit. If the */ /* object is reallocated, it doesn't matter. O.w. the */ /* collector will do it, since it's on a free list. */ if (ok -> ok_init) { BZERO((word *)p + 1, sz-sizeof(word)); } flh = &(ok -> ok_freelist[ngranules]); obj_link(p) = *flh; *flh = (ptr_t)p; UNLOCK(); } else { size_t nblocks = OBJ_SZ_TO_BLOCKS(sz); LOCK(); GC_bytes_freed += sz; if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz; if (nblocks > 1) { GC_large_allocd_bytes -= nblocks * HBLKSIZE; } GC_freehblk(h); UNLOCK(); } } /* Explicitly deallocate an object p when we already hold lock. */ /* Only used for internally allocated objects, so we can take some */ /* shortcuts. */ #ifdef THREADS GC_INNER void GC_free_inner(void * p) { struct hblk *h; hdr *hhdr; size_t sz; /* bytes */ size_t ngranules; /* sz in granules */ void ** flh; int knd; struct obj_kind * ok; DCL_LOCK_STATE; h = HBLKPTR(p); hhdr = HDR(h); knd = hhdr -> hb_obj_kind; sz = hhdr -> hb_sz; ngranules = BYTES_TO_GRANULES(sz); ok = &GC_obj_kinds[knd]; if (ngranules <= MAXOBJGRANULES) { GC_bytes_freed += sz; if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz; if (ok -> ok_init) { BZERO((word *)p + 1, sz-sizeof(word)); } flh = &(ok -> ok_freelist[ngranules]); obj_link(p) = *flh; *flh = (ptr_t)p; } else { size_t nblocks = OBJ_SZ_TO_BLOCKS(sz); GC_bytes_freed += sz; if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz; if (nblocks > 1) { GC_large_allocd_bytes -= nblocks * HBLKSIZE; } GC_freehblk(h); } } #endif /* THREADS */ #if defined(REDIRECT_MALLOC) && !defined(REDIRECT_FREE) # define REDIRECT_FREE GC_free #endif #ifdef REDIRECT_FREE void free(void * p) { # if defined(GC_LINUX_THREADS) && !defined(USE_PROC_FOR_LIBRARIES) { /* Don't bother with initialization checks. If nothing */ /* has been initialized, the check fails, and that's safe, */ /* since we haven't allocated uncollectable objects either. */ ptr_t caller = (ptr_t)__builtin_return_address(0); /* This test does not need to ensure memory visibility, since */ /* the bounds will be set when/if we create another thread. */ if (caller >= GC_libpthread_start && caller < GC_libpthread_end || (caller >= GC_libld_start && caller < GC_libld_end)) { GC_free(p); return; } } # endif # ifndef IGNORE_FREE REDIRECT_FREE(p); # endif } #endif /* REDIRECT_FREE */