$$ -*- mode: c++; -*- $$ This is a Pump source file. Please use Pump to convert it to $$ gmock-generated-actions.h. $$ $var n = 10 $$ The maximum arity we support. $$ }} This line fixes auto-indentation of the following code in Emacs. // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used variadic matchers. #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ #include #include #include #include "gmock/gmock-matchers.h" namespace testing { namespace internal { $range i 0..n-1 // The type of the i-th (0-based) field of Tuple. #define GMOCK_FIELD_TYPE_(Tuple, i) \ typename ::std::tr1::tuple_element::type // TupleFields is for selecting fields from a // tuple of type Tuple. It has two members: // // type: a tuple type whose i-th field is the ki-th field of Tuple. // GetSelectedFields(t): returns fields k0, ..., and kn of t as a tuple. // // For example, in class TupleFields, 2, 0>, we have: // // type is tuple, and // GetSelectedFields(make_tuple(true, 'a', 42)) is (42, true). template class TupleFields; // This generic version is used when there are $n selectors. template class TupleFields { public: typedef ::std::tr1::tuple<$for i, [[GMOCK_FIELD_TYPE_(Tuple, k$i)]]> type; static type GetSelectedFields(const Tuple& t) { using ::std::tr1::get; return type($for i, [[get(t)]]); } }; // The following specialization is used for 0 ~ $(n-1) selectors. $for i [[ $$ }}} $range j 0..i-1 $range k 0..n-1 template class TupleFields { public: typedef ::std::tr1::tuple<$for j, [[GMOCK_FIELD_TYPE_(Tuple, k$j)]]> type; static type GetSelectedFields(const Tuple& $if i==0 [[/* t */]] $else [[t]]) { using ::std::tr1::get; return type($for j, [[get(t)]]); } }; ]] #undef GMOCK_FIELD_TYPE_ // Implements the Args() matcher. $var ks = [[$for i, [[k$i]]]] template class ArgsMatcherImpl : public MatcherInterface { public: // ArgsTuple may have top-level const or reference modifiers. typedef GTEST_REMOVE_REFERENCE_AND_CONST_(ArgsTuple) RawArgsTuple; typedef typename internal::TupleFields::type SelectedArgs; typedef Matcher MonomorphicInnerMatcher; template explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) : inner_matcher_(SafeMatcherCast(inner_matcher)) {} virtual bool MatchAndExplain(ArgsTuple args, MatchResultListener* listener) const { const SelectedArgs& selected_args = GetSelectedArgs(args); if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); PrintIndices(listener->stream()); *listener << "are " << PrintToString(selected_args); StringMatchResultListener inner_listener; const bool match = inner_matcher_.MatchAndExplain(selected_args, &inner_listener); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } virtual void DescribeTo(::std::ostream* os) const { *os << "are a tuple "; PrintIndices(os); inner_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "are a tuple "; PrintIndices(os); inner_matcher_.DescribeNegationTo(os); } private: static SelectedArgs GetSelectedArgs(ArgsTuple args) { return TupleFields::GetSelectedFields(args); } // Prints the indices of the selected fields. static void PrintIndices(::std::ostream* os) { *os << "whose fields ("; const int indices[$n] = { $ks }; for (int i = 0; i < $n; i++) { if (indices[i] < 0) break; if (i >= 1) *os << ", "; *os << "#" << indices[i]; } *os << ") "; } const MonomorphicInnerMatcher inner_matcher_; GTEST_DISALLOW_ASSIGN_(ArgsMatcherImpl); }; template class ArgsMatcher { public: explicit ArgsMatcher(const InnerMatcher& inner_matcher) : inner_matcher_(inner_matcher) {} template operator Matcher() const { return MakeMatcher(new ArgsMatcherImpl(inner_matcher_)); } private: const InnerMatcher inner_matcher_; GTEST_DISALLOW_ASSIGN_(ArgsMatcher); }; // Implements ElementsAre() of 1-$n arguments. $range i 1..n $for i [[ $range j 1..i template <$for j, [[typename T$j]]> class ElementsAreMatcher$i { public: $if i==1 [[explicit ]]ElementsAreMatcher$i($for j, [[const T$j& e$j]])$if i > 0 [[ : ]] $for j, [[e$j[[]]_(e$j)]] {} template operator Matcher() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView::type::value_type Element; $if i==1 [[ // Nokia's Symbian Compiler has a nasty bug where the object put // in a one-element local array is not destructed when the array // goes out of scope. This leads to obvious badness as we've // added the linked_ptr in it to our other linked_ptrs list. // Hence we implement ElementsAreMatcher1 specially to avoid using // a local array. const Matcher matcher = MatcherCast(e1_); return MakeMatcher(new ElementsAreMatcherImpl(&matcher, 1)); ]] $else [[ const Matcher matchers[] = { $for j [[ MatcherCast(e$j[[]]_), ]] }; return MakeMatcher(new ElementsAreMatcherImpl(matchers, $i)); ]] } private: $for j [[ const T$j& e$j[[]]_; ]] GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher$i); }; ]] } // namespace internal // Args(a_matcher) matches a tuple if the selected // fields of it matches a_matcher. C++ doesn't support default // arguments for function templates, so we have to overload it. $range i 0..n $for i [[ $range j 1..i template <$for j [[int k$j, ]]typename InnerMatcher> inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } ]] // ElementsAre(e0, e1, ..., e_n) matches an STL-style container with // (n + 1) elements, where the i-th element in the container must // match the i-th argument in the list. Each argument of // ElementsAre() can be either a value or a matcher. We support up to // $n arguments. // // NOTE: Since ElementsAre() cares about the order of the elements, it // must not be used with containers whose elements's order is // undefined (e.g. hash_map). inline internal::ElementsAreMatcher0 ElementsAre() { return internal::ElementsAreMatcher0(); } $range i 1..n $for i [[ $range j 1..i template <$for j, [[typename T$j]]> inline internal::ElementsAreMatcher$i<$for j, [[T$j]]> ElementsAre($for j, [[const T$j& e$j]]) { return internal::ElementsAreMatcher$i<$for j, [[T$j]]>($for j, [[e$j]]); } ]] // ElementsAreArray(array) and ElementAreArray(array, count) are like // ElementsAre(), except that they take an array of values or // matchers. The former form infers the size of 'array', which must // be a static C-style array. In the latter form, 'array' can either // be a static array or a pointer to a dynamically created array. template inline internal::ElementsAreArrayMatcher ElementsAreArray( const T* first, size_t count) { return internal::ElementsAreArrayMatcher(first, count); } template inline internal::ElementsAreArrayMatcher ElementsAreArray(const T (&array)[N]) { return internal::ElementsAreArrayMatcher(array, N); } // AllOf(m1, m2, ..., mk) matches any value that matches all of the given // sub-matchers. AllOf is called fully qualified to prevent ADL from firing. $range i 2..n $for i [[ $range j 1..i $range k 1..i-1 template <$for j, [[typename Matcher$j]]> inline $for k[[internal::BothOfMatcher ]] AllOf($for j, [[Matcher$j m$j]]) { $if i == 2 [[ return internal::BothOfMatcher(m1, m2); ]] $else [[ return ::testing::AllOf(m1, ::testing::AllOf($for k, [[m$(k + 1)]])); ]] } ]] // AnyOf(m1, m2, ..., mk) matches any value that matches any of the given // sub-matchers. AnyOf is called fully qualified to prevent ADL from firing. $range i 2..n $for i [[ $range j 1..i $range k 1..i-1 template <$for j, [[typename Matcher$j]]> inline $for k[[internal::EitherOfMatcher ]] AnyOf($for j, [[Matcher$j m$j]]) { $if i == 2 [[ return internal::EitherOfMatcher(m1, m2); ]] $else [[ return ::testing::AnyOf(m1, ::testing::AnyOf($for k, [[m$(k + 1)]])); ]] } ]] } // namespace testing $$ } // This Pump meta comment fixes auto-indentation in Emacs. It will not $$ // show up in the generated code. // The MATCHER* family of macros can be used in a namespace scope to // define custom matchers easily. // // Basic Usage // =========== // // The syntax // // MATCHER(name, description_string) { statements; } // // defines a matcher with the given name that executes the statements, // which must return a bool to indicate if the match succeeds. Inside // the statements, you can refer to the value being matched by 'arg', // and refer to its type by 'arg_type'. // // The description string documents what the matcher does, and is used // to generate the failure message when the match fails. Since a // MATCHER() is usually defined in a header file shared by multiple // C++ source files, we require the description to be a C-string // literal to avoid possible side effects. It can be empty, in which // case we'll use the sequence of words in the matcher name as the // description. // // For example: // // MATCHER(IsEven, "") { return (arg % 2) == 0; } // // allows you to write // // // Expects mock_foo.Bar(n) to be called where n is even. // EXPECT_CALL(mock_foo, Bar(IsEven())); // // or, // // // Verifies that the value of some_expression is even. // EXPECT_THAT(some_expression, IsEven()); // // If the above assertion fails, it will print something like: // // Value of: some_expression // Expected: is even // Actual: 7 // // where the description "is even" is automatically calculated from the // matcher name IsEven. // // Argument Type // ============= // // Note that the type of the value being matched (arg_type) is // determined by the context in which you use the matcher and is // supplied to you by the compiler, so you don't need to worry about // declaring it (nor can you). This allows the matcher to be // polymorphic. For example, IsEven() can be used to match any type // where the value of "(arg % 2) == 0" can be implicitly converted to // a bool. In the "Bar(IsEven())" example above, if method Bar() // takes an int, 'arg_type' will be int; if it takes an unsigned long, // 'arg_type' will be unsigned long; and so on. // // Parameterizing Matchers // ======================= // // Sometimes you'll want to parameterize the matcher. For that you // can use another macro: // // MATCHER_P(name, param_name, description_string) { statements; } // // For example: // // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } // // will allow you to write: // // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); // // which may lead to this message (assuming n is 10): // // Value of: Blah("a") // Expected: has absolute value 10 // Actual: -9 // // Note that both the matcher description and its parameter are // printed, making the message human-friendly. // // In the matcher definition body, you can write 'foo_type' to // reference the type of a parameter named 'foo'. For example, in the // body of MATCHER_P(HasAbsoluteValue, value) above, you can write // 'value_type' to refer to the type of 'value'. // // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to // support multi-parameter matchers. // // Describing Parameterized Matchers // ================================= // // The last argument to MATCHER*() is a string-typed expression. The // expression can reference all of the matcher's parameters and a // special bool-typed variable named 'negation'. When 'negation' is // false, the expression should evaluate to the matcher's description; // otherwise it should evaluate to the description of the negation of // the matcher. For example, // // using testing::PrintToString; // // MATCHER_P2(InClosedRange, low, hi, // string(negation ? "is not" : "is") + " in range [" + // PrintToString(low) + ", " + PrintToString(hi) + "]") { // return low <= arg && arg <= hi; // } // ... // EXPECT_THAT(3, InClosedRange(4, 6)); // EXPECT_THAT(3, Not(InClosedRange(2, 4))); // // would generate two failures that contain the text: // // Expected: is in range [4, 6] // ... // Expected: is not in range [2, 4] // // If you specify "" as the description, the failure message will // contain the sequence of words in the matcher name followed by the // parameter values printed as a tuple. For example, // // MATCHER_P2(InClosedRange, low, hi, "") { ... } // ... // EXPECT_THAT(3, InClosedRange(4, 6)); // EXPECT_THAT(3, Not(InClosedRange(2, 4))); // // would generate two failures that contain the text: // // Expected: in closed range (4, 6) // ... // Expected: not (in closed range (2, 4)) // // Types of Matcher Parameters // =========================== // // For the purpose of typing, you can view // // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } // // as shorthand for // // template // FooMatcherPk // Foo(p1_type p1, ..., pk_type pk) { ... } // // When you write Foo(v1, ..., vk), the compiler infers the types of // the parameters v1, ..., and vk for you. If you are not happy with // the result of the type inference, you can specify the types by // explicitly instantiating the template, as in Foo(5, // false). As said earlier, you don't get to (or need to) specify // 'arg_type' as that's determined by the context in which the matcher // is used. You can assign the result of expression Foo(p1, ..., pk) // to a variable of type FooMatcherPk. This // can be useful when composing matchers. // // While you can instantiate a matcher template with reference types, // passing the parameters by pointer usually makes your code more // readable. If, however, you still want to pass a parameter by // reference, be aware that in the failure message generated by the // matcher you will see the value of the referenced object but not its // address. // // Explaining Match Results // ======================== // // Sometimes the matcher description alone isn't enough to explain why // the match has failed or succeeded. For example, when expecting a // long string, it can be very helpful to also print the diff between // the expected string and the actual one. To achieve that, you can // optionally stream additional information to a special variable // named result_listener, whose type is a pointer to class // MatchResultListener: // // MATCHER_P(EqualsLongString, str, "") { // if (arg == str) return true; // // *result_listener << "the difference: " /// << DiffStrings(str, arg); // return false; // } // // Overloading Matchers // ==================== // // You can overload matchers with different numbers of parameters: // // MATCHER_P(Blah, a, description_string1) { ... } // MATCHER_P2(Blah, a, b, description_string2) { ... } // // Caveats // ======= // // When defining a new matcher, you should also consider implementing // MatcherInterface or using MakePolymorphicMatcher(). These // approaches require more work than the MATCHER* macros, but also // give you more control on the types of the value being matched and // the matcher parameters, which may leads to better compiler error // messages when the matcher is used wrong. They also allow // overloading matchers based on parameter types (as opposed to just // based on the number of parameters). // // MATCHER*() can only be used in a namespace scope. The reason is // that C++ doesn't yet allow function-local types to be used to // instantiate templates. The up-coming C++0x standard will fix this. // Once that's done, we'll consider supporting using MATCHER*() inside // a function. // // More Information // ================ // // To learn more about using these macros, please search for 'MATCHER' // on http://code.google.com/p/googlemock/wiki/CookBook. $range i 0..n $for i [[ $var macro_name = [[$if i==0 [[MATCHER]] $elif i==1 [[MATCHER_P]] $else [[MATCHER_P$i]]]] $var class_name = [[name##Matcher[[$if i==0 [[]] $elif i==1 [[P]] $else [[P$i]]]]]] $range j 0..i-1 $var template = [[$if i==0 [[]] $else [[ template <$for j, [[typename p$j##_type]]>\ ]]]] $var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]] $var impl_ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]] $var impl_inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]] $var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]] $var params = [[$for j, [[p$j]]]] $var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]] $var param_types_and_names = [[$for j, [[p$j##_type p$j]]]] $var param_field_decls = [[$for j [[ p$j##_type p$j;\ ]]]] $var param_field_decls2 = [[$for j [[ p$j##_type p$j;\ ]]]] #define $macro_name(name$for j [[, p$j]], description)\$template class $class_name {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface {\ public:\ [[$if i==1 [[explicit ]]]]gmock_Impl($impl_ctor_param_list)\ $impl_inits {}\ virtual bool MatchAndExplain(\ arg_type arg, ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\$param_field_decls private:\ ::testing::internal::string FormatDescription(bool negation) const {\ const ::testing::internal::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name,\ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::std::tr1::tuple<$for j, [[p$j##_type]]>($for j, [[p$j]])));\ }\ GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl($params));\ }\ $class_name($ctor_param_list)$inits {\ }\$param_field_decls2 private:\ GTEST_DISALLOW_ASSIGN_($class_name);\ };\$template inline $class_name$param_types name($param_types_and_names) {\ return $class_name$param_types($params);\ }\$template template \ bool $class_name$param_types::gmock_Impl::MatchAndExplain(\ arg_type arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const ]] #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_