/* * Copyright (C) 2004-2017 Apple Inc. All rights reserved. * Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies) * Copyright (C) 2007 Alp Toker * Copyright (C) 2008 Eric Seidel * Copyright (C) 2008 Dirk Schulze * Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved. * Copyright (C) 2012 Intel Corporation. All rights reserved. * Copyright (C) 2013, 2014 Adobe Systems Incorporated. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "CanvasRenderingContext2D.h" #include "BitmapImage.h" #include "CSSFontSelector.h" #include "CSSParser.h" #include "CSSPropertyNames.h" #include "CachedImage.h" #include "CanvasGradient.h" #include "CanvasPattern.h" #include "DOMPath.h" #include "DisplayListRecorder.h" #include "DisplayListReplayer.h" #include "FloatQuad.h" #include "HTMLImageElement.h" #include "HTMLVideoElement.h" #include "ImageBuffer.h" #include "ImageData.h" #include "RenderElement.h" #include "RenderImage.h" #include "RenderLayer.h" #include "RenderTheme.h" #include "SecurityOrigin.h" #include "StrokeStyleApplier.h" #include "StyleProperties.h" #include "StyleResolver.h" #include "TextMetrics.h" #include "TextRun.h" #include "TextStream.h" #include #include #include #include #if USE(CG) && !PLATFORM(IOS) #include #endif namespace WebCore { using namespace HTMLNames; #if USE(CG) const CanvasRenderingContext2D::ImageSmoothingQuality defaultSmoothingQuality = CanvasRenderingContext2D::ImageSmoothingQuality::Low; #else const CanvasRenderingContext2D::ImageSmoothingQuality defaultSmoothingQuality = CanvasRenderingContext2D::ImageSmoothingQuality::Medium; #endif static const int defaultFontSize = 10; static const char* const defaultFontFamily = "sans-serif"; static const char* const defaultFont = "10px sans-serif"; struct DisplayListDrawingContext { WTF_MAKE_FAST_ALLOCATED; public: GraphicsContext context; DisplayList::Recorder recorder; DisplayList::DisplayList displayList; DisplayListDrawingContext(const FloatRect& clip) : recorder(context, displayList, clip, AffineTransform()) { } }; typedef HashMap> ContextDisplayListHashMap; static ContextDisplayListHashMap& contextDisplayListMap() { static NeverDestroyed sharedHashMap; return sharedHashMap; } class CanvasStrokeStyleApplier : public StrokeStyleApplier { public: CanvasStrokeStyleApplier(CanvasRenderingContext2D* canvasContext) : m_canvasContext(canvasContext) { } void strokeStyle(GraphicsContext* c) override { c->setStrokeThickness(m_canvasContext->lineWidth()); c->setLineCap(m_canvasContext->getLineCap()); c->setLineJoin(m_canvasContext->getLineJoin()); c->setMiterLimit(m_canvasContext->miterLimit()); const Vector& lineDash = m_canvasContext->getLineDash(); DashArray convertedLineDash(lineDash.size()); for (size_t i = 0; i < lineDash.size(); ++i) convertedLineDash[i] = static_cast(lineDash[i]); c->setLineDash(convertedLineDash, m_canvasContext->lineDashOffset()); } private: CanvasRenderingContext2D* m_canvasContext; }; CanvasRenderingContext2D::CanvasRenderingContext2D(HTMLCanvasElement& canvas, bool usesCSSCompatibilityParseMode, bool usesDashboardCompatibilityMode) : CanvasRenderingContext(canvas) , m_stateStack(1) , m_usesCSSCompatibilityParseMode(usesCSSCompatibilityParseMode) #if ENABLE(DASHBOARD_SUPPORT) , m_usesDashboardCompatibilityMode(usesDashboardCompatibilityMode) #endif { #if !ENABLE(DASHBOARD_SUPPORT) ASSERT_UNUSED(usesDashboardCompatibilityMode, !usesDashboardCompatibilityMode); #endif } void CanvasRenderingContext2D::unwindStateStack() { // Ensure that the state stack in the ImageBuffer's context // is cleared before destruction, to avoid assertions in the // GraphicsContext dtor. if (size_t stackSize = m_stateStack.size()) { if (GraphicsContext* context = canvas().existingDrawingContext()) { while (--stackSize) context->restore(); } } } CanvasRenderingContext2D::~CanvasRenderingContext2D() { #if !ASSERT_DISABLED unwindStateStack(); #endif if (UNLIKELY(tracksDisplayListReplay())) contextDisplayListMap().remove(this); } bool CanvasRenderingContext2D::isAccelerated() const { #if USE(IOSURFACE_CANVAS_BACKING_STORE) || ENABLE(ACCELERATED_2D_CANVAS) if (!canvas().hasCreatedImageBuffer()) return false; auto* context = drawingContext(); return context && context->isAcceleratedContext(); #else return false; #endif } void CanvasRenderingContext2D::reset() { unwindStateStack(); m_stateStack.resize(1); m_stateStack.first() = State(); m_path.clear(); m_unrealizedSaveCount = 0; m_recordingContext = nullptr; } CanvasRenderingContext2D::State::State() : strokeStyle(Color::black) , fillStyle(Color::black) , lineWidth(1) , lineCap(ButtCap) , lineJoin(MiterJoin) , miterLimit(10) , shadowBlur(0) , shadowColor(Color::transparent) , globalAlpha(1) , globalComposite(CompositeSourceOver) , globalBlend(BlendModeNormal) , hasInvertibleTransform(true) , lineDashOffset(0) , imageSmoothingEnabled(true) , imageSmoothingQuality(defaultSmoothingQuality) , textAlign(StartTextAlign) , textBaseline(AlphabeticTextBaseline) , direction(Direction::Inherit) , unparsedFont(defaultFont) { } CanvasRenderingContext2D::State::State(const State& other) : unparsedStrokeColor(other.unparsedStrokeColor) , unparsedFillColor(other.unparsedFillColor) , strokeStyle(other.strokeStyle) , fillStyle(other.fillStyle) , lineWidth(other.lineWidth) , lineCap(other.lineCap) , lineJoin(other.lineJoin) , miterLimit(other.miterLimit) , shadowOffset(other.shadowOffset) , shadowBlur(other.shadowBlur) , shadowColor(other.shadowColor) , globalAlpha(other.globalAlpha) , globalComposite(other.globalComposite) , globalBlend(other.globalBlend) , transform(other.transform) , hasInvertibleTransform(other.hasInvertibleTransform) , lineDashOffset(other.lineDashOffset) , imageSmoothingEnabled(other.imageSmoothingEnabled) , imageSmoothingQuality(other.imageSmoothingQuality) , textAlign(other.textAlign) , textBaseline(other.textBaseline) , direction(other.direction) , unparsedFont(other.unparsedFont) , font(other.font) { } CanvasRenderingContext2D::State& CanvasRenderingContext2D::State::operator=(const State& other) { if (this == &other) return *this; unparsedStrokeColor = other.unparsedStrokeColor; unparsedFillColor = other.unparsedFillColor; strokeStyle = other.strokeStyle; fillStyle = other.fillStyle; lineWidth = other.lineWidth; lineCap = other.lineCap; lineJoin = other.lineJoin; miterLimit = other.miterLimit; shadowOffset = other.shadowOffset; shadowBlur = other.shadowBlur; shadowColor = other.shadowColor; globalAlpha = other.globalAlpha; globalComposite = other.globalComposite; globalBlend = other.globalBlend; transform = other.transform; hasInvertibleTransform = other.hasInvertibleTransform; imageSmoothingEnabled = other.imageSmoothingEnabled; imageSmoothingQuality = other.imageSmoothingQuality; textAlign = other.textAlign; textBaseline = other.textBaseline; direction = other.direction; unparsedFont = other.unparsedFont; font = other.font; return *this; } CanvasRenderingContext2D::FontProxy::~FontProxy() { if (realized()) m_font.fontSelector()->unregisterForInvalidationCallbacks(*this); } CanvasRenderingContext2D::FontProxy::FontProxy(const FontProxy& other) : m_font(other.m_font) { if (realized()) m_font.fontSelector()->registerForInvalidationCallbacks(*this); } auto CanvasRenderingContext2D::FontProxy::operator=(const FontProxy& other) -> FontProxy& { if (realized()) m_font.fontSelector()->unregisterForInvalidationCallbacks(*this); m_font = other.m_font; if (realized()) m_font.fontSelector()->registerForInvalidationCallbacks(*this); return *this; } inline void CanvasRenderingContext2D::FontProxy::update(FontSelector& selector) { ASSERT(&selector == m_font.fontSelector()); // This is an invariant. We should only ever be registered for callbacks on m_font.m_fonts.m_fontSelector. if (realized()) m_font.fontSelector()->unregisterForInvalidationCallbacks(*this); m_font.update(&selector); if (realized()) m_font.fontSelector()->registerForInvalidationCallbacks(*this); ASSERT(&selector == m_font.fontSelector()); } void CanvasRenderingContext2D::FontProxy::fontsNeedUpdate(FontSelector& selector) { ASSERT_ARG(selector, &selector == m_font.fontSelector()); ASSERT(realized()); update(selector); } inline void CanvasRenderingContext2D::FontProxy::initialize(FontSelector& fontSelector, const RenderStyle& newStyle) { // Beware! m_font.fontSelector() might not point to document.fontSelector()! ASSERT(newStyle.fontCascade().fontSelector() == &fontSelector); if (realized()) m_font.fontSelector()->unregisterForInvalidationCallbacks(*this); m_font = newStyle.fontCascade(); m_font.update(&fontSelector); ASSERT(&fontSelector == m_font.fontSelector()); m_font.fontSelector()->registerForInvalidationCallbacks(*this); } inline FontMetrics CanvasRenderingContext2D::FontProxy::fontMetrics() const { return m_font.fontMetrics(); } inline const FontCascadeDescription& CanvasRenderingContext2D::FontProxy::fontDescription() const { return m_font.fontDescription(); } inline float CanvasRenderingContext2D::FontProxy::width(const TextRun& textRun) const { return m_font.width(textRun); } inline void CanvasRenderingContext2D::FontProxy::drawBidiText(GraphicsContext& context, const TextRun& run, const FloatPoint& point, FontCascade::CustomFontNotReadyAction action) const { context.drawBidiText(m_font, run, point, action); } void CanvasRenderingContext2D::realizeSaves() { if (m_unrealizedSaveCount) realizeSavesLoop(); if (m_unrealizedSaveCount) { static NeverDestroyed consoleMessage(ASCIILiteral("CanvasRenderingContext2D.save() has been called without a matching restore() too many times. Ignoring save().")); canvas().document().addConsoleMessage(MessageSource::Rendering, MessageLevel::Error, consoleMessage); } } void CanvasRenderingContext2D::realizeSavesLoop() { ASSERT(m_unrealizedSaveCount); ASSERT(m_stateStack.size() >= 1); GraphicsContext* context = drawingContext(); do { if (m_stateStack.size() > MaxSaveCount) break; m_stateStack.append(state()); if (context) context->save(); } while (--m_unrealizedSaveCount); } void CanvasRenderingContext2D::restore() { if (m_unrealizedSaveCount) { --m_unrealizedSaveCount; return; } ASSERT(m_stateStack.size() >= 1); if (m_stateStack.size() <= 1) return; m_path.transform(state().transform); m_stateStack.removeLast(); if (std::optional inverse = state().transform.inverse()) m_path.transform(inverse.value()); GraphicsContext* c = drawingContext(); if (!c) return; c->restore(); } void CanvasRenderingContext2D::setStrokeStyle(CanvasStyle style) { if (!style.isValid()) return; if (state().strokeStyle.isValid() && state().strokeStyle.isEquivalentColor(style)) return; if (style.isCurrentColor()) { if (style.hasOverrideAlpha()) { // FIXME: Should not use RGBA32 here. style = CanvasStyle(colorWithOverrideAlpha(currentColor(&canvas()).rgb(), style.overrideAlpha())); } else style = CanvasStyle(currentColor(&canvas())); } else checkOrigin(style.canvasPattern()); realizeSaves(); State& state = modifiableState(); state.strokeStyle = style; GraphicsContext* c = drawingContext(); if (!c) return; state.strokeStyle.applyStrokeColor(*c); state.unparsedStrokeColor = String(); } void CanvasRenderingContext2D::setFillStyle(CanvasStyle style) { if (!style.isValid()) return; if (state().fillStyle.isValid() && state().fillStyle.isEquivalentColor(style)) return; if (style.isCurrentColor()) { if (style.hasOverrideAlpha()) { // FIXME: Should not use RGBA32 here. style = CanvasStyle(colorWithOverrideAlpha(currentColor(&canvas()).rgb(), style.overrideAlpha())); } else style = CanvasStyle(currentColor(&canvas())); } else checkOrigin(style.canvasPattern()); realizeSaves(); State& state = modifiableState(); state.fillStyle = style; GraphicsContext* c = drawingContext(); if (!c) return; state.fillStyle.applyFillColor(*c); state.unparsedFillColor = String(); } float CanvasRenderingContext2D::lineWidth() const { return state().lineWidth; } void CanvasRenderingContext2D::setLineWidth(float width) { if (!(std::isfinite(width) && width > 0)) return; if (state().lineWidth == width) return; realizeSaves(); modifiableState().lineWidth = width; GraphicsContext* c = drawingContext(); if (!c) return; c->setStrokeThickness(width); } String CanvasRenderingContext2D::lineCap() const { return lineCapName(state().lineCap); } void CanvasRenderingContext2D::setLineCap(const String& s) { LineCap cap; if (!parseLineCap(s, cap)) return; if (state().lineCap == cap) return; realizeSaves(); modifiableState().lineCap = cap; GraphicsContext* c = drawingContext(); if (!c) return; c->setLineCap(cap); } String CanvasRenderingContext2D::lineJoin() const { return lineJoinName(state().lineJoin); } void CanvasRenderingContext2D::setLineJoin(const String& s) { LineJoin join; if (!parseLineJoin(s, join)) return; if (state().lineJoin == join) return; realizeSaves(); modifiableState().lineJoin = join; GraphicsContext* c = drawingContext(); if (!c) return; c->setLineJoin(join); } float CanvasRenderingContext2D::miterLimit() const { return state().miterLimit; } void CanvasRenderingContext2D::setMiterLimit(float limit) { if (!(std::isfinite(limit) && limit > 0)) return; if (state().miterLimit == limit) return; realizeSaves(); modifiableState().miterLimit = limit; GraphicsContext* c = drawingContext(); if (!c) return; c->setMiterLimit(limit); } float CanvasRenderingContext2D::shadowOffsetX() const { return state().shadowOffset.width(); } void CanvasRenderingContext2D::setShadowOffsetX(float x) { if (!std::isfinite(x)) return; if (state().shadowOffset.width() == x) return; realizeSaves(); modifiableState().shadowOffset.setWidth(x); applyShadow(); } float CanvasRenderingContext2D::shadowOffsetY() const { return state().shadowOffset.height(); } void CanvasRenderingContext2D::setShadowOffsetY(float y) { if (!std::isfinite(y)) return; if (state().shadowOffset.height() == y) return; realizeSaves(); modifiableState().shadowOffset.setHeight(y); applyShadow(); } float CanvasRenderingContext2D::shadowBlur() const { return state().shadowBlur; } void CanvasRenderingContext2D::setShadowBlur(float blur) { if (!(std::isfinite(blur) && blur >= 0)) return; if (state().shadowBlur == blur) return; realizeSaves(); modifiableState().shadowBlur = blur; applyShadow(); } String CanvasRenderingContext2D::shadowColor() const { return Color(state().shadowColor).serialized(); } void CanvasRenderingContext2D::setShadowColor(const String& colorString) { Color color = parseColorOrCurrentColor(colorString, &canvas()); if (!color.isValid()) return; if (state().shadowColor == color) return; realizeSaves(); modifiableState().shadowColor = color; applyShadow(); } const Vector& CanvasRenderingContext2D::getLineDash() const { return state().lineDash; } static bool lineDashSequenceIsValid(const Vector& dash) { for (size_t i = 0; i < dash.size(); i++) { if (!std::isfinite(dash[i]) || dash[i] < 0) return false; } return true; } void CanvasRenderingContext2D::setLineDash(const Vector& dash) { if (!lineDashSequenceIsValid(dash)) return; realizeSaves(); modifiableState().lineDash = dash; // Spec requires the concatenation of two copies the dash list when the // number of elements is odd if (dash.size() % 2) modifiableState().lineDash.appendVector(dash); applyLineDash(); } void CanvasRenderingContext2D::setWebkitLineDash(const Vector& dash) { if (!lineDashSequenceIsValid(dash)) return; realizeSaves(); modifiableState().lineDash = dash; applyLineDash(); } float CanvasRenderingContext2D::lineDashOffset() const { return state().lineDashOffset; } void CanvasRenderingContext2D::setLineDashOffset(float offset) { if (!std::isfinite(offset) || state().lineDashOffset == offset) return; realizeSaves(); modifiableState().lineDashOffset = offset; applyLineDash(); } void CanvasRenderingContext2D::applyLineDash() const { GraphicsContext* c = drawingContext(); if (!c) return; DashArray convertedLineDash(state().lineDash.size()); for (size_t i = 0; i < state().lineDash.size(); ++i) convertedLineDash[i] = static_cast(state().lineDash[i]); c->setLineDash(convertedLineDash, state().lineDashOffset); } float CanvasRenderingContext2D::globalAlpha() const { return state().globalAlpha; } void CanvasRenderingContext2D::setGlobalAlpha(float alpha) { if (!(alpha >= 0 && alpha <= 1)) return; if (state().globalAlpha == alpha) return; realizeSaves(); modifiableState().globalAlpha = alpha; GraphicsContext* c = drawingContext(); if (!c) return; c->setAlpha(alpha); } String CanvasRenderingContext2D::globalCompositeOperation() const { return compositeOperatorName(state().globalComposite, state().globalBlend); } void CanvasRenderingContext2D::setGlobalCompositeOperation(const String& operation) { CompositeOperator op = CompositeSourceOver; BlendMode blendMode = BlendModeNormal; if (!parseCompositeAndBlendOperator(operation, op, blendMode)) return; if ((state().globalComposite == op) && (state().globalBlend == blendMode)) return; realizeSaves(); modifiableState().globalComposite = op; modifiableState().globalBlend = blendMode; GraphicsContext* c = drawingContext(); if (!c) return; c->setCompositeOperation(op, blendMode); } void CanvasRenderingContext2D::scale(float sx, float sy) { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().hasInvertibleTransform) return; if (!std::isfinite(sx) || !std::isfinite(sy)) return; AffineTransform newTransform = state().transform; newTransform.scaleNonUniform(sx, sy); if (state().transform == newTransform) return; realizeSaves(); if (!sx || !sy) { modifiableState().hasInvertibleTransform = false; return; } modifiableState().transform = newTransform; c->scale(FloatSize(sx, sy)); m_path.transform(AffineTransform().scaleNonUniform(1.0 / sx, 1.0 / sy)); } void CanvasRenderingContext2D::rotate(float angleInRadians) { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().hasInvertibleTransform) return; if (!std::isfinite(angleInRadians)) return; AffineTransform newTransform = state().transform; newTransform.rotate(angleInRadians / piDouble * 180.0); if (state().transform == newTransform) return; realizeSaves(); modifiableState().transform = newTransform; c->rotate(angleInRadians); m_path.transform(AffineTransform().rotate(-angleInRadians / piDouble * 180.0)); } void CanvasRenderingContext2D::translate(float tx, float ty) { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().hasInvertibleTransform) return; if (!std::isfinite(tx) | !std::isfinite(ty)) return; AffineTransform newTransform = state().transform; newTransform.translate(tx, ty); if (state().transform == newTransform) return; realizeSaves(); modifiableState().transform = newTransform; c->translate(tx, ty); m_path.transform(AffineTransform().translate(-tx, -ty)); } void CanvasRenderingContext2D::transform(float m11, float m12, float m21, float m22, float dx, float dy) { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().hasInvertibleTransform) return; if (!std::isfinite(m11) | !std::isfinite(m21) | !std::isfinite(dx) | !std::isfinite(m12) | !std::isfinite(m22) | !std::isfinite(dy)) return; AffineTransform transform(m11, m12, m21, m22, dx, dy); AffineTransform newTransform = state().transform * transform; if (state().transform == newTransform) return; realizeSaves(); if (auto inverse = transform.inverse()) { modifiableState().transform = newTransform; c->concatCTM(transform); m_path.transform(inverse.value()); return; } modifiableState().hasInvertibleTransform = false; } void CanvasRenderingContext2D::setTransform(float m11, float m12, float m21, float m22, float dx, float dy) { GraphicsContext* c = drawingContext(); if (!c) return; if (!std::isfinite(m11) | !std::isfinite(m21) | !std::isfinite(dx) | !std::isfinite(m12) | !std::isfinite(m22) | !std::isfinite(dy)) return; resetTransform(); transform(m11, m12, m21, m22, dx, dy); } void CanvasRenderingContext2D::resetTransform() { GraphicsContext* c = drawingContext(); if (!c) return; AffineTransform ctm = state().transform; bool hasInvertibleTransform = state().hasInvertibleTransform; realizeSaves(); c->setCTM(canvas().baseTransform()); modifiableState().transform = AffineTransform(); if (hasInvertibleTransform) m_path.transform(ctm); modifiableState().hasInvertibleTransform = true; } void CanvasRenderingContext2D::setStrokeColor(const String& color, std::optional alpha) { if (alpha) { setStrokeStyle(CanvasStyle::createFromStringWithOverrideAlpha(color, alpha.value())); return; } if (color == state().unparsedStrokeColor) return; realizeSaves(); setStrokeStyle(CanvasStyle::createFromString(color, &canvas().document())); modifiableState().unparsedStrokeColor = color; } void CanvasRenderingContext2D::setStrokeColor(float grayLevel, float alpha) { if (state().strokeStyle.isValid() && state().strokeStyle.isEquivalentRGBA(grayLevel, grayLevel, grayLevel, alpha)) return; setStrokeStyle(CanvasStyle(grayLevel, alpha)); } void CanvasRenderingContext2D::setStrokeColor(float r, float g, float b, float a) { if (state().strokeStyle.isValid() && state().strokeStyle.isEquivalentRGBA(r, g, b, a)) return; setStrokeStyle(CanvasStyle(r, g, b, a)); } void CanvasRenderingContext2D::setStrokeColor(float c, float m, float y, float k, float a) { if (state().strokeStyle.isValid() && state().strokeStyle.isEquivalentCMYKA(c, m, y, k, a)) return; setStrokeStyle(CanvasStyle(c, m, y, k, a)); } void CanvasRenderingContext2D::setFillColor(const String& color, std::optional alpha) { if (alpha) { setFillStyle(CanvasStyle::createFromStringWithOverrideAlpha(color, alpha.value())); return; } if (color == state().unparsedFillColor) return; realizeSaves(); setFillStyle(CanvasStyle::createFromString(color, &canvas().document())); modifiableState().unparsedFillColor = color; } void CanvasRenderingContext2D::setFillColor(float grayLevel, float alpha) { if (state().fillStyle.isValid() && state().fillStyle.isEquivalentRGBA(grayLevel, grayLevel, grayLevel, alpha)) return; setFillStyle(CanvasStyle(grayLevel, alpha)); } void CanvasRenderingContext2D::setFillColor(float r, float g, float b, float a) { if (state().fillStyle.isValid() && state().fillStyle.isEquivalentRGBA(r, g, b, a)) return; setFillStyle(CanvasStyle(r, g, b, a)); } void CanvasRenderingContext2D::setFillColor(float c, float m, float y, float k, float a) { if (state().fillStyle.isValid() && state().fillStyle.isEquivalentCMYKA(c, m, y, k, a)) return; setFillStyle(CanvasStyle(c, m, y, k, a)); } void CanvasRenderingContext2D::beginPath() { m_path.clear(); } static bool validateRectForCanvas(float& x, float& y, float& width, float& height) { if (!std::isfinite(x) | !std::isfinite(y) | !std::isfinite(width) | !std::isfinite(height)) return false; if (!width && !height) return false; if (width < 0) { width = -width; x -= width; } if (height < 0) { height = -height; y -= height; } return true; } inline void CanvasRenderingContext2D::clearPathForDashboardBackwardCompatibilityMode() { #if ENABLE(DASHBOARD_SUPPORT) if (m_usesDashboardCompatibilityMode) m_path.clear(); #endif } static bool isFullCanvasCompositeMode(CompositeOperator op) { // See 4.8.11.1.3 Compositing // CompositeSourceAtop and CompositeDestinationOut are not listed here as the platforms already // implement the specification's behavior. return op == CompositeSourceIn || op == CompositeSourceOut || op == CompositeDestinationIn || op == CompositeDestinationAtop; } static WindRule toWindRule(CanvasRenderingContext2D::WindingRule rule) { return rule == CanvasRenderingContext2D::WindingRule::Nonzero ? RULE_NONZERO : RULE_EVENODD; } void CanvasRenderingContext2D::fill(WindingRule windingRule) { fillInternal(m_path, windingRule); clearPathForDashboardBackwardCompatibilityMode(); } void CanvasRenderingContext2D::stroke() { strokeInternal(m_path); clearPathForDashboardBackwardCompatibilityMode(); } void CanvasRenderingContext2D::clip(WindingRule windingRule) { clipInternal(m_path, windingRule); clearPathForDashboardBackwardCompatibilityMode(); } void CanvasRenderingContext2D::fill(DOMPath& path, WindingRule windingRule) { fillInternal(path.path(), windingRule); } void CanvasRenderingContext2D::stroke(DOMPath& path) { strokeInternal(path.path()); } void CanvasRenderingContext2D::clip(DOMPath& path, WindingRule windingRule) { clipInternal(path.path(), windingRule); } void CanvasRenderingContext2D::fillInternal(const Path& path, WindingRule windingRule) { auto* c = drawingContext(); if (!c) return; if (!state().hasInvertibleTransform) return; // If gradient size is zero, then paint nothing. auto* gradient = c->fillGradient(); if (gradient && gradient->isZeroSize()) return; if (!path.isEmpty()) { auto savedFillRule = c->fillRule(); c->setFillRule(toWindRule(windingRule)); if (isFullCanvasCompositeMode(state().globalComposite)) { beginCompositeLayer(); c->fillPath(path); endCompositeLayer(); didDrawEntireCanvas(); } else if (state().globalComposite == CompositeCopy) { clearCanvas(); c->fillPath(path); didDrawEntireCanvas(); } else { c->fillPath(path); didDraw(path.fastBoundingRect()); } c->setFillRule(savedFillRule); } } void CanvasRenderingContext2D::strokeInternal(const Path& path) { auto* c = drawingContext(); if (!c) return; if (!state().hasInvertibleTransform) return; // If gradient size is zero, then paint nothing. auto* gradient = c->strokeGradient(); if (gradient && gradient->isZeroSize()) return; if (!path.isEmpty()) { if (isFullCanvasCompositeMode(state().globalComposite)) { beginCompositeLayer(); c->strokePath(path); endCompositeLayer(); didDrawEntireCanvas(); } else if (state().globalComposite == CompositeCopy) { clearCanvas(); c->strokePath(path); didDrawEntireCanvas(); } else { FloatRect dirtyRect = path.fastBoundingRect(); inflateStrokeRect(dirtyRect); c->strokePath(path); didDraw(dirtyRect); } } } void CanvasRenderingContext2D::clipInternal(const Path& path, WindingRule windingRule) { auto* c = drawingContext(); if (!c) return; if (!state().hasInvertibleTransform) return; realizeSaves(); c->canvasClip(path, toWindRule(windingRule)); } inline void CanvasRenderingContext2D::beginCompositeLayer() { #if !USE(CAIRO) drawingContext()->beginTransparencyLayer(1); #endif } inline void CanvasRenderingContext2D::endCompositeLayer() { #if !USE(CAIRO) drawingContext()->endTransparencyLayer(); #endif } bool CanvasRenderingContext2D::isPointInPath(float x, float y, WindingRule windingRule) { return isPointInPathInternal(m_path, x, y, windingRule); } bool CanvasRenderingContext2D::isPointInStroke(float x, float y) { return isPointInStrokeInternal(m_path, x, y); } bool CanvasRenderingContext2D::isPointInPath(DOMPath& path, float x, float y, WindingRule windingRule) { return isPointInPathInternal(path.path(), x, y, windingRule); } bool CanvasRenderingContext2D::isPointInStroke(DOMPath& path, float x, float y) { return isPointInStrokeInternal(path.path(), x, y); } bool CanvasRenderingContext2D::isPointInPathInternal(const Path& path, float x, float y, WindingRule windingRule) { auto* c = drawingContext(); if (!c) return false; if (!state().hasInvertibleTransform) return false; auto transformedPoint = state().transform.inverse().value_or(AffineTransform()).mapPoint(FloatPoint(x, y)); if (!std::isfinite(transformedPoint.x()) || !std::isfinite(transformedPoint.y())) return false; return path.contains(transformedPoint, toWindRule(windingRule)); } bool CanvasRenderingContext2D::isPointInStrokeInternal(const Path& path, float x, float y) { auto* c = drawingContext(); if (!c) return false; if (!state().hasInvertibleTransform) return false; auto transformedPoint = state().transform.inverse().value_or(AffineTransform()).mapPoint(FloatPoint(x, y)); if (!std::isfinite(transformedPoint.x()) || !std::isfinite(transformedPoint.y())) return false; CanvasStrokeStyleApplier applier(this); return path.strokeContains(&applier, transformedPoint); } void CanvasRenderingContext2D::clearRect(float x, float y, float width, float height) { if (!validateRectForCanvas(x, y, width, height)) return; auto* context = drawingContext(); if (!context) return; if (!state().hasInvertibleTransform) return; FloatRect rect(x, y, width, height); bool saved = false; if (shouldDrawShadows()) { context->save(); saved = true; context->setLegacyShadow(FloatSize(), 0, Color::transparent); } if (state().globalAlpha != 1) { if (!saved) { context->save(); saved = true; } context->setAlpha(1); } if (state().globalComposite != CompositeSourceOver) { if (!saved) { context->save(); saved = true; } context->setCompositeOperation(CompositeSourceOver); } context->clearRect(rect); if (saved) context->restore(); didDraw(rect); } void CanvasRenderingContext2D::fillRect(float x, float y, float width, float height) { if (!validateRectForCanvas(x, y, width, height)) return; auto* c = drawingContext(); if (!c) return; if (!state().hasInvertibleTransform) return; // from the HTML5 Canvas spec: // If x0 = x1 and y0 = y1, then the linear gradient must paint nothing // If x0 = x1 and y0 = y1 and r0 = r1, then the radial gradient must paint nothing auto* gradient = c->fillGradient(); if (gradient && gradient->isZeroSize()) return; FloatRect rect(x, y, width, height); if (rectContainsCanvas(rect)) { c->fillRect(rect); didDrawEntireCanvas(); } else if (isFullCanvasCompositeMode(state().globalComposite)) { beginCompositeLayer(); c->fillRect(rect); endCompositeLayer(); didDrawEntireCanvas(); } else if (state().globalComposite == CompositeCopy) { clearCanvas(); c->fillRect(rect); didDrawEntireCanvas(); } else { c->fillRect(rect); didDraw(rect); } } void CanvasRenderingContext2D::strokeRect(float x, float y, float width, float height) { if (!validateRectForCanvas(x, y, width, height)) return; auto* c = drawingContext(); if (!c) return; if (!state().hasInvertibleTransform) return; if (!(state().lineWidth >= 0)) return; // If gradient size is zero, then paint nothing. auto* gradient = c->strokeGradient(); if (gradient && gradient->isZeroSize()) return; FloatRect rect(x, y, width, height); if (isFullCanvasCompositeMode(state().globalComposite)) { beginCompositeLayer(); c->strokeRect(rect, state().lineWidth); endCompositeLayer(); didDrawEntireCanvas(); } else if (state().globalComposite == CompositeCopy) { clearCanvas(); c->strokeRect(rect, state().lineWidth); didDrawEntireCanvas(); } else { FloatRect boundingRect = rect; boundingRect.inflate(state().lineWidth / 2); c->strokeRect(rect, state().lineWidth); didDraw(boundingRect); } } void CanvasRenderingContext2D::setShadow(float width, float height, float blur, const String& colorString, std::optional alpha) { Color color = Color::transparent; if (!colorString.isNull()) { color = parseColorOrCurrentColor(colorString, &canvas()); if (!color.isValid()) return; } // FIXME: Should not use RGBA32 here. setShadow(FloatSize(width, height), blur, colorWithOverrideAlpha(color.rgb(), alpha)); } void CanvasRenderingContext2D::setShadow(float width, float height, float blur, float grayLevel, float alpha) { setShadow(FloatSize(width, height), blur, Color(grayLevel, grayLevel, grayLevel, alpha)); } void CanvasRenderingContext2D::setShadow(float width, float height, float blur, float r, float g, float b, float a) { setShadow(FloatSize(width, height), blur, Color(r, g, b, a)); } void CanvasRenderingContext2D::setShadow(float width, float height, float blur, float c, float m, float y, float k, float a) { setShadow(FloatSize(width, height), blur, Color(c, m, y, k, a)); } void CanvasRenderingContext2D::clearShadow() { setShadow(FloatSize(), 0, Color::transparent); } void CanvasRenderingContext2D::setShadow(const FloatSize& offset, float blur, const Color& color) { if (state().shadowOffset == offset && state().shadowBlur == blur && state().shadowColor == color) return; bool wasDrawingShadows = shouldDrawShadows(); realizeSaves(); modifiableState().shadowOffset = offset; modifiableState().shadowBlur = blur; modifiableState().shadowColor = color; if (!wasDrawingShadows && !shouldDrawShadows()) return; applyShadow(); } void CanvasRenderingContext2D::applyShadow() { auto* c = drawingContext(); if (!c) return; if (shouldDrawShadows()) { float width = state().shadowOffset.width(); float height = state().shadowOffset.height(); c->setLegacyShadow(FloatSize(width, -height), state().shadowBlur, state().shadowColor); } else c->setLegacyShadow(FloatSize(), 0, Color::transparent); } bool CanvasRenderingContext2D::shouldDrawShadows() const { return state().shadowColor.isVisible() && (state().shadowBlur || !state().shadowOffset.isZero()); } enum class ImageSizeType { AfterDevicePixelRatio, BeforeDevicePixelRatio }; static LayoutSize size(HTMLImageElement& element, ImageSizeType sizeType = ImageSizeType::BeforeDevicePixelRatio) { LayoutSize size; if (auto* cachedImage = element.cachedImage()) { size = cachedImage->imageSizeForRenderer(element.renderer(), 1.0f); // FIXME: Not sure about this. if (sizeType == ImageSizeType::AfterDevicePixelRatio && is(element.renderer()) && cachedImage->image() && !cachedImage->image()->hasRelativeWidth()) size.scale(downcast(*element.renderer()).imageDevicePixelRatio()); } return size; } static inline FloatSize size(HTMLCanvasElement& canvasElement) { return canvasElement.size(); } #if ENABLE(VIDEO) static inline FloatSize size(HTMLVideoElement& video) { auto* player = video.player(); if (!player) return { }; return player->naturalSize(); } #endif static inline FloatRect normalizeRect(const FloatRect& rect) { return FloatRect(std::min(rect.x(), rect.maxX()), std::min(rect.y(), rect.maxY()), std::max(rect.width(), -rect.width()), std::max(rect.height(), -rect.height())); } ExceptionOr CanvasRenderingContext2D::drawImage(CanvasImageSource&& image, float dx, float dy) { return WTF::switchOn(image, [&] (RefPtr& imageElement) -> ExceptionOr { LayoutSize destRectSize = size(*imageElement, ImageSizeType::AfterDevicePixelRatio); LayoutSize sourceRectSize = size(*imageElement, ImageSizeType::BeforeDevicePixelRatio); return this->drawImage(*imageElement, FloatRect { 0, 0, sourceRectSize.width(), sourceRectSize.height() }, FloatRect { dx, dy, destRectSize.width(), destRectSize.height() }); }, [&] (auto& element) -> ExceptionOr { FloatSize elementSize = size(*element); return this->drawImage(*element, FloatRect { 0, 0, elementSize.width(), elementSize.height() }, FloatRect { dx, dy, elementSize.width(), elementSize.height() }); } ); } ExceptionOr CanvasRenderingContext2D::drawImage(CanvasImageSource&& image, float dx, float dy, float dw, float dh) { return WTF::switchOn(image, [&] (auto& element) -> ExceptionOr { FloatSize elementSize = size(*element); return this->drawImage(*element, FloatRect { 0, 0, elementSize.width(), elementSize.height() }, FloatRect { dx, dy, dw, dh }); } ); } ExceptionOr CanvasRenderingContext2D::drawImage(CanvasImageSource&& image, float sx, float sy, float sw, float sh, float dx, float dy, float dw, float dh) { return WTF::switchOn(image, [&] (auto& element) -> ExceptionOr { return this->drawImage(*element, FloatRect { sx, sy, sw, sh }, FloatRect { dx, dy, dw, dh }); } ); } ExceptionOr CanvasRenderingContext2D::drawImage(HTMLImageElement& imageElement, const FloatRect& srcRect, const FloatRect& dstRect) { return drawImage(imageElement, srcRect, dstRect, state().globalComposite, state().globalBlend); } ExceptionOr CanvasRenderingContext2D::drawImage(HTMLImageElement& imageElement, const FloatRect& srcRect, const FloatRect& dstRect, const CompositeOperator& op, const BlendMode& blendMode) { if (!std::isfinite(dstRect.x()) || !std::isfinite(dstRect.y()) || !std::isfinite(dstRect.width()) || !std::isfinite(dstRect.height()) || !std::isfinite(srcRect.x()) || !std::isfinite(srcRect.y()) || !std::isfinite(srcRect.width()) || !std::isfinite(srcRect.height())) return { }; if (!dstRect.width() || !dstRect.height()) return { }; if (!imageElement.complete()) return { }; FloatRect normalizedSrcRect = normalizeRect(srcRect); FloatRect normalizedDstRect = normalizeRect(dstRect); FloatRect imageRect = FloatRect(FloatPoint(), size(imageElement, ImageSizeType::BeforeDevicePixelRatio)); if (!srcRect.width() || !srcRect.height()) return Exception { INDEX_SIZE_ERR }; // When the source rectangle is outside the source image, the source rectangle must be clipped // to the source image and the destination rectangle must be clipped in the same proportion. FloatRect originalNormalizedSrcRect = normalizedSrcRect; normalizedSrcRect.intersect(imageRect); if (normalizedSrcRect.isEmpty()) return { }; if (normalizedSrcRect != originalNormalizedSrcRect) { normalizedDstRect.setWidth(normalizedDstRect.width() * normalizedSrcRect.width() / originalNormalizedSrcRect.width()); normalizedDstRect.setHeight(normalizedDstRect.height() * normalizedSrcRect.height() / originalNormalizedSrcRect.height()); if (normalizedDstRect.isEmpty()) return { }; } GraphicsContext* c = drawingContext(); if (!c) return { }; if (!state().hasInvertibleTransform) return { }; CachedImage* cachedImage = imageElement.cachedImage(); if (!cachedImage) return { }; Image* image = cachedImage->imageForRenderer(imageElement.renderer()); if (!image) return { }; ImageObserver* observer = image->imageObserver(); if (image->isSVGImage()) { image->setImageObserver(nullptr); image->setContainerSize(imageRect.size()); } if (rectContainsCanvas(normalizedDstRect)) { c->drawImage(*image, normalizedDstRect, normalizedSrcRect, ImagePaintingOptions(op, blendMode)); didDrawEntireCanvas(); } else if (isFullCanvasCompositeMode(op)) { fullCanvasCompositedDrawImage(*image, normalizedDstRect, normalizedSrcRect, op); didDrawEntireCanvas(); } else if (op == CompositeCopy) { clearCanvas(); c->drawImage(*image, normalizedDstRect, normalizedSrcRect, ImagePaintingOptions(op, blendMode)); didDrawEntireCanvas(); } else { c->drawImage(*image, normalizedDstRect, normalizedSrcRect, ImagePaintingOptions(op, blendMode)); didDraw(normalizedDstRect); } if (image->isSVGImage()) image->setImageObserver(observer); checkOrigin(&imageElement); return { }; } ExceptionOr CanvasRenderingContext2D::drawImage(HTMLCanvasElement& sourceCanvas, const FloatRect& srcRect, const FloatRect& dstRect) { FloatRect srcCanvasRect = FloatRect(FloatPoint(), sourceCanvas.size()); if (!srcCanvasRect.width() || !srcCanvasRect.height()) return Exception { INVALID_STATE_ERR }; if (!srcRect.width() || !srcRect.height()) return Exception { INDEX_SIZE_ERR }; if (!srcCanvasRect.contains(normalizeRect(srcRect)) || !dstRect.width() || !dstRect.height()) return { }; GraphicsContext* c = drawingContext(); if (!c) return { }; if (!state().hasInvertibleTransform) return { }; // FIXME: Do this through platform-independent GraphicsContext API. ImageBuffer* buffer = sourceCanvas.buffer(); if (!buffer) return { }; checkOrigin(&sourceCanvas); #if ENABLE(ACCELERATED_2D_CANVAS) // If we're drawing from one accelerated canvas 2d to another, avoid calling sourceCanvas.makeRenderingResultsAvailable() // as that will do a readback to software. CanvasRenderingContext* sourceContext = sourceCanvas.renderingContext(); // FIXME: Implement an accelerated path for drawing from a WebGL canvas to a 2d canvas when possible. if (!isAccelerated() || !sourceContext || !sourceContext->isAccelerated() || !sourceContext->is2d()) sourceCanvas.makeRenderingResultsAvailable(); #else sourceCanvas.makeRenderingResultsAvailable(); #endif if (rectContainsCanvas(dstRect)) { c->drawImageBuffer(*buffer, dstRect, srcRect, ImagePaintingOptions(state().globalComposite, state().globalBlend)); didDrawEntireCanvas(); } else if (isFullCanvasCompositeMode(state().globalComposite)) { fullCanvasCompositedDrawImage(*buffer, dstRect, srcRect, state().globalComposite); didDrawEntireCanvas(); } else if (state().globalComposite == CompositeCopy) { clearCanvas(); c->drawImageBuffer(*buffer, dstRect, srcRect, ImagePaintingOptions(state().globalComposite, state().globalBlend)); didDrawEntireCanvas(); } else { c->drawImageBuffer(*buffer, dstRect, srcRect, ImagePaintingOptions(state().globalComposite, state().globalBlend)); didDraw(dstRect); } return { }; } #if ENABLE(VIDEO) ExceptionOr CanvasRenderingContext2D::drawImage(HTMLVideoElement& video, const FloatRect& srcRect, const FloatRect& dstRect) { if (video.readyState() == HTMLMediaElement::HAVE_NOTHING || video.readyState() == HTMLMediaElement::HAVE_METADATA) return { }; FloatRect videoRect = FloatRect(FloatPoint(), size(video)); if (!srcRect.width() || !srcRect.height()) return Exception { INDEX_SIZE_ERR }; if (!videoRect.contains(normalizeRect(srcRect)) || !dstRect.width() || !dstRect.height()) return { }; GraphicsContext* c = drawingContext(); if (!c) return { }; if (!state().hasInvertibleTransform) return { }; checkOrigin(&video); #if USE(CG) || (ENABLE(ACCELERATED_2D_CANVAS) && USE(GSTREAMER_GL) && USE(CAIRO)) if (NativeImagePtr image = video.nativeImageForCurrentTime()) { c->drawNativeImage(image, FloatSize(video.videoWidth(), video.videoHeight()), dstRect, srcRect); if (rectContainsCanvas(dstRect)) didDrawEntireCanvas(); else didDraw(dstRect); return { }; } #endif GraphicsContextStateSaver stateSaver(*c); c->clip(dstRect); c->translate(dstRect.x(), dstRect.y()); c->scale(FloatSize(dstRect.width() / srcRect.width(), dstRect.height() / srcRect.height())); c->translate(-srcRect.x(), -srcRect.y()); video.paintCurrentFrameInContext(*c, FloatRect(FloatPoint(), size(video))); stateSaver.restore(); didDraw(dstRect); return { }; } #endif void CanvasRenderingContext2D::drawImageFromRect(HTMLImageElement& imageElement, float sx, float sy, float sw, float sh, float dx, float dy, float dw, float dh, const String& compositeOperation) { CompositeOperator op; auto blendOp = BlendModeNormal; if (!parseCompositeAndBlendOperator(compositeOperation, op, blendOp) || blendOp != BlendModeNormal) op = CompositeSourceOver; drawImage(imageElement, FloatRect { sx, sy, sw, sh }, FloatRect { dx, dy, dw, dh }, op, BlendModeNormal); } void CanvasRenderingContext2D::setAlpha(float alpha) { setGlobalAlpha(alpha); } void CanvasRenderingContext2D::setCompositeOperation(const String& operation) { setGlobalCompositeOperation(operation); } void CanvasRenderingContext2D::clearCanvas() { auto* c = drawingContext(); if (!c) return; c->save(); c->setCTM(canvas().baseTransform()); c->clearRect(FloatRect(0, 0, canvas().width(), canvas().height())); c->restore(); } Path CanvasRenderingContext2D::transformAreaToDevice(const Path& path) const { Path transformed(path); transformed.transform(state().transform); transformed.transform(canvas().baseTransform()); return transformed; } Path CanvasRenderingContext2D::transformAreaToDevice(const FloatRect& rect) const { Path path; path.addRect(rect); return transformAreaToDevice(path); } bool CanvasRenderingContext2D::rectContainsCanvas(const FloatRect& rect) const { FloatQuad quad(rect); FloatQuad canvasQuad(FloatRect(0, 0, canvas().width(), canvas().height())); return state().transform.mapQuad(quad).containsQuad(canvasQuad); } template IntRect CanvasRenderingContext2D::calculateCompositingBufferRect(const T& area, IntSize* croppedOffset) { IntRect canvasRect(0, 0, canvas().width(), canvas().height()); canvasRect = canvas().baseTransform().mapRect(canvasRect); Path path = transformAreaToDevice(area); IntRect bufferRect = enclosingIntRect(path.fastBoundingRect()); IntPoint originalLocation = bufferRect.location(); bufferRect.intersect(canvasRect); if (croppedOffset) *croppedOffset = originalLocation - bufferRect.location(); return bufferRect; } std::unique_ptr CanvasRenderingContext2D::createCompositingBuffer(const IntRect& bufferRect) { return ImageBuffer::create(bufferRect.size(), isAccelerated() ? Accelerated : Unaccelerated); } void CanvasRenderingContext2D::compositeBuffer(ImageBuffer& buffer, const IntRect& bufferRect, CompositeOperator op) { IntRect canvasRect(0, 0, canvas().width(), canvas().height()); canvasRect = canvas().baseTransform().mapRect(canvasRect); auto* c = drawingContext(); if (!c) return; c->save(); c->setCTM(AffineTransform()); c->setCompositeOperation(op); c->save(); c->clipOut(bufferRect); c->clearRect(canvasRect); c->restore(); c->drawImageBuffer(buffer, bufferRect.location(), state().globalComposite); c->restore(); } static void drawImageToContext(Image& image, GraphicsContext& context, const FloatRect& dest, const FloatRect& src, CompositeOperator op) { context.drawImage(image, dest, src, op); } static void drawImageToContext(ImageBuffer& imageBuffer, GraphicsContext& context, const FloatRect& dest, const FloatRect& src, CompositeOperator op) { context.drawImageBuffer(imageBuffer, dest, src, op); } template void CanvasRenderingContext2D::fullCanvasCompositedDrawImage(T& image, const FloatRect& dest, const FloatRect& src, CompositeOperator op) { ASSERT(isFullCanvasCompositeMode(op)); IntSize croppedOffset; auto bufferRect = calculateCompositingBufferRect(dest, &croppedOffset); if (bufferRect.isEmpty()) { clearCanvas(); return; } auto buffer = createCompositingBuffer(bufferRect); if (!buffer) return; auto* c = drawingContext(); if (!c) return; FloatRect adjustedDest = dest; adjustedDest.setLocation(FloatPoint(0, 0)); AffineTransform effectiveTransform = c->getCTM(); IntRect transformedAdjustedRect = enclosingIntRect(effectiveTransform.mapRect(adjustedDest)); buffer->context().translate(-transformedAdjustedRect.location().x(), -transformedAdjustedRect.location().y()); buffer->context().translate(croppedOffset.width(), croppedOffset.height()); buffer->context().concatCTM(effectiveTransform); drawImageToContext(image, buffer->context(), adjustedDest, src, CompositeSourceOver); compositeBuffer(*buffer, bufferRect, op); } void CanvasRenderingContext2D::prepareGradientForDashboard(CanvasGradient& gradient) const { #if ENABLE(DASHBOARD_SUPPORT) if (m_usesDashboardCompatibilityMode) gradient.setDashboardCompatibilityMode(); #else UNUSED_PARAM(gradient); #endif } static CanvasRenderingContext2D::Style toStyle(const CanvasStyle& style) { if (auto* gradient = style.canvasGradient()) return RefPtr { gradient }; if (auto* pattern = style.canvasPattern()) return RefPtr { pattern }; return style.color(); } CanvasRenderingContext2D::Style CanvasRenderingContext2D::strokeStyle() const { return toStyle(state().strokeStyle); } void CanvasRenderingContext2D::setStrokeStyle(CanvasRenderingContext2D::Style&& style) { WTF::switchOn(style, [this] (const String& string) { this->setStrokeColor(string); }, [this] (const RefPtr& gradient) { this->setStrokeStyle(CanvasStyle(*gradient)); }, [this] (const RefPtr& pattern) { this->setStrokeStyle(CanvasStyle(*pattern)); } ); } CanvasRenderingContext2D::Style CanvasRenderingContext2D::fillStyle() const { return toStyle(state().fillStyle); } void CanvasRenderingContext2D::setFillStyle(CanvasRenderingContext2D::Style&& style) { WTF::switchOn(style, [this] (const String& string) { this->setFillColor(string); }, [this] (const RefPtr& gradient) { this->setFillStyle(CanvasStyle(*gradient)); }, [this] (const RefPtr& pattern) { this->setFillStyle(CanvasStyle(*pattern)); } ); } ExceptionOr> CanvasRenderingContext2D::createLinearGradient(float x0, float y0, float x1, float y1) { if (!std::isfinite(x0) || !std::isfinite(y0) || !std::isfinite(x1) || !std::isfinite(y1)) return Exception { NOT_SUPPORTED_ERR }; auto gradient = CanvasGradient::create(FloatPoint(x0, y0), FloatPoint(x1, y1)); prepareGradientForDashboard(gradient.get()); return WTFMove(gradient); } ExceptionOr> CanvasRenderingContext2D::createRadialGradient(float x0, float y0, float r0, float x1, float y1, float r1) { if (!std::isfinite(x0) || !std::isfinite(y0) || !std::isfinite(r0) || !std::isfinite(x1) || !std::isfinite(y1) || !std::isfinite(r1)) return Exception { NOT_SUPPORTED_ERR }; if (r0 < 0 || r1 < 0) return Exception { INDEX_SIZE_ERR }; auto gradient = CanvasGradient::create(FloatPoint(x0, y0), r0, FloatPoint(x1, y1), r1); prepareGradientForDashboard(gradient.get()); return WTFMove(gradient); } ExceptionOr> CanvasRenderingContext2D::createPattern(CanvasImageSource&& image, const String& repetition) { bool repeatX, repeatY; if (!CanvasPattern::parseRepetitionType(repetition, repeatX, repeatY)) return Exception { SYNTAX_ERR }; return WTF::switchOn(image, [&] (auto& element) -> ExceptionOr> { return this->createPattern(*element, repeatX, repeatY); } ); } ExceptionOr> CanvasRenderingContext2D::createPattern(HTMLImageElement& imageElement, bool repeatX, bool repeatY) { auto* cachedImage = imageElement.cachedImage(); // If the image loading hasn't started or the image is not complete, it is not fully decodable. if (!cachedImage || !imageElement.complete()) return nullptr; if (cachedImage->status() == CachedResource::LoadError) return Exception { INVALID_STATE_ERR }; bool originClean = cachedImage->isOriginClean(canvas().securityOrigin()); // FIXME: SVG images with animations can switch between clean and dirty (leaking cross-origin // data). We should either: // 1) Take a fixed snapshot of an SVG image when creating a pattern and determine then whether // the origin is clean. // 2) Dynamically verify the origin checks at draw time, and dirty the canvas accordingly. // To be on the safe side, taint the origin for all patterns containing SVG images for now. if (cachedImage->image()->isSVGImage()) originClean = false; return RefPtr { CanvasPattern::create(*cachedImage->imageForRenderer(imageElement.renderer()), repeatX, repeatY, originClean) }; } ExceptionOr> CanvasRenderingContext2D::createPattern(HTMLCanvasElement& canvas, bool repeatX, bool repeatY) { if (!canvas.width() || !canvas.height() || !canvas.buffer()) return Exception { INVALID_STATE_ERR }; return RefPtr { CanvasPattern::create(*canvas.copiedImage(), repeatX, repeatY, canvas.originClean()) }; } #if ENABLE(VIDEO) ExceptionOr> CanvasRenderingContext2D::createPattern(HTMLVideoElement& videoElement, bool repeatX, bool repeatY) { if (videoElement.readyState() < HTMLMediaElement::HAVE_CURRENT_DATA) return nullptr; checkOrigin(&videoElement); bool originClean = canvas().originClean(); #if USE(CG) || (ENABLE(ACCELERATED_2D_CANVAS) && USE(GSTREAMER_GL) && USE(CAIRO)) if (auto nativeImage = videoElement.nativeImageForCurrentTime()) return RefPtr { CanvasPattern::create(BitmapImage::create(WTFMove(nativeImage)), repeatX, repeatY, originClean) }; #endif auto imageBuffer = ImageBuffer::create(size(videoElement), drawingContext() ? drawingContext()->renderingMode() : Accelerated); videoElement.paintCurrentFrameInContext(imageBuffer->context(), FloatRect(FloatPoint(), size(videoElement))); return RefPtr { CanvasPattern::create(ImageBuffer::sinkIntoImage(WTFMove(imageBuffer), Unscaled).releaseNonNull(), repeatX, repeatY, originClean) }; } #endif void CanvasRenderingContext2D::didDrawEntireCanvas() { didDraw(FloatRect(FloatPoint::zero(), canvas().size()), CanvasDidDrawApplyClip); } void CanvasRenderingContext2D::didDraw(const FloatRect& r, unsigned options) { auto* c = drawingContext(); if (!c) return; if (!state().hasInvertibleTransform) return; #if ENABLE(ACCELERATED_2D_CANVAS) // If we are drawing to hardware and we have a composited layer, just call contentChanged(). if (isAccelerated()) { RenderBox* renderBox = canvas().renderBox(); if (renderBox && renderBox->hasAcceleratedCompositing()) { renderBox->contentChanged(CanvasPixelsChanged); canvas().clearCopiedImage(); canvas().notifyObserversCanvasChanged(r); return; } } #endif FloatRect dirtyRect = r; if (options & CanvasDidDrawApplyTransform) { AffineTransform ctm = state().transform; dirtyRect = ctm.mapRect(r); } if (options & CanvasDidDrawApplyShadow && state().shadowColor.isVisible()) { // The shadow gets applied after transformation FloatRect shadowRect(dirtyRect); shadowRect.move(state().shadowOffset); shadowRect.inflate(state().shadowBlur); dirtyRect.unite(shadowRect); } if (options & CanvasDidDrawApplyClip) { // FIXME: apply the current clip to the rectangle. Unfortunately we can't get the clip // back out of the GraphicsContext, so to take clip into account for incremental painting, // we'd have to keep the clip path around. } canvas().didDraw(dirtyRect); } void CanvasRenderingContext2D::setTracksDisplayListReplay(bool tracksDisplayListReplay) { if (tracksDisplayListReplay == m_tracksDisplayListReplay) return; m_tracksDisplayListReplay = tracksDisplayListReplay; if (!m_tracksDisplayListReplay) contextDisplayListMap().remove(this); } String CanvasRenderingContext2D::displayListAsText(DisplayList::AsTextFlags flags) const { if (!m_recordingContext) return { }; return m_recordingContext->displayList.asText(flags); } String CanvasRenderingContext2D::replayDisplayListAsText(DisplayList::AsTextFlags flags) const { auto* displayList = contextDisplayListMap().get(this); if (!displayList) return { }; return displayList->asText(flags); } void CanvasRenderingContext2D::paintRenderingResultsToCanvas() { if (UNLIKELY(m_usesDisplayListDrawing)) { if (!m_recordingContext) return; FloatRect clip(FloatPoint::zero(), canvas().size()); DisplayList::Replayer replayer(*canvas().drawingContext(), m_recordingContext->displayList); if (UNLIKELY(m_tracksDisplayListReplay)) { auto replayList = replayer.replay(clip, m_tracksDisplayListReplay); contextDisplayListMap().add(this, WTFMove(replayList)); } else replayer.replay(clip); m_recordingContext->displayList.clear(); } } GraphicsContext* CanvasRenderingContext2D::drawingContext() const { if (UNLIKELY(m_usesDisplayListDrawing)) { if (!m_recordingContext) m_recordingContext = std::make_unique(FloatRect(FloatPoint::zero(), canvas().size())); return &m_recordingContext->context; } return canvas().drawingContext(); } static RefPtr createEmptyImageData(const IntSize& size) { auto data = ImageData::create(size); if (data) data->data()->zeroFill(); return data; } ExceptionOr> CanvasRenderingContext2D::createImageData(ImageData* imageData) const { if (!imageData) return Exception { NOT_SUPPORTED_ERR }; return createEmptyImageData(imageData->size()); } ExceptionOr> CanvasRenderingContext2D::createImageData(float sw, float sh) const { if (!sw || !sh) return Exception { INDEX_SIZE_ERR }; FloatSize logicalSize(std::abs(sw), std::abs(sh)); if (!logicalSize.isExpressibleAsIntSize()) return nullptr; IntSize size = expandedIntSize(logicalSize); if (size.width() < 1) size.setWidth(1); if (size.height() < 1) size.setHeight(1); return createEmptyImageData(size); } ExceptionOr> CanvasRenderingContext2D::getImageData(float sx, float sy, float sw, float sh) const { return getImageData(ImageBuffer::LogicalCoordinateSystem, sx, sy, sw, sh); } ExceptionOr> CanvasRenderingContext2D::webkitGetImageDataHD(float sx, float sy, float sw, float sh) const { return getImageData(ImageBuffer::BackingStoreCoordinateSystem, sx, sy, sw, sh); } ExceptionOr> CanvasRenderingContext2D::getImageData(ImageBuffer::CoordinateSystem coordinateSystem, float sx, float sy, float sw, float sh) const { if (!canvas().originClean()) { static NeverDestroyed consoleMessage(ASCIILiteral("Unable to get image data from canvas because the canvas has been tainted by cross-origin data.")); canvas().document().addConsoleMessage(MessageSource::Security, MessageLevel::Error, consoleMessage); return Exception { SECURITY_ERR }; } if (!sw || !sh) return Exception { INDEX_SIZE_ERR }; if (sw < 0) { sx += sw; sw = -sw; } if (sh < 0) { sy += sh; sh = -sh; } FloatRect logicalRect(sx, sy, sw, sh); if (logicalRect.width() < 1) logicalRect.setWidth(1); if (logicalRect.height() < 1) logicalRect.setHeight(1); if (!logicalRect.isExpressibleAsIntRect()) return nullptr; IntRect imageDataRect = enclosingIntRect(logicalRect); ImageBuffer* buffer = canvas().buffer(); if (!buffer) return createEmptyImageData(imageDataRect.size()); auto byteArray = buffer->getUnmultipliedImageData(imageDataRect, coordinateSystem); if (!byteArray) { StringBuilder consoleMessage; consoleMessage.appendLiteral("Unable to get image data from canvas. Requested size was "); consoleMessage.appendNumber(imageDataRect.width()); consoleMessage.appendLiteral(" x "); consoleMessage.appendNumber(imageDataRect.height()); canvas().document().addConsoleMessage(MessageSource::Rendering, MessageLevel::Error, consoleMessage.toString()); return Exception { INVALID_STATE_ERR }; } return ImageData::create(imageDataRect.size(), byteArray.releaseNonNull()); } void CanvasRenderingContext2D::putImageData(ImageData& data, float dx, float dy) { putImageData(data, dx, dy, 0, 0, data.width(), data.height()); } void CanvasRenderingContext2D::webkitPutImageDataHD(ImageData& data, float dx, float dy) { webkitPutImageDataHD(data, dx, dy, 0, 0, data.width(), data.height()); } void CanvasRenderingContext2D::putImageData(ImageData& data, float dx, float dy, float dirtyX, float dirtyY, float dirtyWidth, float dirtyHeight) { putImageData(data, ImageBuffer::LogicalCoordinateSystem, dx, dy, dirtyX, dirtyY, dirtyWidth, dirtyHeight); } void CanvasRenderingContext2D::webkitPutImageDataHD(ImageData& data, float dx, float dy, float dirtyX, float dirtyY, float dirtyWidth, float dirtyHeight) { putImageData(data, ImageBuffer::BackingStoreCoordinateSystem, dx, dy, dirtyX, dirtyY, dirtyWidth, dirtyHeight); } void CanvasRenderingContext2D::drawFocusIfNeeded(Element& element) { drawFocusIfNeededInternal(m_path, element); } void CanvasRenderingContext2D::drawFocusIfNeeded(DOMPath& path, Element& element) { drawFocusIfNeededInternal(path.path(), element); } void CanvasRenderingContext2D::drawFocusIfNeededInternal(const Path& path, Element& element) { auto* context = drawingContext(); if (!element.focused() || !state().hasInvertibleTransform || path.isEmpty() || !element.isDescendantOf(canvas()) || !context) return; context->drawFocusRing(path, 1, 1, RenderTheme::focusRingColor()); } void CanvasRenderingContext2D::putImageData(ImageData& data, ImageBuffer::CoordinateSystem coordinateSystem, float dx, float dy, float dirtyX, float dirtyY, float dirtyWidth, float dirtyHeight) { ImageBuffer* buffer = canvas().buffer(); if (!buffer) return; if (dirtyWidth < 0) { dirtyX += dirtyWidth; dirtyWidth = -dirtyWidth; } if (dirtyHeight < 0) { dirtyY += dirtyHeight; dirtyHeight = -dirtyHeight; } FloatRect clipRect(dirtyX, dirtyY, dirtyWidth, dirtyHeight); clipRect.intersect(IntRect(0, 0, data.width(), data.height())); IntSize destOffset(static_cast(dx), static_cast(dy)); IntRect destRect = enclosingIntRect(clipRect); destRect.move(destOffset); destRect.intersect(IntRect(IntPoint(), coordinateSystem == ImageBuffer::LogicalCoordinateSystem ? buffer->logicalSize() : buffer->internalSize())); if (destRect.isEmpty()) return; IntRect sourceRect(destRect); sourceRect.move(-destOffset); sourceRect.intersect(IntRect(0, 0, data.width(), data.height())); if (!sourceRect.isEmpty()) buffer->putByteArray(Unmultiplied, data.data(), IntSize(data.width(), data.height()), sourceRect, IntPoint(destOffset), coordinateSystem); didDraw(destRect, CanvasDidDrawApplyNone); // ignore transform, shadow and clip } String CanvasRenderingContext2D::font() const { if (!state().font.realized()) return defaultFont; StringBuilder serializedFont; const auto& fontDescription = state().font.fontDescription(); if (fontDescription.italic()) serializedFont.appendLiteral("italic "); if (fontDescription.variantCaps() == FontVariantCaps::Small) serializedFont.appendLiteral("small-caps "); serializedFont.appendNumber(fontDescription.computedPixelSize()); serializedFont.appendLiteral("px"); for (unsigned i = 0; i < fontDescription.familyCount(); ++i) { if (i) serializedFont.append(','); // FIXME: We should append family directly to serializedFont rather than building a temporary string. String family = fontDescription.familyAt(i); if (family.startsWith("-webkit-")) family = family.substring(8); if (family.contains(' ')) family = makeString('"', family, '"'); serializedFont.append(' '); serializedFont.append(family); } return serializedFont.toString(); } void CanvasRenderingContext2D::setFont(const String& newFont) { if (newFont == state().unparsedFont && state().font.realized()) return; auto parsedStyle = MutableStyleProperties::create(); CSSParser::parseValue(parsedStyle, CSSPropertyFont, newFont, true, strictToCSSParserMode(!m_usesCSSCompatibilityParseMode)); if (parsedStyle->isEmpty()) return; String fontValue = parsedStyle->getPropertyValue(CSSPropertyFont); // According to http://lists.w3.org/Archives/Public/public-html/2009Jul/0947.html, // the "inherit" and "initial" values must be ignored. if (fontValue == "inherit" || fontValue == "initial") return; // The parse succeeded. String newFontSafeCopy(newFont); // Create a string copy since newFont can be deleted inside realizeSaves. realizeSaves(); modifiableState().unparsedFont = newFontSafeCopy; // Map the font into the text style. If the font uses keywords like larger/smaller, these will work // relative to the canvas. auto newStyle = RenderStyle::createPtr(); Document& document = canvas().document(); document.updateStyleIfNeeded(); if (auto* computedStyle = canvas().computedStyle()) newStyle->setFontDescription(computedStyle->fontDescription()); else { FontCascadeDescription defaultFontDescription; defaultFontDescription.setOneFamily(defaultFontFamily); defaultFontDescription.setSpecifiedSize(defaultFontSize); defaultFontDescription.setComputedSize(defaultFontSize); newStyle->setFontDescription(defaultFontDescription); } newStyle->fontCascade().update(&document.fontSelector()); // Now map the font property longhands into the style. StyleResolver& styleResolver = canvas().styleResolver(); styleResolver.applyPropertyToStyle(CSSPropertyFontFamily, parsedStyle->getPropertyCSSValue(CSSPropertyFontFamily).get(), WTFMove(newStyle)); styleResolver.applyPropertyToCurrentStyle(CSSPropertyFontStyle, parsedStyle->getPropertyCSSValue(CSSPropertyFontStyle).get()); styleResolver.applyPropertyToCurrentStyle(CSSPropertyFontVariantCaps, parsedStyle->getPropertyCSSValue(CSSPropertyFontVariantCaps).get()); styleResolver.applyPropertyToCurrentStyle(CSSPropertyFontWeight, parsedStyle->getPropertyCSSValue(CSSPropertyFontWeight).get()); // As described in BUG66291, setting font-size and line-height on a font may entail a CSSPrimitiveValue::computeLengthDouble call, // which assumes the fontMetrics are available for the affected font, otherwise a crash occurs (see http://trac.webkit.org/changeset/96122). // The updateFont() calls below update the fontMetrics and ensure the proper setting of font-size and line-height. styleResolver.updateFont(); styleResolver.applyPropertyToCurrentStyle(CSSPropertyFontSize, parsedStyle->getPropertyCSSValue(CSSPropertyFontSize).get()); styleResolver.updateFont(); styleResolver.applyPropertyToCurrentStyle(CSSPropertyLineHeight, parsedStyle->getPropertyCSSValue(CSSPropertyLineHeight).get()); modifiableState().font.initialize(document.fontSelector(), *styleResolver.style()); } String CanvasRenderingContext2D::textAlign() const { return textAlignName(state().textAlign); } void CanvasRenderingContext2D::setTextAlign(const String& s) { TextAlign align; if (!parseTextAlign(s, align)) return; if (state().textAlign == align) return; realizeSaves(); modifiableState().textAlign = align; } String CanvasRenderingContext2D::textBaseline() const { return textBaselineName(state().textBaseline); } void CanvasRenderingContext2D::setTextBaseline(const String& s) { TextBaseline baseline; if (!parseTextBaseline(s, baseline)) return; if (state().textBaseline == baseline) return; realizeSaves(); modifiableState().textBaseline = baseline; } inline TextDirection CanvasRenderingContext2D::toTextDirection(Direction direction, const RenderStyle** computedStyle) const { auto* style = (computedStyle || direction == Direction::Inherit) ? canvas().computedStyle() : nullptr; if (computedStyle) *computedStyle = style; switch (direction) { case Direction::Inherit: return style ? style->direction() : LTR; case Direction::RTL: return RTL; case Direction::LTR: return LTR; } ASSERT_NOT_REACHED(); return LTR; } String CanvasRenderingContext2D::direction() const { if (state().direction == Direction::Inherit) canvas().document().updateStyleIfNeeded(); return toTextDirection(state().direction) == RTL ? ASCIILiteral("rtl") : ASCIILiteral("ltr"); } void CanvasRenderingContext2D::setDirection(const String& directionString) { Direction direction; if (directionString == "inherit") direction = Direction::Inherit; else if (directionString == "rtl") direction = Direction::RTL; else if (directionString == "ltr") direction = Direction::LTR; else return; if (state().direction == direction) return; realizeSaves(); modifiableState().direction = direction; } void CanvasRenderingContext2D::fillText(const String& text, float x, float y, std::optional maxWidth) { drawTextInternal(text, x, y, true, maxWidth); } void CanvasRenderingContext2D::strokeText(const String& text, float x, float y, std::optional maxWidth) { drawTextInternal(text, x, y, false, maxWidth); } static inline bool isSpaceThatNeedsReplacing(UChar c) { // According to specification all space characters should be replaced with 0x0020 space character. // http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#text-preparation-algorithm // The space characters according to specification are : U+0020, U+0009, U+000A, U+000C, and U+000D. // http://www.whatwg.org/specs/web-apps/current-work/multipage/common-microsyntaxes.html#space-character // This function returns true for 0x000B also, so that this is backward compatible. // Otherwise, the test LayoutTests/canvas/philip/tests/2d.text.draw.space.collapse.space.html will fail return c == 0x0009 || c == 0x000A || c == 0x000B || c == 0x000C || c == 0x000D; } static void normalizeSpaces(String& text) { size_t i = text.find(isSpaceThatNeedsReplacing); if (i == notFound) return; unsigned textLength = text.length(); Vector charVector(textLength); StringView(text).getCharactersWithUpconvert(charVector.data()); charVector[i++] = ' '; for (; i < textLength; ++i) { if (isSpaceThatNeedsReplacing(charVector[i])) charVector[i] = ' '; } text = String::adopt(WTFMove(charVector)); } Ref CanvasRenderingContext2D::measureText(const String& text) { Ref metrics = TextMetrics::create(); String normalizedText = text; normalizeSpaces(normalizedText); metrics->setWidth(fontProxy().width(TextRun(normalizedText))); return metrics; } void CanvasRenderingContext2D::drawTextInternal(const String& text, float x, float y, bool fill, std::optional maxWidth) { auto& fontProxy = this->fontProxy(); const auto& fontMetrics = fontProxy.fontMetrics(); auto* c = drawingContext(); if (!c) return; if (!state().hasInvertibleTransform) return; if (!std::isfinite(x) | !std::isfinite(y)) return; if (maxWidth && (!std::isfinite(maxWidth.value()) || maxWidth.value() <= 0)) return; // If gradient size is zero, then paint nothing. auto* gradient = c->strokeGradient(); if (!fill && gradient && gradient->isZeroSize()) return; gradient = c->fillGradient(); if (fill && gradient && gradient->isZeroSize()) return; String normalizedText = text; normalizeSpaces(normalizedText); // FIXME: Need to turn off font smoothing. const RenderStyle* computedStyle; auto direction = toTextDirection(state().direction, &computedStyle); bool isRTL = direction == RTL; bool override = computedStyle ? isOverride(computedStyle->unicodeBidi()) : false; TextRun textRun(normalizedText, 0, 0, AllowTrailingExpansion, direction, override, true); // Draw the item text at the correct point. FloatPoint location(x, y); switch (state().textBaseline) { case TopTextBaseline: case HangingTextBaseline: location.setY(y + fontMetrics.ascent()); break; case BottomTextBaseline: case IdeographicTextBaseline: location.setY(y - fontMetrics.descent()); break; case MiddleTextBaseline: location.setY(y - fontMetrics.descent() + fontMetrics.height() / 2); break; case AlphabeticTextBaseline: default: // Do nothing. break; } float fontWidth = fontProxy.width(TextRun(normalizedText, 0, 0, AllowTrailingExpansion, direction, override)); bool useMaxWidth = maxWidth && maxWidth.value() < fontWidth; float width = useMaxWidth ? maxWidth.value() : fontWidth; auto align = state().textAlign; if (align == StartTextAlign) align = isRTL ? RightTextAlign : LeftTextAlign; else if (align == EndTextAlign) align = isRTL ? LeftTextAlign : RightTextAlign; switch (align) { case CenterTextAlign: location.setX(location.x() - width / 2); break; case RightTextAlign: location.setX(location.x() - width); break; default: break; } // The slop built in to this mask rect matches the heuristic used in FontCGWin.cpp for GDI text. FloatRect textRect = FloatRect(location.x() - fontMetrics.height() / 2, location.y() - fontMetrics.ascent() - fontMetrics.lineGap(), width + fontMetrics.height(), fontMetrics.lineSpacing()); if (!fill) inflateStrokeRect(textRect); #if USE(CG) const CanvasStyle& drawStyle = fill ? state().fillStyle : state().strokeStyle; if (drawStyle.canvasGradient() || drawStyle.canvasPattern()) { IntRect maskRect = enclosingIntRect(textRect); // If we have a shadow, we need to draw it before the mask operation. // Follow a procedure similar to paintTextWithShadows in TextPainter. if (shouldDrawShadows()) { GraphicsContextStateSaver stateSaver(*c); FloatSize offset(0, 2 * maskRect.height()); FloatSize shadowOffset; float shadowRadius; Color shadowColor; c->getShadow(shadowOffset, shadowRadius, shadowColor); FloatRect shadowRect(maskRect); shadowRect.inflate(shadowRadius * 1.4); shadowRect.move(shadowOffset * -1); c->clip(shadowRect); shadowOffset += offset; c->setLegacyShadow(shadowOffset, shadowRadius, shadowColor); if (fill) c->setFillColor(Color::black); else c->setStrokeColor(Color::black); fontProxy.drawBidiText(*c, textRun, location + offset, FontCascade::UseFallbackIfFontNotReady); } auto maskImage = ImageBuffer::createCompatibleBuffer(maskRect.size(), ColorSpaceSRGB, *c); if (!maskImage) return; auto& maskImageContext = maskImage->context(); if (fill) maskImageContext.setFillColor(Color::black); else { maskImageContext.setStrokeColor(Color::black); maskImageContext.setStrokeThickness(c->strokeThickness()); } maskImageContext.setTextDrawingMode(fill ? TextModeFill : TextModeStroke); if (useMaxWidth) { maskImageContext.translate(location.x() - maskRect.x(), location.y() - maskRect.y()); // We draw when fontWidth is 0 so compositing operations (eg, a "copy" op) still work. maskImageContext.scale(FloatSize((fontWidth > 0 ? (width / fontWidth) : 0), 1)); fontProxy.drawBidiText(maskImageContext, textRun, FloatPoint(0, 0), FontCascade::UseFallbackIfFontNotReady); } else { maskImageContext.translate(-maskRect.x(), -maskRect.y()); fontProxy.drawBidiText(maskImageContext, textRun, location, FontCascade::UseFallbackIfFontNotReady); } GraphicsContextStateSaver stateSaver(*c); c->clipToImageBuffer(*maskImage, maskRect); drawStyle.applyFillColor(*c); c->fillRect(maskRect); return; } #endif c->setTextDrawingMode(fill ? TextModeFill : TextModeStroke); GraphicsContextStateSaver stateSaver(*c); if (useMaxWidth) { c->translate(location.x(), location.y()); // We draw when fontWidth is 0 so compositing operations (eg, a "copy" op) still work. c->scale(FloatSize((fontWidth > 0 ? (width / fontWidth) : 0), 1)); location = FloatPoint(); } if (isFullCanvasCompositeMode(state().globalComposite)) { beginCompositeLayer(); fontProxy.drawBidiText(*c, textRun, location, FontCascade::UseFallbackIfFontNotReady); endCompositeLayer(); didDrawEntireCanvas(); } else if (state().globalComposite == CompositeCopy) { clearCanvas(); fontProxy.drawBidiText(*c, textRun, location, FontCascade::UseFallbackIfFontNotReady); didDrawEntireCanvas(); } else { fontProxy.drawBidiText(*c, textRun, location, FontCascade::UseFallbackIfFontNotReady); didDraw(textRect); } } void CanvasRenderingContext2D::inflateStrokeRect(FloatRect& rect) const { // Fast approximation of the stroke's bounding rect. // This yields a slightly oversized rect but is very fast // compared to Path::strokeBoundingRect(). static const float root2 = sqrtf(2); float delta = state().lineWidth / 2; if (state().lineJoin == MiterJoin) delta *= state().miterLimit; else if (state().lineCap == SquareCap) delta *= root2; rect.inflate(delta); } auto CanvasRenderingContext2D::fontProxy() -> const FontProxy& { canvas().document().updateStyleIfNeeded(); if (!state().font.realized()) setFont(state().unparsedFont); return state().font; } #if ENABLE(ACCELERATED_2D_CANVAS) PlatformLayer* CanvasRenderingContext2D::platformLayer() const { return canvas().buffer() ? canvas().buffer()->platformLayer() : nullptr; } #endif static inline InterpolationQuality smoothingToInterpolationQuality(CanvasRenderingContext2D::ImageSmoothingQuality quality) { switch (quality) { case CanvasRenderingContext2D::ImageSmoothingQuality::Low: return InterpolationLow; case CanvasRenderingContext2D::ImageSmoothingQuality::Medium: return InterpolationMedium; case CanvasRenderingContext2D::ImageSmoothingQuality::High: return InterpolationHigh; } ASSERT_NOT_REACHED(); return InterpolationLow; }; auto CanvasRenderingContext2D::imageSmoothingQuality() const -> ImageSmoothingQuality { return state().imageSmoothingQuality; } void CanvasRenderingContext2D::setImageSmoothingQuality(ImageSmoothingQuality quality) { if (quality == state().imageSmoothingQuality) return; realizeSaves(); modifiableState().imageSmoothingQuality = quality; if (!state().imageSmoothingEnabled) return; if (auto* context = drawingContext()) context->setImageInterpolationQuality(smoothingToInterpolationQuality(quality)); } bool CanvasRenderingContext2D::imageSmoothingEnabled() const { return state().imageSmoothingEnabled; } void CanvasRenderingContext2D::setImageSmoothingEnabled(bool enabled) { if (enabled == state().imageSmoothingEnabled) return; realizeSaves(); modifiableState().imageSmoothingEnabled = enabled; auto* c = drawingContext(); if (c) c->setImageInterpolationQuality(enabled ? smoothingToInterpolationQuality(state().imageSmoothingQuality) : InterpolationNone); } } // namespace WebCore