/* * Copyright (C) 2016 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "WasmB3IRGenerator.h" #if ENABLE(WEBASSEMBLY) #include "B3BasicBlockInlines.h" #include "B3CCallValue.h" #include "B3Compile.h" #include "B3ConstPtrValue.h" #include "B3FixSSA.h" #include "B3Generate.h" #include "B3StackmapGenerationParams.h" #include "B3SwitchValue.h" #include "B3Validate.h" #include "B3ValueInlines.h" #include "B3Variable.h" #include "B3VariableValue.h" #include "B3WasmAddressValue.h" #include "B3WasmBoundsCheckValue.h" #include "JSCInlines.h" #include "JSWebAssemblyInstance.h" #include "JSWebAssemblyModule.h" #include "JSWebAssemblyRuntimeError.h" #include "VirtualRegister.h" #include "WasmCallingConvention.h" #include "WasmExceptionType.h" #include "WasmFunctionParser.h" #include "WasmMemory.h" #include void dumpProcedure(void* ptr) { JSC::B3::Procedure* proc = static_cast(ptr); proc->dump(WTF::dataFile()); } namespace JSC { namespace Wasm { using namespace B3; namespace { const bool verbose = false; } class B3IRGenerator { public: struct ControlData { ControlData(Procedure& proc, Type signature, BlockType type, BasicBlock* continuation, BasicBlock* special = nullptr) : blockType(type) , continuation(continuation) , special(special) { if (signature != Void) result.append(proc.addVariable(toB3Type(signature))); } ControlData() { } void dump(PrintStream& out) const { switch (type()) { case BlockType::If: out.print("If: "); break; case BlockType::Block: out.print("Block: "); break; case BlockType::Loop: out.print("Loop: "); break; case BlockType::TopLevel: out.print("TopLevel: "); break; } out.print("Continuation: ", *continuation, ", Special: "); if (special) out.print(*special); else out.print("None"); } BlockType type() const { return blockType; } bool hasNonVoidSignature() const { return result.size(); } BasicBlock* targetBlockForBranch() { if (type() == BlockType::Loop) return special; return continuation; } void convertIfToBlock() { ASSERT(type() == BlockType::If); blockType = BlockType::Block; special = nullptr; } private: friend class B3IRGenerator; BlockType blockType; BasicBlock* continuation; BasicBlock* special; Vector result; }; typedef Value* ExpressionType; typedef ControlData ControlType; typedef Vector ExpressionList; typedef Vector ResultList; typedef FunctionParser::ControlEntry ControlEntry; static constexpr ExpressionType emptyExpression = nullptr; typedef String ErrorType; typedef UnexpectedType UnexpectedResult; typedef Expected, ErrorType> Result; typedef Expected PartialResult; template NEVER_INLINE UnexpectedResult WARN_UNUSED_RETURN fail(Args... args) const { using namespace FailureHelper; // See ADL comment in WasmParser.h. return UnexpectedResult(makeString(ASCIILiteral("WebAssembly.Module failed compiling: "), makeString(args)...)); } #define WASM_COMPILE_FAIL_IF(condition, ...) do { \ if (UNLIKELY(condition)) \ return fail(__VA_ARGS__); \ } while (0) B3IRGenerator(VM&, const ModuleInformation&, Procedure&, WasmInternalFunction*, Vector&); PartialResult WARN_UNUSED_RETURN addArguments(const Signature*); PartialResult WARN_UNUSED_RETURN addLocal(Type, uint32_t); ExpressionType addConstant(Type, uint64_t); // Locals PartialResult WARN_UNUSED_RETURN getLocal(uint32_t index, ExpressionType& result); PartialResult WARN_UNUSED_RETURN setLocal(uint32_t index, ExpressionType value); // Globals PartialResult WARN_UNUSED_RETURN getGlobal(uint32_t index, ExpressionType& result); PartialResult WARN_UNUSED_RETURN setGlobal(uint32_t index, ExpressionType value); // Memory PartialResult WARN_UNUSED_RETURN load(LoadOpType, ExpressionType pointer, ExpressionType& result, uint32_t offset); PartialResult WARN_UNUSED_RETURN store(StoreOpType, ExpressionType pointer, ExpressionType value, uint32_t offset); PartialResult WARN_UNUSED_RETURN addGrowMemory(ExpressionType delta, ExpressionType& result); PartialResult WARN_UNUSED_RETURN addCurrentMemory(ExpressionType& result); // Basic operators template PartialResult WARN_UNUSED_RETURN addOp(ExpressionType arg, ExpressionType& result); template PartialResult WARN_UNUSED_RETURN addOp(ExpressionType left, ExpressionType right, ExpressionType& result); PartialResult WARN_UNUSED_RETURN addSelect(ExpressionType condition, ExpressionType nonZero, ExpressionType zero, ExpressionType& result); // Control flow ControlData WARN_UNUSED_RETURN addTopLevel(Type signature); ControlData WARN_UNUSED_RETURN addBlock(Type signature); ControlData WARN_UNUSED_RETURN addLoop(Type signature); PartialResult WARN_UNUSED_RETURN addIf(ExpressionType condition, Type signature, ControlData& result); PartialResult WARN_UNUSED_RETURN addElse(ControlData&, const ExpressionList&); PartialResult WARN_UNUSED_RETURN addElseToUnreachable(ControlData&); PartialResult WARN_UNUSED_RETURN addReturn(const ControlData&, const ExpressionList& returnValues); PartialResult WARN_UNUSED_RETURN addBranch(ControlData&, ExpressionType condition, const ExpressionList& returnValues); PartialResult WARN_UNUSED_RETURN addSwitch(ExpressionType condition, const Vector& targets, ControlData& defaultTargets, const ExpressionList& expressionStack); PartialResult WARN_UNUSED_RETURN endBlock(ControlEntry&, ExpressionList& expressionStack); PartialResult WARN_UNUSED_RETURN addEndToUnreachable(ControlEntry&); // Calls PartialResult WARN_UNUSED_RETURN addCall(uint32_t calleeIndex, const Signature*, Vector& args, ExpressionType& result); PartialResult WARN_UNUSED_RETURN addCallIndirect(const Signature*, SignatureIndex, Vector& args, ExpressionType& result); PartialResult WARN_UNUSED_RETURN addUnreachable(); void dump(const Vector& controlStack, const ExpressionList* expressionStack); void emitExceptionCheck(CCallHelpers&, ExceptionType); private: ExpressionType emitCheckAndPreparePointer(ExpressionType pointer, uint32_t offset, uint32_t sizeOfOp); ExpressionType emitLoadOp(LoadOpType, Origin, ExpressionType pointer, uint32_t offset); void emitStoreOp(StoreOpType, Origin, ExpressionType pointer, ExpressionType value, uint32_t offset); void unify(Variable* target, const ExpressionType source); void unifyValuesWithBlock(const ExpressionList& resultStack, ResultList& stack); Value* zeroForType(Type); void emitChecksForModOrDiv(B3::Opcode, ExpressionType left, ExpressionType right); VM& m_vm; const ModuleInformation& m_info; Procedure& m_proc; BasicBlock* m_currentBlock; Vector m_locals; Vector& m_unlinkedWasmToWasmCalls; // List each call site and the function index whose address it should be patched with. GPRReg m_memoryBaseGPR; GPRReg m_memorySizeGPR; Value* m_zeroValues[numTypes]; Value* m_instanceValue; }; B3IRGenerator::B3IRGenerator(VM& vm, const ModuleInformation& info, Procedure& procedure, WasmInternalFunction* compilation, Vector& unlinkedWasmToWasmCalls) : m_vm(vm) , m_info(info) , m_proc(procedure) , m_unlinkedWasmToWasmCalls(unlinkedWasmToWasmCalls) { m_currentBlock = m_proc.addBlock(); for (unsigned i = 0; i < numTypes; ++i) { switch (B3::Type b3Type = toB3Type(linearizedToType(i))) { case B3::Int32: case B3::Int64: case B3::Float: case B3::Double: m_zeroValues[i] = m_currentBlock->appendIntConstant(m_proc, Origin(), b3Type, 0); break; case B3::Void: m_zeroValues[i] = nullptr; break; } } // FIXME we don't really need to pin registers here if there's no memory. It makes wasm -> wasm thunks simpler for now. https://bugs.webkit.org/show_bug.cgi?id=166623 const PinnedRegisterInfo& pinnedRegs = PinnedRegisterInfo::get(); m_memoryBaseGPR = pinnedRegs.baseMemoryPointer; m_proc.pinRegister(m_memoryBaseGPR); ASSERT(!pinnedRegs.sizeRegisters[0].sizeOffset); m_memorySizeGPR = pinnedRegs.sizeRegisters[0].sizeRegister; for (const PinnedSizeRegisterInfo& regInfo : pinnedRegs.sizeRegisters) m_proc.pinRegister(regInfo.sizeRegister); if (info.hasMemory()) { m_proc.setWasmBoundsCheckGenerator([=] (CCallHelpers& jit, GPRReg pinnedGPR, unsigned) { AllowMacroScratchRegisterUsage allowScratch(jit); ASSERT_UNUSED(pinnedGPR, m_memorySizeGPR == pinnedGPR); this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsMemoryAccess); }); } wasmCallingConvention().setupFrameInPrologue(&compilation->wasmCalleeMoveLocation, m_proc, Origin(), m_currentBlock); m_instanceValue = m_currentBlock->appendNew(m_proc, Load, pointerType(), Origin(), m_currentBlock->appendNew(m_proc, Origin(), &m_vm.topJSWebAssemblyInstance)); } struct MemoryBaseAndSize { Value* base; Value* size; }; static MemoryBaseAndSize getMemoryBaseAndSize(VM& vm, Value* instance, Procedure& proc, BasicBlock* block) { Value* memoryObject = block->appendNew(proc, Load, pointerType(), Origin(), instance, JSWebAssemblyInstance::offsetOfMemory()); static_assert(sizeof(decltype(vm.topJSWebAssemblyInstance->memory()->memory()->memory())) == sizeof(void*), "codegen relies on this size"); static_assert(sizeof(decltype(vm.topJSWebAssemblyInstance->memory()->memory()->size())) == sizeof(uint64_t), "codegen relies on this size"); MemoryBaseAndSize result; result.base = block->appendNew(proc, Load, pointerType(), Origin(), memoryObject, JSWebAssemblyMemory::offsetOfMemory()); result.size = block->appendNew(proc, Load, Int64, Origin(), memoryObject, JSWebAssemblyMemory::offsetOfSize()); return result; } static void restoreWebAssemblyGlobalState(VM& vm, const MemoryInformation& memory, Value* instance, Procedure& proc, BasicBlock* block) { block->appendNew(proc, Store, Origin(), instance, block->appendNew(proc, Origin(), &vm.topJSWebAssemblyInstance)); if (!!memory) { const PinnedRegisterInfo* pinnedRegs = &PinnedRegisterInfo::get(); RegisterSet clobbers; clobbers.set(pinnedRegs->baseMemoryPointer); for (auto info : pinnedRegs->sizeRegisters) clobbers.set(info.sizeRegister); B3::PatchpointValue* patchpoint = block->appendNew(proc, B3::Void, Origin()); patchpoint->effects = Effects::none(); patchpoint->effects.writesPinned = true; patchpoint->clobber(clobbers); patchpoint->append(instance, ValueRep::SomeRegister); patchpoint->setGenerator([pinnedRegs] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) { GPRReg baseMemory = pinnedRegs->baseMemoryPointer; jit.loadPtr(CCallHelpers::Address(params[0].gpr(), JSWebAssemblyInstance::offsetOfMemory()), baseMemory); const auto& sizeRegs = pinnedRegs->sizeRegisters; ASSERT(sizeRegs.size() >= 1); ASSERT(!sizeRegs[0].sizeOffset); // The following code assumes we start at 0, and calculates subsequent size registers relative to 0. jit.loadPtr(CCallHelpers::Address(baseMemory, JSWebAssemblyMemory::offsetOfSize()), sizeRegs[0].sizeRegister); jit.loadPtr(CCallHelpers::Address(baseMemory, JSWebAssemblyMemory::offsetOfMemory()), baseMemory); for (unsigned i = 1; i < sizeRegs.size(); ++i) jit.add64(CCallHelpers::TrustedImm32(-sizeRegs[i].sizeOffset), sizeRegs[0].sizeRegister, sizeRegs[i].sizeRegister); }); } } void B3IRGenerator::emitExceptionCheck(CCallHelpers& jit, ExceptionType type) { jit.move(CCallHelpers::TrustedImm32(static_cast(type)), GPRInfo::argumentGPR1); auto jumpToExceptionStub = jit.jump(); VM* vm = &m_vm; jit.addLinkTask([vm, jumpToExceptionStub] (LinkBuffer& linkBuffer) { linkBuffer.link(jumpToExceptionStub, CodeLocationLabel(vm->getCTIStub(throwExceptionFromWasmThunkGenerator).code())); }); } Value* B3IRGenerator::zeroForType(Type type) { ASSERT(type != Void); Value* zeroValue = m_zeroValues[linearizeType(type)]; ASSERT(zeroValue); return zeroValue; } auto B3IRGenerator::addLocal(Type type, uint32_t count) -> PartialResult { WASM_COMPILE_FAIL_IF(!m_locals.tryReserveCapacity(m_locals.size() + count), "can't allocate memory for ", m_locals.size() + count, " locals"); for (uint32_t i = 0; i < count; ++i) { Variable* local = m_proc.addVariable(toB3Type(type)); m_locals.uncheckedAppend(local); m_currentBlock->appendNew(m_proc, Set, Origin(), local, zeroForType(type)); } return { }; } auto B3IRGenerator::addArguments(const Signature* signature) -> PartialResult { ASSERT(!m_locals.size()); WASM_COMPILE_FAIL_IF(!m_locals.tryReserveCapacity(signature->argumentCount()), "can't allocate memory for ", signature->argumentCount(), " arguments"); m_locals.grow(signature->argumentCount()); wasmCallingConvention().loadArguments(signature, m_proc, m_currentBlock, Origin(), [&] (ExpressionType argument, unsigned i) { Variable* argumentVariable = m_proc.addVariable(argument->type()); m_locals[i] = argumentVariable; m_currentBlock->appendNew(m_proc, Set, Origin(), argumentVariable, argument); }); return { }; } auto B3IRGenerator::getLocal(uint32_t index, ExpressionType& result) -> PartialResult { ASSERT(m_locals[index]); result = m_currentBlock->appendNew(m_proc, B3::Get, Origin(), m_locals[index]); return { }; } auto B3IRGenerator::addUnreachable() -> PartialResult { B3::PatchpointValue* unreachable = m_currentBlock->appendNew(m_proc, B3::Void, Origin()); unreachable->setGenerator([this] (CCallHelpers& jit, const B3::StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::Unreachable); }); unreachable->effects.terminal = true; return { }; } auto B3IRGenerator::addGrowMemory(ExpressionType delta, ExpressionType& result) -> PartialResult { int32_t (*growMemory) (ExecState*, int32_t) = [] (ExecState* exec, int32_t delta) -> int32_t { VM& vm = exec->vm(); auto scope = DECLARE_THROW_SCOPE(vm); JSWebAssemblyInstance* instance = vm.topJSWebAssemblyInstance; JSWebAssemblyMemory* wasmMemory = instance->memory(); if (delta < 0) return -1; bool shouldThrowExceptionsOnFailure = false; PageCount result = wasmMemory->grow(exec, static_cast(delta), shouldThrowExceptionsOnFailure); RELEASE_ASSERT(!scope.exception()); if (!result) return -1; return result.pageCount(); }; result = m_currentBlock->appendNew(m_proc, Int32, Origin(), m_currentBlock->appendNew(m_proc, Origin(), bitwise_cast(growMemory)), m_currentBlock->appendNew(m_proc, B3::FramePointer, Origin()), delta); restoreWebAssemblyGlobalState(m_vm, m_info.memory, m_instanceValue, m_proc, m_currentBlock); return { }; } auto B3IRGenerator::addCurrentMemory(ExpressionType& result) -> PartialResult { auto memoryValue = getMemoryBaseAndSize(m_vm, m_instanceValue, m_proc, m_currentBlock); constexpr uint32_t shiftValue = 16; static_assert(PageCount::pageSize == 1 << shiftValue, "This must hold for the code below to be correct."); Value* numPages = m_currentBlock->appendNew(m_proc, ZShr, Origin(), memoryValue.size, m_currentBlock->appendNew(m_proc, Origin(), shiftValue)); result = m_currentBlock->appendNew(m_proc, Trunc, Origin(), numPages); return { }; } auto B3IRGenerator::setLocal(uint32_t index, ExpressionType value) -> PartialResult { ASSERT(m_locals[index]); m_currentBlock->appendNew(m_proc, B3::Set, Origin(), m_locals[index], value); return { }; } auto B3IRGenerator::getGlobal(uint32_t index, ExpressionType& result) -> PartialResult { Value* globalsArray = m_currentBlock->appendNew(m_proc, Load, pointerType(), Origin(), m_instanceValue, JSWebAssemblyInstance::offsetOfGlobals()); result = m_currentBlock->appendNew(m_proc, Load, toB3Type(m_info.globals[index].type), Origin(), globalsArray, index * sizeof(Register)); return { }; } auto B3IRGenerator::setGlobal(uint32_t index, ExpressionType value) -> PartialResult { ASSERT(toB3Type(m_info.globals[index].type) == value->type()); Value* globalsArray = m_currentBlock->appendNew(m_proc, Load, pointerType(), Origin(), m_instanceValue, JSWebAssemblyInstance::offsetOfGlobals()); m_currentBlock->appendNew(m_proc, Store, Origin(), value, globalsArray, index * sizeof(Register)); return { }; } inline Value* B3IRGenerator::emitCheckAndPreparePointer(ExpressionType pointer, uint32_t offset, uint32_t sizeOfOperation) { ASSERT(m_memoryBaseGPR && m_memorySizeGPR); ASSERT(sizeOfOperation + offset > offset); m_currentBlock->appendNew(m_proc, Origin(), pointer, m_memorySizeGPR, sizeOfOperation + offset - 1); pointer = m_currentBlock->appendNew(m_proc, ZExt32, Origin(), pointer); return m_currentBlock->appendNew(m_proc, Origin(), pointer, m_memoryBaseGPR); } inline uint32_t sizeOfLoadOp(LoadOpType op) { switch (op) { case LoadOpType::I32Load8S: case LoadOpType::I32Load8U: case LoadOpType::I64Load8S: case LoadOpType::I64Load8U: return 1; case LoadOpType::I32Load16S: case LoadOpType::I64Load16S: case LoadOpType::I32Load16U: case LoadOpType::I64Load16U: return 2; case LoadOpType::I32Load: case LoadOpType::I64Load32S: case LoadOpType::I64Load32U: case LoadOpType::F32Load: return 4; case LoadOpType::I64Load: case LoadOpType::F64Load: return 8; } RELEASE_ASSERT_NOT_REACHED(); } inline Value* B3IRGenerator::emitLoadOp(LoadOpType op, Origin origin, ExpressionType pointer, uint32_t offset) { switch (op) { case LoadOpType::I32Load8S: { return m_currentBlock->appendNew(m_proc, Load8S, origin, pointer, offset); } case LoadOpType::I64Load8S: { Value* value = m_currentBlock->appendNew(m_proc, Load8S, origin, pointer, offset); return m_currentBlock->appendNew(m_proc, SExt32, origin, value); } case LoadOpType::I32Load8U: { return m_currentBlock->appendNew(m_proc, Load8Z, origin, pointer, offset); } case LoadOpType::I64Load8U: { Value* value = m_currentBlock->appendNew(m_proc, Load8Z, origin, pointer, offset); return m_currentBlock->appendNew(m_proc, ZExt32, origin, value); } case LoadOpType::I32Load16S: { return m_currentBlock->appendNew(m_proc, Load16S, origin, pointer, offset); } case LoadOpType::I64Load16S: { Value* value = m_currentBlock->appendNew(m_proc, Load16S, origin, pointer, offset); return m_currentBlock->appendNew(m_proc, SExt32, origin, value); } case LoadOpType::I32Load: { return m_currentBlock->appendNew(m_proc, Load, Int32, origin, pointer, offset); } case LoadOpType::I64Load32U: { Value* value = m_currentBlock->appendNew(m_proc, Load, Int32, origin, pointer, offset); return m_currentBlock->appendNew(m_proc, ZExt32, origin, value); } case LoadOpType::I64Load32S: { Value* value = m_currentBlock->appendNew(m_proc, Load, Int32, origin, pointer, offset); return m_currentBlock->appendNew(m_proc, SExt32, origin, value); } case LoadOpType::I64Load: { return m_currentBlock->appendNew(m_proc, Load, Int64, origin, pointer, offset); } case LoadOpType::F32Load: { return m_currentBlock->appendNew(m_proc, Load, Float, origin, pointer, offset); } case LoadOpType::F64Load: { return m_currentBlock->appendNew(m_proc, Load, Double, origin, pointer, offset); } // FIXME: B3 doesn't support Load16Z yet. We should lower to that value when // it's added. https://bugs.webkit.org/show_bug.cgi?id=165884 case LoadOpType::I32Load16U: { Value* value = m_currentBlock->appendNew(m_proc, Load16S, origin, pointer, offset); return m_currentBlock->appendNew(m_proc, BitAnd, Origin(), value, m_currentBlock->appendNew(m_proc, Origin(), 0x0000ffff)); } case LoadOpType::I64Load16U: { Value* value = m_currentBlock->appendNew(m_proc, Load16S, origin, pointer, offset); Value* partialResult = m_currentBlock->appendNew(m_proc, BitAnd, Origin(), value, m_currentBlock->appendNew(m_proc, Origin(), 0x0000ffff)); return m_currentBlock->appendNew(m_proc, ZExt32, Origin(), partialResult); } } RELEASE_ASSERT_NOT_REACHED(); } auto B3IRGenerator::load(LoadOpType op, ExpressionType pointer, ExpressionType& result, uint32_t offset) -> PartialResult { ASSERT(pointer->type() == Int32); if (UNLIKELY(sumOverflows(offset, sizeOfLoadOp(op)))) { // FIXME: Even though this is provably out of bounds, it's not a validation error, so we have to handle it // as a runtime exception. However, this may change: https://bugs.webkit.org/show_bug.cgi?id=166435 B3::PatchpointValue* throwException = m_currentBlock->appendNew(m_proc, B3::Void, Origin()); throwException->setGenerator([this] (CCallHelpers& jit, const B3::StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsMemoryAccess); }); switch (op) { case LoadOpType::I32Load8S: case LoadOpType::I32Load16S: case LoadOpType::I32Load: case LoadOpType::I32Load16U: case LoadOpType::I32Load8U: result = zeroForType(I32); break; case LoadOpType::I64Load8S: case LoadOpType::I64Load8U: case LoadOpType::I64Load16S: case LoadOpType::I64Load32U: case LoadOpType::I64Load32S: case LoadOpType::I64Load: case LoadOpType::I64Load16U: result = zeroForType(I64); break; case LoadOpType::F32Load: result = zeroForType(F32); break; case LoadOpType::F64Load: result = zeroForType(F64); break; } } else result = emitLoadOp(op, Origin(), emitCheckAndPreparePointer(pointer, offset, sizeOfLoadOp(op)), offset); return { }; } inline uint32_t sizeOfStoreOp(StoreOpType op) { switch (op) { case StoreOpType::I32Store8: case StoreOpType::I64Store8: return 1; case StoreOpType::I32Store16: case StoreOpType::I64Store16: return 2; case StoreOpType::I32Store: case StoreOpType::I64Store32: case StoreOpType::F32Store: return 4; case StoreOpType::I64Store: case StoreOpType::F64Store: return 8; } RELEASE_ASSERT_NOT_REACHED(); } inline void B3IRGenerator::emitStoreOp(StoreOpType op, Origin origin, ExpressionType pointer, ExpressionType value, uint32_t offset) { switch (op) { case StoreOpType::I64Store8: value = m_currentBlock->appendNew(m_proc, Trunc, origin, value); FALLTHROUGH; case StoreOpType::I32Store8: m_currentBlock->appendNew(m_proc, Store8, origin, value, pointer, offset); return; case StoreOpType::I64Store16: value = m_currentBlock->appendNew(m_proc, Trunc, origin, value); FALLTHROUGH; case StoreOpType::I32Store16: m_currentBlock->appendNew(m_proc, Store16, origin, value, pointer, offset); return; case StoreOpType::I64Store32: value = m_currentBlock->appendNew(m_proc, Trunc, origin, value); FALLTHROUGH; case StoreOpType::I64Store: case StoreOpType::I32Store: case StoreOpType::F32Store: case StoreOpType::F64Store: m_currentBlock->appendNew(m_proc, Store, origin, value, pointer, offset); return; } RELEASE_ASSERT_NOT_REACHED(); } auto B3IRGenerator::store(StoreOpType op, ExpressionType pointer, ExpressionType value, uint32_t offset) -> PartialResult { ASSERT(pointer->type() == Int32); if (UNLIKELY(sumOverflows(offset, sizeOfStoreOp(op)))) { // FIXME: Even though this is provably out of bounds, it's not a validation error, so we have to handle it // as a runtime exception. However, this may change: https://bugs.webkit.org/show_bug.cgi?id=166435 B3::PatchpointValue* throwException = m_currentBlock->appendNew(m_proc, B3::Void, Origin()); throwException->setGenerator([this] (CCallHelpers& jit, const B3::StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsMemoryAccess); }); } else emitStoreOp(op, Origin(), emitCheckAndPreparePointer(pointer, offset, sizeOfStoreOp(op)), value, offset); return { }; } auto B3IRGenerator::addSelect(ExpressionType condition, ExpressionType nonZero, ExpressionType zero, ExpressionType& result) -> PartialResult { result = m_currentBlock->appendNew(m_proc, B3::Select, Origin(), condition, nonZero, zero); return { }; } B3IRGenerator::ExpressionType B3IRGenerator::addConstant(Type type, uint64_t value) { switch (type) { case Wasm::I32: return m_currentBlock->appendNew(m_proc, Origin(), static_cast(value)); case Wasm::I64: return m_currentBlock->appendNew(m_proc, Origin(), value); case Wasm::F32: return m_currentBlock->appendNew(m_proc, Origin(), bitwise_cast(static_cast(value))); case Wasm::F64: return m_currentBlock->appendNew(m_proc, Origin(), bitwise_cast(value)); case Wasm::Void: case Wasm::Func: case Wasm::Anyfunc: break; } RELEASE_ASSERT_NOT_REACHED(); return nullptr; } B3IRGenerator::ControlData B3IRGenerator::addTopLevel(Type signature) { return ControlData(m_proc, signature, BlockType::TopLevel, m_proc.addBlock()); } B3IRGenerator::ControlData B3IRGenerator::addBlock(Type signature) { return ControlData(m_proc, signature, BlockType::Block, m_proc.addBlock()); } B3IRGenerator::ControlData B3IRGenerator::addLoop(Type signature) { BasicBlock* body = m_proc.addBlock(); BasicBlock* continuation = m_proc.addBlock(); m_currentBlock->appendNewControlValue(m_proc, Jump, Origin(), body); body->addPredecessor(m_currentBlock); m_currentBlock = body; return ControlData(m_proc, signature, BlockType::Loop, continuation, body); } auto B3IRGenerator::addIf(ExpressionType condition, Type signature, ControlType& result) -> PartialResult { // FIXME: This needs to do some kind of stack passing. BasicBlock* taken = m_proc.addBlock(); BasicBlock* notTaken = m_proc.addBlock(); BasicBlock* continuation = m_proc.addBlock(); m_currentBlock->appendNew(m_proc, B3::Branch, Origin(), condition); m_currentBlock->setSuccessors(FrequentedBlock(taken), FrequentedBlock(notTaken)); taken->addPredecessor(m_currentBlock); notTaken->addPredecessor(m_currentBlock); m_currentBlock = taken; result = ControlData(m_proc, signature, BlockType::If, continuation, notTaken); return { }; } auto B3IRGenerator::addElse(ControlData& data, const ExpressionList& currentStack) -> PartialResult { unifyValuesWithBlock(currentStack, data.result); m_currentBlock->appendNewControlValue(m_proc, Jump, Origin(), data.continuation); return addElseToUnreachable(data); } auto B3IRGenerator::addElseToUnreachable(ControlData& data) -> PartialResult { ASSERT(data.type() == BlockType::If); m_currentBlock = data.special; data.convertIfToBlock(); return { }; } auto B3IRGenerator::addReturn(const ControlData&, const ExpressionList& returnValues) -> PartialResult { ASSERT(returnValues.size() <= 1); if (returnValues.size()) m_currentBlock->appendNewControlValue(m_proc, B3::Return, Origin(), returnValues[0]); else m_currentBlock->appendNewControlValue(m_proc, B3::Return, Origin()); return { }; } auto B3IRGenerator::addBranch(ControlData& data, ExpressionType condition, const ExpressionList& returnValues) -> PartialResult { if (data.type() != BlockType::Loop) unifyValuesWithBlock(returnValues, data.result); BasicBlock* target = data.targetBlockForBranch(); if (condition) { BasicBlock* continuation = m_proc.addBlock(); m_currentBlock->appendNew(m_proc, B3::Branch, Origin(), condition); m_currentBlock->setSuccessors(FrequentedBlock(target), FrequentedBlock(continuation)); target->addPredecessor(m_currentBlock); continuation->addPredecessor(m_currentBlock); m_currentBlock = continuation; } else { m_currentBlock->appendNewControlValue(m_proc, Jump, Origin(), FrequentedBlock(target)); target->addPredecessor(m_currentBlock); } return { }; } auto B3IRGenerator::addSwitch(ExpressionType condition, const Vector& targets, ControlData& defaultTarget, const ExpressionList& expressionStack) -> PartialResult { for (size_t i = 0; i < targets.size(); ++i) unifyValuesWithBlock(expressionStack, targets[i]->result); unifyValuesWithBlock(expressionStack, defaultTarget.result); SwitchValue* switchValue = m_currentBlock->appendNew(m_proc, Origin(), condition); switchValue->setFallThrough(FrequentedBlock(defaultTarget.targetBlockForBranch())); for (size_t i = 0; i < targets.size(); ++i) switchValue->appendCase(SwitchCase(i, FrequentedBlock(targets[i]->targetBlockForBranch()))); return { }; } auto B3IRGenerator::endBlock(ControlEntry& entry, ExpressionList& expressionStack) -> PartialResult { ControlData& data = entry.controlData; unifyValuesWithBlock(expressionStack, data.result); m_currentBlock->appendNewControlValue(m_proc, Jump, Origin(), data.continuation); data.continuation->addPredecessor(m_currentBlock); return addEndToUnreachable(entry); } auto B3IRGenerator::addEndToUnreachable(ControlEntry& entry) -> PartialResult { ControlData& data = entry.controlData; m_currentBlock = data.continuation; if (data.type() == BlockType::If) { data.special->appendNewControlValue(m_proc, Jump, Origin(), m_currentBlock); m_currentBlock->addPredecessor(data.special); } for (Variable* result : data.result) entry.enclosedExpressionStack.append(m_currentBlock->appendNew(m_proc, B3::Get, Origin(), result)); // TopLevel does not have any code after this so we need to make sure we emit a return here. if (data.type() == BlockType::TopLevel) return addReturn(entry.controlData, entry.enclosedExpressionStack); return { }; } auto B3IRGenerator::addCall(uint32_t functionIndex, const Signature* signature, Vector& args, ExpressionType& result) -> PartialResult { ASSERT(signature->argumentCount() == args.size()); Type returnType = signature->returnType(); Vector* unlinkedWasmToWasmCalls = &m_unlinkedWasmToWasmCalls; if (m_info.isImportedFunctionFromFunctionIndexSpace(functionIndex)) { // FIXME imports can be linked here, instead of generating a patchpoint, because all import stubs are generated before B3 compilation starts. https://bugs.webkit.org/show_bug.cgi?id=166462 Value* functionImport = m_currentBlock->appendNew(m_proc, Load, pointerType(), Origin(), m_instanceValue, JSWebAssemblyInstance::offsetOfImportFunction(functionIndex)); Value* jsTypeOfImport = m_currentBlock->appendNew(m_proc, Load8Z, Origin(), functionImport, JSCell::typeInfoTypeOffset()); Value* isWasmCall = m_currentBlock->appendNew(m_proc, Equal, Origin(), jsTypeOfImport, m_currentBlock->appendNew(m_proc, Origin(), WebAssemblyFunctionType)); BasicBlock* isWasmBlock = m_proc.addBlock(); BasicBlock* isJSBlock = m_proc.addBlock(); BasicBlock* continuation = m_proc.addBlock(); m_currentBlock->appendNewControlValue(m_proc, B3::Branch, Origin(), isWasmCall, FrequentedBlock(isWasmBlock), FrequentedBlock(isJSBlock)); Value* wasmCallResult = wasmCallingConvention().setupCall(m_proc, isWasmBlock, Origin(), args, toB3Type(returnType), [&] (PatchpointValue* patchpoint) { patchpoint->effects.writesPinned = true; patchpoint->effects.readsPinned = true; patchpoint->setGenerator([unlinkedWasmToWasmCalls, functionIndex] (CCallHelpers& jit, const B3::StackmapGenerationParams&) { AllowMacroScratchRegisterUsage allowScratch(jit); CCallHelpers::Call call = jit.call(); jit.addLinkTask([unlinkedWasmToWasmCalls, call, functionIndex] (LinkBuffer& linkBuffer) { unlinkedWasmToWasmCalls->append({ linkBuffer.locationOf(call), functionIndex, UnlinkedWasmToWasmCall::Target::ToWasm }); }); }); }); UpsilonValue* wasmCallResultUpsilon = returnType == Void ? nullptr : isWasmBlock->appendNew(m_proc, Origin(), wasmCallResult); isWasmBlock->appendNewControlValue(m_proc, Jump, Origin(), continuation); Value* jsCallResult = wasmCallingConvention().setupCall(m_proc, isJSBlock, Origin(), args, toB3Type(returnType), [&] (PatchpointValue* patchpoint) { patchpoint->effects.writesPinned = true; patchpoint->effects.readsPinned = true; patchpoint->setGenerator([unlinkedWasmToWasmCalls, functionIndex] (CCallHelpers& jit, const B3::StackmapGenerationParams&) { AllowMacroScratchRegisterUsage allowScratch(jit); CCallHelpers::Call call = jit.call(); jit.addLinkTask([unlinkedWasmToWasmCalls, call, functionIndex] (LinkBuffer& linkBuffer) { unlinkedWasmToWasmCalls->append({ linkBuffer.locationOf(call), functionIndex, UnlinkedWasmToWasmCall::Target::ToJs }); }); }); }); UpsilonValue* jsCallResultUpsilon = returnType == Void ? nullptr : isJSBlock->appendNew(m_proc, Origin(), jsCallResult); isJSBlock->appendNewControlValue(m_proc, Jump, Origin(), continuation); m_currentBlock = continuation; if (returnType == Void) result = nullptr; else { result = continuation->appendNew(m_proc, Phi, toB3Type(returnType), Origin()); wasmCallResultUpsilon->setPhi(result); jsCallResultUpsilon->setPhi(result); } // The call could have been to another WebAssembly instance, and / or could have modified our Memory. restoreWebAssemblyGlobalState(m_vm, m_info.memory, m_instanceValue, m_proc, continuation); } else { result = wasmCallingConvention().setupCall(m_proc, m_currentBlock, Origin(), args, toB3Type(returnType), [&] (PatchpointValue* patchpoint) { patchpoint->effects.writesPinned = true; patchpoint->effects.readsPinned = true; patchpoint->setGenerator([unlinkedWasmToWasmCalls, functionIndex] (CCallHelpers& jit, const B3::StackmapGenerationParams&) { AllowMacroScratchRegisterUsage allowScratch(jit); CCallHelpers::Call call = jit.call(); jit.addLinkTask([unlinkedWasmToWasmCalls, call, functionIndex] (LinkBuffer& linkBuffer) { unlinkedWasmToWasmCalls->append({ linkBuffer.locationOf(call), functionIndex, UnlinkedWasmToWasmCall::Target::ToWasm }); }); }); }); } return { }; } auto B3IRGenerator::addCallIndirect(const Signature* signature, SignatureIndex signatureIndex, Vector& args, ExpressionType& result) -> PartialResult { ASSERT(signatureIndex != Signature::invalidIndex); ExpressionType calleeIndex = args.takeLast(); ASSERT(signature->argumentCount() == args.size()); ExpressionType callableFunctionBuffer; ExpressionType callableFunctionBufferSize; { ExpressionType table = m_currentBlock->appendNew(m_proc, Load, pointerType(), Origin(), m_instanceValue, JSWebAssemblyInstance::offsetOfTable()); callableFunctionBuffer = m_currentBlock->appendNew(m_proc, Load, pointerType(), Origin(), table, JSWebAssemblyTable::offsetOfFunctions()); callableFunctionBufferSize = m_currentBlock->appendNew(m_proc, Load, Int32, Origin(), table, JSWebAssemblyTable::offsetOfSize()); } // Check the index we are looking for is valid. { CheckValue* check = m_currentBlock->appendNew(m_proc, Check, Origin(), m_currentBlock->appendNew(m_proc, AboveEqual, Origin(), calleeIndex, callableFunctionBufferSize)); check->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsCallIndirect); }); } // Compute the offset in the table index space we are looking for. ExpressionType offset = m_currentBlock->appendNew(m_proc, Mul, Origin(), m_currentBlock->appendNew(m_proc, ZExt32, Origin(), calleeIndex), m_currentBlock->appendIntConstant(m_proc, Origin(), pointerType(), sizeof(CallableFunction))); ExpressionType callableFunction = m_currentBlock->appendNew(m_proc, Add, Origin(), callableFunctionBuffer, offset); // Check that the CallableFunction is initialized. We trap if it isn't. An "invalid" SignatureIndex indicates it's not initialized. static_assert(sizeof(CallableFunction::signatureIndex) == sizeof(uint32_t), "Load codegen assumes i32"); ExpressionType calleeSignatureIndex = m_currentBlock->appendNew(m_proc, Load, Int32, Origin(), callableFunction, OBJECT_OFFSETOF(CallableFunction, signatureIndex)); { CheckValue* check = m_currentBlock->appendNew(m_proc, Check, Origin(), m_currentBlock->appendNew(m_proc, Equal, Origin(), calleeSignatureIndex, m_currentBlock->appendNew(m_proc, Origin(), Signature::invalidIndex))); check->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::NullTableEntry); }); } // Check the signature matches the value we expect. { ExpressionType expectedSignatureIndex = m_currentBlock->appendNew(m_proc, Origin(), signatureIndex); CheckValue* check = m_currentBlock->appendNew(m_proc, Check, Origin(), m_currentBlock->appendNew(m_proc, NotEqual, Origin(), calleeSignatureIndex, expectedSignatureIndex)); check->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::BadSignature); }); } ExpressionType calleeCode = m_currentBlock->appendNew(m_proc, Load, pointerType(), Origin(), callableFunction, OBJECT_OFFSETOF(CallableFunction, code)); Type returnType = signature->returnType(); result = wasmCallingConvention().setupCall(m_proc, m_currentBlock, Origin(), args, toB3Type(returnType), [&] (PatchpointValue* patchpoint) { patchpoint->effects.writesPinned = true; patchpoint->effects.readsPinned = true; patchpoint->append(calleeCode, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) { AllowMacroScratchRegisterUsage allowScratch(jit); jit.call(params[returnType == Void ? 0 : 1].gpr()); }); }); // The call could have been to another WebAssembly instance, and / or could have modified our Memory. restoreWebAssemblyGlobalState(m_vm, m_info.memory, m_instanceValue, m_proc, m_currentBlock); return { }; } void B3IRGenerator::unify(Variable* variable, ExpressionType source) { m_currentBlock->appendNew(m_proc, Set, Origin(), variable, source); } void B3IRGenerator::unifyValuesWithBlock(const ExpressionList& resultStack, ResultList& result) { ASSERT(result.size() <= resultStack.size()); for (size_t i = 0; i < result.size(); ++i) unify(result[result.size() - 1 - i], resultStack[resultStack.size() - 1 - i]); } static void dumpExpressionStack(const CommaPrinter& comma, const B3IRGenerator::ExpressionList& expressionStack) { dataLog(comma, "ExpressionStack:"); for (const auto& expression : expressionStack) dataLog(comma, *expression); } void B3IRGenerator::dump(const Vector& controlStack, const ExpressionList* expressionStack) { dataLogLn("Processing Graph:"); dataLog(m_proc); dataLogLn("With current block:", *m_currentBlock); dataLogLn("Control stack:"); ASSERT(controlStack.size()); for (size_t i = controlStack.size(); i--;) { dataLog(" ", controlStack[i].controlData, ": "); CommaPrinter comma(", ", ""); dumpExpressionStack(comma, *expressionStack); expressionStack = &controlStack[i].enclosedExpressionStack; dataLogLn(); } dataLogLn(); } static void createJSToWasmWrapper(VM& vm, CompilationContext& compilationContext, WasmInternalFunction& function, const Signature* signature, const ModuleInformation& info) { Procedure proc; BasicBlock* block = proc.addBlock(); Origin origin; jscCallingConvention().setupFrameInPrologue(&function.jsToWasmCalleeMoveLocation, proc, origin, block); if (!ASSERT_DISABLED) { // This should be guaranteed by our JS wrapper that handles calls to us. // Just prevent against crazy when ASSERT is enabled. Value* framePointer = block->appendNew(proc, B3::FramePointer, origin); Value* offSetOfArgumentCount = block->appendNew(proc, origin, CallFrameSlot::argumentCount * sizeof(Register)); Value* argumentCount = block->appendNew(proc, Load, Int32, origin, block->appendNew(proc, Add, origin, framePointer, offSetOfArgumentCount)); Value* expectedArgumentCount = block->appendNew(proc, origin, signature->argumentCount()); CheckValue* argumentCountCheck = block->appendNew(proc, Check, origin, block->appendNew(proc, Above, origin, expectedArgumentCount, argumentCount)); argumentCountCheck->setGenerator([] (CCallHelpers& jit, const StackmapGenerationParams&) { jit.breakpoint(); }); } // FIXME The instance is currently set by the C++ code in WebAssemblyFunction::call. We shouldn't go through the extra C++ hoop. https://bugs.webkit.org/show_bug.cgi?id=166486 Value* instance = block->appendNew(proc, Load, pointerType(), Origin(), block->appendNew(proc, Origin(), &vm.topJSWebAssemblyInstance)); restoreWebAssemblyGlobalState(vm, info.memory, instance, proc, block); // Get our arguments. Vector arguments; jscCallingConvention().loadArguments(signature, proc, block, origin, [&] (Value* argument, unsigned) { arguments.append(argument); }); // Move the arguments into place. Value* result = wasmCallingConvention().setupCall(proc, block, origin, arguments, toB3Type(signature->returnType()), [&] (PatchpointValue* patchpoint) { CompilationContext* context = &compilationContext; // wasm -> wasm calls clobber pinned registers unconditionally. This JS -> wasm transition must therefore restore these pinned registers (which are usually callee-saved) to account for this. const PinnedRegisterInfo* pinnedRegs = &PinnedRegisterInfo::get(); RegisterSet clobbers; clobbers.set(pinnedRegs->baseMemoryPointer); for (auto info : pinnedRegs->sizeRegisters) clobbers.set(info.sizeRegister); patchpoint->effects.writesPinned = true; patchpoint->clobber(clobbers); patchpoint->setGenerator([context] (CCallHelpers& jit, const B3::StackmapGenerationParams&) { AllowMacroScratchRegisterUsage allowScratch(jit); CCallHelpers::Call call = jit.call(); context->jsEntrypointToWasmEntrypointCall = call; }); }); // Return the result, if needed. switch (signature->returnType()) { case Wasm::Void: block->appendNewControlValue(proc, B3::Return, origin); break; case Wasm::F32: case Wasm::F64: result = block->appendNew(proc, BitwiseCast, origin, result); FALLTHROUGH; case Wasm::I32: case Wasm::I64: block->appendNewControlValue(proc, B3::Return, origin, result); break; case Wasm::Func: case Wasm::Anyfunc: RELEASE_ASSERT_NOT_REACHED(); } B3::prepareForGeneration(proc); B3::generate(proc, *compilationContext.jsEntrypointJIT); compilationContext.jsEntrypointByproducts = proc.releaseByproducts(); function.jsToWasmEntrypoint.calleeSaveRegisters = proc.calleeSaveRegisters(); } Expected, String> parseAndCompile(VM& vm, CompilationContext& compilationContext, const uint8_t* functionStart, size_t functionLength, const Signature* signature, Vector& unlinkedWasmToWasmCalls, const ModuleInformation& info, const Vector& moduleSignatureIndicesToUniquedSignatureIndices, unsigned optLevel) { auto result = std::make_unique(); compilationContext.jsEntrypointJIT = std::make_unique(&vm); compilationContext.wasmEntrypointJIT = std::make_unique(&vm); Procedure procedure; B3IRGenerator context(vm, info, procedure, result.get(), unlinkedWasmToWasmCalls); FunctionParser parser(&vm, context, functionStart, functionLength, signature, info, moduleSignatureIndicesToUniquedSignatureIndices); WASM_FAIL_IF_HELPER_FAILS(parser.parse()); procedure.resetReachability(); validate(procedure, "After parsing:\n"); if (verbose) dataLog("Pre SSA: ", procedure); fixSSA(procedure); if (verbose) dataLog("Post SSA: ", procedure); { B3::prepareForGeneration(procedure, optLevel); B3::generate(procedure, *compilationContext.wasmEntrypointJIT); compilationContext.wasmEntrypointByproducts = procedure.releaseByproducts(); result->wasmEntrypoint.calleeSaveRegisters = procedure.calleeSaveRegisters(); } createJSToWasmWrapper(vm, compilationContext, *result, signature, info); return WTFMove(result); } // Custom wasm ops. These are the ones too messy to do in wasm.json. void B3IRGenerator::emitChecksForModOrDiv(B3::Opcode operation, ExpressionType left, ExpressionType right) { ASSERT(operation == Div || operation == Mod || operation == UDiv || operation == UMod); const B3::Type type = left->type(); { CheckValue* check = m_currentBlock->appendNew(m_proc, Check, Origin(), m_currentBlock->appendNew(m_proc, Equal, Origin(), right, m_currentBlock->appendIntConstant(m_proc, Origin(), type, 0))); check->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::DivisionByZero); }); } if (operation == Div) { int64_t min = type == Int32 ? std::numeric_limits::min() : std::numeric_limits::min(); CheckValue* check = m_currentBlock->appendNew(m_proc, Check, Origin(), m_currentBlock->appendNew(m_proc, BitAnd, Origin(), m_currentBlock->appendNew(m_proc, Equal, Origin(), left, m_currentBlock->appendIntConstant(m_proc, Origin(), type, min)), m_currentBlock->appendNew(m_proc, Equal, Origin(), right, m_currentBlock->appendIntConstant(m_proc, Origin(), type, -1)))); check->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::IntegerOverflow); }); } } template<> auto B3IRGenerator::addOp(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult { const B3::Opcode op = Div; emitChecksForModOrDiv(op, left, right); result = m_currentBlock->appendNew(m_proc, op, Origin(), left, right); return { }; } template<> auto B3IRGenerator::addOp(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult { const B3::Opcode op = Mod; emitChecksForModOrDiv(op, left, right); result = m_currentBlock->appendNew(m_proc, chill(op), Origin(), left, right); return { }; } template<> auto B3IRGenerator::addOp(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult { const B3::Opcode op = UDiv; emitChecksForModOrDiv(op, left, right); result = m_currentBlock->appendNew(m_proc, op, Origin(), left, right); return { }; } template<> auto B3IRGenerator::addOp(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult { const B3::Opcode op = UMod; emitChecksForModOrDiv(op, left, right); result = m_currentBlock->appendNew(m_proc, op, Origin(), left, right); return { }; } template<> auto B3IRGenerator::addOp(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult { const B3::Opcode op = Div; emitChecksForModOrDiv(op, left, right); result = m_currentBlock->appendNew(m_proc, op, Origin(), left, right); return { }; } template<> auto B3IRGenerator::addOp(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult { const B3::Opcode op = Mod; emitChecksForModOrDiv(op, left, right); result = m_currentBlock->appendNew(m_proc, chill(op), Origin(), left, right); return { }; } template<> auto B3IRGenerator::addOp(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult { const B3::Opcode op = UDiv; emitChecksForModOrDiv(op, left, right); result = m_currentBlock->appendNew(m_proc, op, Origin(), left, right); return { }; } template<> auto B3IRGenerator::addOp(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult { const B3::Opcode op = UMod; emitChecksForModOrDiv(op, left, right); result = m_currentBlock->appendNew(m_proc, op, Origin(), left, right); return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Int32, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { jit.countTrailingZeros32(params[1].gpr(), params[0].gpr()); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Int64, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { jit.countTrailingZeros64(params[1].gpr(), params[0].gpr()); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { // FIXME: This should use the popcnt instruction if SSE4 is available but we don't have code to detect SSE4 yet. // see: https://bugs.webkit.org/show_bug.cgi?id=165363 uint32_t (*popcount)(int32_t) = [] (int32_t value) -> uint32_t { return __builtin_popcount(value); }; Value* funcAddress = m_currentBlock->appendNew(m_proc, Origin(), bitwise_cast(popcount)); result = m_currentBlock->appendNew(m_proc, Int32, Origin(), Effects::none(), funcAddress, arg); return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { // FIXME: This should use the popcnt instruction if SSE4 is available but we don't have code to detect SSE4 yet. // see: https://bugs.webkit.org/show_bug.cgi?id=165363 uint64_t (*popcount)(int64_t) = [] (int64_t value) -> uint64_t { return __builtin_popcountll(value); }; Value* funcAddress = m_currentBlock->appendNew(m_proc, Origin(), bitwise_cast(popcount)); result = m_currentBlock->appendNew(m_proc, Int64, Origin(), Effects::none(), funcAddress, arg); return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Double, Origin()); if (isX86()) patchpoint->numGPScratchRegisters = 1; patchpoint->append(ConstrainedValue(arg, ValueRep::SomeRegister)); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { AllowMacroScratchRegisterUsage allowScratch(jit); #if CPU(X86_64) jit.convertUInt64ToDouble(params[1].gpr(), params[0].fpr(), params.gpScratch(0)); #else jit.convertUInt64ToDouble(params[1].gpr(), params[0].fpr()); #endif }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Float, Origin()); if (isX86()) patchpoint->numGPScratchRegisters = 1; patchpoint->append(ConstrainedValue(arg, ValueRep::SomeRegister)); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { AllowMacroScratchRegisterUsage allowScratch(jit); #if CPU(X86_64) jit.convertUInt64ToFloat(params[1].gpr(), params[0].fpr(), params.gpScratch(0)); #else jit.convertUInt64ToFloat(params[1].gpr(), params[0].fpr()); #endif }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Double, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { jit.roundTowardNearestIntDouble(params[1].fpr(), params[0].fpr()); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Float, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { jit.roundTowardNearestIntFloat(params[1].fpr(), params[0].fpr()); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Double, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { jit.roundTowardZeroDouble(params[1].fpr(), params[0].fpr()); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Float, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { jit.roundTowardZeroFloat(params[1].fpr(), params[0].fpr()); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { Value* max = m_currentBlock->appendNew(m_proc, Origin(), -static_cast(std::numeric_limits::min())); Value* min = m_currentBlock->appendNew(m_proc, Origin(), static_cast(std::numeric_limits::min())); Value* outOfBounds = m_currentBlock->appendNew(m_proc, BitAnd, Origin(), m_currentBlock->appendNew(m_proc, LessThan, Origin(), arg, max), m_currentBlock->appendNew(m_proc, GreaterEqual, Origin(), arg, min)); outOfBounds = m_currentBlock->appendNew(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32)); CheckValue* trap = m_currentBlock->appendNew(m_proc, Check, Origin(), outOfBounds); trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc); }); PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Int32, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { jit.truncateDoubleToInt32(params[1].fpr(), params[0].gpr()); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { Value* max = m_currentBlock->appendNew(m_proc, Origin(), -static_cast(std::numeric_limits::min())); Value* min = m_currentBlock->appendNew(m_proc, Origin(), static_cast(std::numeric_limits::min())); Value* outOfBounds = m_currentBlock->appendNew(m_proc, BitAnd, Origin(), m_currentBlock->appendNew(m_proc, LessThan, Origin(), arg, max), m_currentBlock->appendNew(m_proc, GreaterEqual, Origin(), arg, min)); outOfBounds = m_currentBlock->appendNew(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32)); CheckValue* trap = m_currentBlock->appendNew(m_proc, Check, Origin(), outOfBounds); trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc); }); PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Int32, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { jit.truncateFloatToInt32(params[1].fpr(), params[0].gpr()); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { Value* max = m_currentBlock->appendNew(m_proc, Origin(), static_cast(std::numeric_limits::min()) * -2.0); Value* min = m_currentBlock->appendNew(m_proc, Origin(), -1.0); Value* outOfBounds = m_currentBlock->appendNew(m_proc, BitAnd, Origin(), m_currentBlock->appendNew(m_proc, LessThan, Origin(), arg, max), m_currentBlock->appendNew(m_proc, GreaterThan, Origin(), arg, min)); outOfBounds = m_currentBlock->appendNew(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32)); CheckValue* trap = m_currentBlock->appendNew(m_proc, Check, Origin(), outOfBounds); trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc); }); PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Int32, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { jit.truncateDoubleToUint32(params[1].fpr(), params[0].gpr()); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { Value* max = m_currentBlock->appendNew(m_proc, Origin(), static_cast(std::numeric_limits::min()) * -2.0); Value* min = m_currentBlock->appendNew(m_proc, Origin(), -1.0); Value* outOfBounds = m_currentBlock->appendNew(m_proc, BitAnd, Origin(), m_currentBlock->appendNew(m_proc, LessThan, Origin(), arg, max), m_currentBlock->appendNew(m_proc, GreaterThan, Origin(), arg, min)); outOfBounds = m_currentBlock->appendNew(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32)); CheckValue* trap = m_currentBlock->appendNew(m_proc, Check, Origin(), outOfBounds); trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc); }); PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Int32, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { jit.truncateFloatToUint32(params[1].fpr(), params[0].gpr()); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { Value* max = m_currentBlock->appendNew(m_proc, Origin(), -static_cast(std::numeric_limits::min())); Value* min = m_currentBlock->appendNew(m_proc, Origin(), static_cast(std::numeric_limits::min())); Value* outOfBounds = m_currentBlock->appendNew(m_proc, BitAnd, Origin(), m_currentBlock->appendNew(m_proc, LessThan, Origin(), arg, max), m_currentBlock->appendNew(m_proc, GreaterEqual, Origin(), arg, min)); outOfBounds = m_currentBlock->appendNew(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32)); CheckValue* trap = m_currentBlock->appendNew(m_proc, Check, Origin(), outOfBounds); trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc); }); PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Int64, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { jit.truncateDoubleToInt64(params[1].fpr(), params[0].gpr()); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { Value* max = m_currentBlock->appendNew(m_proc, Origin(), static_cast(std::numeric_limits::min()) * -2.0); Value* min = m_currentBlock->appendNew(m_proc, Origin(), -1.0); Value* outOfBounds = m_currentBlock->appendNew(m_proc, BitAnd, Origin(), m_currentBlock->appendNew(m_proc, LessThan, Origin(), arg, max), m_currentBlock->appendNew(m_proc, GreaterThan, Origin(), arg, min)); outOfBounds = m_currentBlock->appendNew(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32)); CheckValue* trap = m_currentBlock->appendNew(m_proc, Check, Origin(), outOfBounds); trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc); }); Value* constant; if (isX86()) { // Since x86 doesn't have an instruction to convert floating points to unsigned integers, we at least try to do the smart thing if // the numbers are would be positive anyway as a signed integer. Since we cannot materialize constants into fprs we have b3 do it // so we can pool them if needed. constant = m_currentBlock->appendNew(m_proc, Origin(), static_cast(std::numeric_limits::max() - std::numeric_limits::max())); } PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Int64, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); if (isX86()) { patchpoint->append(constant, ValueRep::SomeRegister); patchpoint->numFPScratchRegisters = 1; } patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { AllowMacroScratchRegisterUsage allowScratch(jit); FPRReg scratch = InvalidFPRReg; FPRReg constant = InvalidFPRReg; if (isX86()) { scratch = params.fpScratch(0); constant = params[2].fpr(); } jit.truncateDoubleToUint64(params[1].fpr(), params[0].gpr(), scratch, constant); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { Value* max = m_currentBlock->appendNew(m_proc, Origin(), -static_cast(std::numeric_limits::min())); Value* min = m_currentBlock->appendNew(m_proc, Origin(), static_cast(std::numeric_limits::min())); Value* outOfBounds = m_currentBlock->appendNew(m_proc, BitAnd, Origin(), m_currentBlock->appendNew(m_proc, LessThan, Origin(), arg, max), m_currentBlock->appendNew(m_proc, GreaterEqual, Origin(), arg, min)); outOfBounds = m_currentBlock->appendNew(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32)); CheckValue* trap = m_currentBlock->appendNew(m_proc, Check, Origin(), outOfBounds); trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc); }); PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Int64, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { jit.truncateFloatToInt64(params[1].fpr(), params[0].gpr()); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } template<> auto B3IRGenerator::addOp(ExpressionType arg, ExpressionType& result) -> PartialResult { Value* max = m_currentBlock->appendNew(m_proc, Origin(), static_cast(std::numeric_limits::min()) * -2.0); Value* min = m_currentBlock->appendNew(m_proc, Origin(), -1.0); Value* outOfBounds = m_currentBlock->appendNew(m_proc, BitAnd, Origin(), m_currentBlock->appendNew(m_proc, LessThan, Origin(), arg, max), m_currentBlock->appendNew(m_proc, GreaterThan, Origin(), arg, min)); outOfBounds = m_currentBlock->appendNew(m_proc, Equal, Origin(), outOfBounds, zeroForType(I32)); CheckValue* trap = m_currentBlock->appendNew(m_proc, Check, Origin(), outOfBounds); trap->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams&) { this->emitExceptionCheck(jit, ExceptionType::OutOfBoundsTrunc); }); Value* constant; if (isX86()) { // Since x86 doesn't have an instruction to convert floating points to unsigned integers, we at least try to do the smart thing if // the numbers are would be positive anyway as a signed integer. Since we cannot materialize constants into fprs we have b3 do it // so we can pool them if needed. constant = m_currentBlock->appendNew(m_proc, Origin(), static_cast(std::numeric_limits::max() - std::numeric_limits::max())); } PatchpointValue* patchpoint = m_currentBlock->appendNew(m_proc, Int64, Origin()); patchpoint->append(arg, ValueRep::SomeRegister); if (isX86()) { patchpoint->append(constant, ValueRep::SomeRegister); patchpoint->numFPScratchRegisters = 1; } patchpoint->setGenerator([=] (CCallHelpers& jit, const StackmapGenerationParams& params) { AllowMacroScratchRegisterUsage allowScratch(jit); FPRReg scratch = InvalidFPRReg; FPRReg constant = InvalidFPRReg; if (isX86()) { scratch = params.fpScratch(0); constant = params[2].fpr(); } jit.truncateFloatToUint64(params[1].fpr(), params[0].gpr(), scratch, constant); }); patchpoint->effects = Effects::none(); result = patchpoint; return { }; } } } // namespace JSC::Wasm #include "WasmB3IRGeneratorInlines.h" #endif // ENABLE(WEBASSEMBLY)